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Abstract

its subcellular localization have not been elucidated.

nucleolus.

Background: NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is
frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and
decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into
cells resulted in significant suppression of in vivo tumor growth and modulation of the angiogenic phenotype.
Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating

Results: An in vitro import assay demonstrated that NOL7 requires cytosolic machinery for active nuclear transport.
Using sequence homology and prediction algorithms, four putative nuclear localization signals (NLSs) were
identified. NOL7 deletion constructs and cytoplasmic pyruvate kinase (PK) fusion proteins confirmed the
functionality of three of these NLSs. Site-directed mutagenesis of PK fusions and full-length NOL7 defined the
minimal functional regions within each NLS. Further characterization revealed that NLS2 and NLS3 were critical for
both the rate and efficiency of nuclear targeting. In addition, four basic clusters within NLS2 and NLS3 were
independently capable of nucleolar targeting. The nucleolar occupancy of NOL7 revealed a complex balance of
rapid nucleoplasmic shuttling but low nucleolar mobility, suggesting NOL7 may play functional roles in both
compartments. In support, targeting to the nucleolar compartment was dependent on the presence of RNA, as
depletion of total RNA or rRNA resulted in a nucleoplasmic shift of NOL7.

Conclusions: These results identify the minimal sequences required for the active targeting of NOL7 to the
nucleus and nucleolus. Further, this work characterizes the relative contribution of each sequence to NOL7 nuclear
and nucleolar dynamics, the subnuclear constituents that participate in this targeting, and suggests a functional
role for NOL7 in both compartments. Taken together, these results identify the requisite protein domains for NOL7
localization, the kinetics that drive this targeting, and suggest NOL7 may function in both the nucleus and

Background

NOL7 is a predicted 29 kDa, 257 amino acid protein
with no significant homologies to other characterized
proteins that localizes to the nucleus and nucleoli of
cells. NOL7 localizes to 6p23, a region with frequent
loss of heterozygosity (LOH) in a number of cancers,
including hormone-refractory breast carcinoma, leuke-
mia, lymphoma, osteosarcoma, retinoblastoma, naso-
pharyngeal carcinoma and cervical cancer (CC) [1-19].
Using CC as a model for investigation, where LOH of
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6p23 is the most common allelic loss in this neoplasm
[20-25], we demonstrated that reintroduction of NOL7
suppresses in vivo tumor growth by 95% [26]. This sup-
pression is due in part to the induction of an anti-angio-
genic phenotype via decreased expression of the
angiogenic factor Vascular Endothelial Growth Factor
(VEGF) and increased expression of the inhibitor of
angiogenesis Thrombospondin-1 (TSP-1).

One of the important features that differentiate eukar-
yotic from prokaryotic cells is the presence of intracellu-
larly distinct compartments and organelles such as the
nucleus, nucleolus and mitochondria. The rapid
exchange of proteins between the cytoplasm and the
nucleus is a vital process in eukaryotic cells, and this
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occurs through the nuclear pore complex (NPC), a large
macromolecular structure embedded in the double mem-
brane of the nuclear envelope [27-29]. Small molecules
such as ions and some small proteins can move from the
cytoplasm to the nucleus by passive diffusion through the
NPC. However, proteins larger than ~20 kDa typically
cross the NPC in a carrier-mediated fashion [30]. This
active nuclear transport of proteins is mediated by speci-
fic amino acids sequences, which are referred to as
nuclear localization signals (NLS) and nuclear export sig-
nals (NESs). The classical NLSs contain a cluster of basic
amino acids, while classical NESs contain stretches of
hydrophobic, leucine-rich residues. The best-described
nuclear import pathway is driven by the so-called classi-
cal NLS (cNLS). This signal is typically lysines (K) or
arginines (R), that are organized as a single-stretch
monopartite NLS: (K/R)4.6, or as a bipartite NLS in
which there are two small clusters typically separated by
ten to twelve amino acids (K/R)3X;0.12(KR)3. The SV40
large-T antigen (PKKKRKYV) and nucleoplasmin
(KRPAATKKAGQAKKKK) cNLS are the prototypical
mono- and bipartite cNLS [31,32]. Recently, a tripartite
NLS, consisting of three clusters of basic residues sepa-
rated by two spacer peptides, has also been described
[33-38]. Finally, a fourth type of NLS contains two to
four dispersed basic residues contiguous to hydrophobic
amino acids [39,40]. The active transport of proteins
between the cytoplasm and nucleus is facilitated by the
karyopherin/importin family of carrier proteins. During
classical nuclear import, NLSs are typically recognized in
the cytoplasm by a heterodimeric complex consisting of
importin a and § with the a.-subunit providing the NLS
binding site. The NLS protein-receptor complex docks to
the nuclear pore complex via importin $ and is subse-
quently translocated through the pore by an energy-
dependent mechanism [41]. Once the import complex
reaches the nucleus, it is dissociated by RanGTP. Binding
of RanGTP to importin f can cause a conformational
change, resulting in the release of the importin o/cargo
complex [42]. Recent modeling studies have shown that
some cargo proteins can also bind directly to f -karyo-
pherins [43].

While active transport mechanisms are required for
nuclear localization, targeting to the nucleolus has been
shown to depend on interactions with nucleolar consti-
tuents. Nucleolar localization sequences (NoLSs) have
been shown to represent binding domains with resident
nucleolar proteins, rRNA, and other nucleolar compo-
nents and function more as retention rather than target-
ing signals [44-50]. The affinity and stability of these
interactions among nucleolar proteins has been shown
to have functional consequences that are reflected in the
dynamics of their nucleolar localization. Many ribosomal
proteins show higher immobility and slower recovery
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compared to processing and transcriptional factors, and
these differences have been attributed to the stability
and duration of their nucleolar functions [51,52]. Muta-
tions, truncations, and changes in posttranslational
modifications that have functional consequences have
also been shown to affect the immobility and recovery
of classic nucleolar proteins such as NPM [53].
Together, these observations suggest the nucleolar loca-
lization is a factor of the affinity, stability, and abun-
dance of nucleolar interactions and that the dynamics of
nucleolar occupancy are a reflection of potential func-
tions within the nucleus and nucleolus.

The purpose of this work was to determine the
mechanism by which NOL7 was transported into the
nucleus, identify the minimal functional sequences
required for NOL7 nuclear translocation, and the rela-
tive influence each of these sequences may have on the
rate and efficiency of localization. We further wished to
define the elements responsible for the nucleolar locali-
zation of NOL7 and characterize the dynamics of this
targeting. Together, the aim of this paper was to define
the mechanism responsible for localization of NOL7
within the cell and the functional consequences of the
different components that comprise that mechanism.

Results

NOL?7 is imported into the nucleus via an energy-
dependent, nucleoporin-mediated mechanism

NOL?7 is predicted to have a molecular weight of
approximately 29 kDa. Some proteins of this size have
been reported to enter the nucleus through passive dif-
fusion, while others require active NLS-mediated trans-
port. To distinguish between an active transport and a
passive diffusion mechanism of nuclear localization for
NOL7, we subjected GFP-tagged NOL7 to an in vitro
transport assay using permeabilized HeLa cells [54]. In
this assay, the cytoplasmic membranes are permeabilized
with digitonin, which depletes the cells of their soluble
endogenous cytosolic factors while leaving the nuclear
membrane intact. In this fashion, the nuclear import of
GFP-tagged proteins can be studied under various con-
ditions. In these experiments, digitonin-permeabilized
HeLa cells were incubated with GFP-tagged NOL7
under various conditions to assay the mechanism of its
localization. NOL7-GFP alone was not sufficient for
nuclear import (Figure 1, first panel). Addition of cyto-
solic extract or ATP alone was also insufficient for
transport (Figure 1, second and third panels), suggesting
that NOL7 localization is energy and complex depen-
dent. At 4°C or in the presence of heat-inactivated cyto-
sol, NOL7-GFP was restricted to the cytoplasm (Figure
1, fourth and fifth panels), demonstrating that NOL7
requires cytosolic proteins and is localized via an active
transport mechanism. At physiologic temperature,
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Figure 1 NOL7 requires cytosolic factors for efficient nuclear localization. Hela cells permeabilized with digitonin were incubated at 4°C or
37°C as indicated with (+) or without (-) full length NOL7 expressing a C-terminal GFP tag, cytosol, heat-inactivated cytosol, ATP, or WGA.

combination of cytosol and ATP was sufficient for
NOL?7 nuclear localization (Figure 1, sixth panel). How-
ever, this was blocked by pretreatment with wheat germ
agglutinin (WGA) (Figure 1, seventh panel). Together,
these controls demonstrate that NOL7 is actively tar-
geted to the nucleus and nucleolus via an energy-depen-
dent, nucleoporin-mediated mechanism.

Protein prediction programs identify distinct biochemical
domains and putative NLSs in NOL7

Database analysis of the full length sequence of human
NOL?7, utilizing the protein domain prediction programs
PSORT [55], TargetP [56], SAPS [57] and NetNES [58],
identified five distinct biochemical domains and four
putative NLSs within NOL7 (Figure 2). SAPS analysis
revealed the existence of four highly basic regions and
one acidic domain which correlates with its high pI of
9.7. Stretches of highly basic residues have been shown
to participate in nucleic acid binding, nuclear transport,
and may contribute to the tumor suppressive function
and localization of NOL7 (Figure 2A). While NOL7
lacks homology to other known proteins and domains,
the significant sequence conservation among its ortho-
logs suggests a consistent evolutionary role. In particu-
lar, four long stretches of basic amino acids are
particularly conserved throughout evolution (Figure 2B).
Not coincidently, the prediction programs also identified

potential NLSs within these basic biochemical domains.
However, NOL7 was not predicted to contain any NESs.
Putative Sequence (PS) 1, amino acids 1-10 appeared to
be a monopartite NLS, while PS2, amino acids 88-112
was predicted to be an example of the recently
described tripartite NLS. PS3, amino acids 144-162
appeared to be bipartite NLS and PS4, amino acids 242-
257, was predicted to be a bipartite NLS (Figure 2B).

Analysis of potential sequence conservation of each of
the four putative NOL7 NLSs among its orthologs was
performed using BLAST and aligned by the ClustalW
method (Figure 2B). Significant evolutionary conserva-
tion between mammalian species Homo sapiens, Pan tro-
glodytes, Macaca mulatta, Bos taurus, Canis familiaris,
Rattus norvegicus, and Mus musculus was observed not
only for the NLS regions for the full-length protein as
well. Less striking but still significant homology was also
seen in Gallus gallus, Tetraodon nigroviridis, Danio rerio,
and Saccharomyces cerevisiae. While some stretches of
the full-length protein showed typical divergence of the
sequence, the basic stretches of residues that comprised
the putative NLSs were remarkably conserved. In particu-
lar, PS1, which is composed of three basic residues con-
tiguous to hydrophobic amino acids, showed highly
significant homology between all of the NOL7 orthologs.
This suggests that PS1 may target NOL7 to the nucleus
despite its dispersed amino acid sequence.
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Figure 2 NOL7 is composed of distinct biochemical domains and multiple putative NLSs that show evolutionary conservation. (A)
Multiple sequential analysis programs confirmed the existence of four basic (blue) and one acidic (green) region in the full-length sequence of
NOL7. Putative NLSs identified in sequence analysis programs are shown in red. (B) Sequence conservation between human NOL7 and its
putative orthologs was analyzed for each of the putative NLSs and the alignment is shown. Black shaded boxes indicate identical amino acid
conservation, while grey boxes signify similar amino acids to Homo sapiens. Numbers correspond to residues within the RefSeq sequences listed
in the Materials and Methods 2.7.

Interestingly, no homology could be detected between  of these proteins. In the case of the putative yeast ortho-

NOL7 and any other proteins or domains. Further,
despite the significant conservation between human
NOL7 and its putative orthologs, no functional role can
be extrapolated for NOL7. With the exception of S. cer-
evisiae ortholog Bud21, no functional data exists for any

log, initial studies suggest that the U3 snoRNA function
of Bud21 is not conserved, as NOL7 is incapable of
interacting with major Bud21 cofactors that regulate its
activity (unpublished data). Further, no similarity could
be detected between NOL7 and other characterized
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proteins of any species, either in the context of the full-
length NOL7 or for shorter stretches of the protein.
Taken together, this data suggests that NOL7 is a criti-
cal protein in higher eukaryotes that may function in a
specialized manner. Furthermore, the correlation
between the regions of strongest sequence conservation
and predicted NLSs suggests the localization and func-
tion of NOL7 may be linked.

NOL7 contains three functional NLSs that translocate
cytoplasmic PK into the nucleus

In order to determine the functionality of the four puta-
tive NLSs, we first generated a series of N- and C- term-
inal deletion mutants of NOL7 with an HA tag that
were transiently expressed in HeLa and 293T cells
(Figure 3A). The subcellular localization of the trunca-
tions was visualized by immunofluorescence with DAPI
costaining of the nucleus. While the majority of the
deletion constructs retained nuclear localization, a dele-
tion construct lacking all four PSs [A1-10, A88-257] was
cytoplasmic (Figure 3B). Further, PS1 and PS2 were
shown to function individually as NLSs, as constructs
missing PS2, PS3, and PS4 [A88-257] or PS1, PS3, and
PS4 [A1-10, A113-257] were nuclear localized.

While these results demonstrated that PS1 and PS2
were sufficient to target NOL7 to the nucleus, we
sought to further clarify the role of PS3 and PS4. There-
fore, five additional truncations were cloned together
with inactivating mutations in the region of PS1 [PS1
(-)]. PS4 was found to be sufficient for nuclear localiza-
tion of NOL7 [PS1(-),A88-216 and PS1(-),A88-241] but
a construct containing only an intact PS3 [PS1(-),A88-
112,A217-257] remained in the cytoplasm, suggesting
that the putative sequence of PS3 is not a functional
NLS.

To specifically determine if the three candidate NLSs
were sufficient to target proteins for nuclear import and
further confirm that PS3 was not a functional NLS, the
localization of a series of fusion constructs containing
each putative NLS sequence and the cytoplasmic protein
PK was evaluated. PS1, 2, 3 and 4 were cloned in frame
with the C- terminus of the PK bearing an N-terminal
myc tag and transiently transfected into HeLa cells (Fig-
ure 4A). The subcellular localization of the chimeric pro-
teins was visualized using an o.-myc monoclonal antibody
and Cy3-conjugated secondary, with DAPI costaining for
visualization of the nucleus. Both wild-type Myc-tagged
PK protein and the PS3-PK fusion were seen exclusively
in the cytoplasm (Figure 4B). In contrast, PK-PS1, PK-
PS2, and PK-PS4 localized predominately to the nucleus
(Figure 4B). Taken together, these results from the trun-
cation and PS-PK fusion experiments confirm that PS3 is
not a functional NLS while PS1, PS2, and PS4 are func-
tional nuclear localization signals. Furthermore, the data
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demonstrate that each NLS is capable of translocating a
cytoplasmic protein into the nucleus independently.
From this point forward, we will therefore refer to PS1,
PS2, and PS4 as NLS1, NLS2, and NLS3, respectively.

Identification of the amino acids required for
functionality of each NLS

The deletion and PK fusion constructs demonstrated
the regions within NOL7 that are individually capable
of driving nuclear localization, but do not define the
specifc sequence elements that comprise the individual
NLSs. To specifically define the minimal amino acids
required for functionality of each NLS, site-directed
mutagenesis was performed to convert the basic amino
acids of interest (arginine and lysine) to the nonpolar,
electrically neutral amino acid alanine in each of the
NLSs. Within each sequence, three individual basic
amino acids (NLS1) or clusters of basic amino acids
(NLS2 and NLS3) were identified and mutated individu-
ally to determine their relative contribution to the func-
tionality of the NLS. Each intact NLS and the mutant
NLSs were cloned in-frame with PK bearing an N-term-
inal myc tag (Figure 5A). As before, fusion with all
three wild type NLSs resulted in nuclear localization of
PK (Figure 5B-D). Mutation of any one of the three
basic residues of NLS1 abolished nuclear localization,
suggesting that each of these amino acids is critical for
functionality of NLS1 (Figure 5B). For NLS2, loss of the
second or third cluster of basic residues resulted in
cytoplasmic localization, while loss of the first basic
cluster had no effect on nuclear localization of PK
(Figure 5C). These mutations suggest that the minimal
region required for nuclear localization directed by
NLS2 resides within residues 95-112. Consistent with
our predictions, both basic clusters of NLS3 were
required for nuclear localization (Figure 5D), suggesting
that NLS1 is a monopartite sequence while both NLS2
and NLS3 are bipartite sequences. Taken together, these
data confirm the functionality of the NLSs and define
the specific amino acids present in each of the indivi-
dual NLS that are required for the nuclear import of
PK.

While experiments using individual NLS fused to PK
are useful, there are several limitations to these types of
studies. For example, Burgess et al [59] demonstrated
that EBNA3B has three functional NLSs when investi-
gated in truncation experiments but only two were
found to be functional in the context of the full-length
protein. To determine the contributions of each NLS
within full-length GFP-tagged NOL7, the arginine and
lysine residues in each NLS were mutated to alanine
(Figure 6A). The subcellular localization of the con-
structs was visualized using by GFP fluorescence, with
DAPI costaining of the nucleus. Mutation of all three
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Figure 3 NOL7 contains three separate NLSs that are necessary for nuclear localization. (
constructs of NOL7 used to determine which regions of NOL7 are required for nuclear localization. Results as demonstrated in (B) are

summarized in the column to the right, where “No” designates nucleolar localization, “Np” designates nucleoplasmic localization, and “C"
designates cytoplasmic localization. (B) Localization of the constructs was confirmed in Hela cells by immunofluorescence using an o.-HA
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) Schematic representation of deletion

NLSs resulted in cytoplasmic localization of NOL7 but
retention of only one NLS was sufficient for nuclear
localization (Figure 6B). Taken together, these results
demonstrate that NOL7 has three functional NLS that
can independently cause translocation of full length
NOL?7.

Each NLS contributes differentially to the rate and
efficiency of NOL7 nuclear import

While each NLS was shown to be independently cap-
able of directing nuclear transport of NOL7, it was
unclear what the relative contribution of each signal to
this function might be. To address this question, we
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Figure 4 NOL7 contains three NLSs that are sufficient for nuclear localization. (A) Schematic representing the three different NLSs cloned
in-frame with the cytoplasmic protein PK bearing a c-myc tag. Results demonstrated in (B) are summarized in the column to the right, where
“Np” designates nucleoplasmic localization and “C" designates cytoplasmic localization. (B) Localization of the constructs in Hela cells was
confirmed by immunofluorescence using an a-myc primary and Cy-3 conjugated secondary antibody. Costaining of the nucleus with DAPI is

determined the rate and efficiency of nuclear import
for each NLS construct. While fluorescence recovery
after photobleaching (FRAP) has been employed pre-
viously for measuring the rate of import, this method
is limited to small bleaching areas and measures a
combination of active nuclear import and nucleoplas-
mic diffusion, the magnitude of which can vary greatly
between proteins [60-62]. In most cases, the nuclear
diffusion can be considered equivalent among different
constructs of the same protein. However, subnuclear
targeting of proteins within the nucleus affects their
nuclear diffusion and can no longer be discounted in
the calculation of rate by FRAP. As mutant constructs
of NOL7 are differentially localized to the nucleoplasm
and nucleolus, a different approach needed to be
applied to investigate the role of different NLSs in the
rate of nuclear import that would not be influenced by
mobility within the nuclear compartment. Therefore,
two complementary methods were adapted to measure
both rate and efficiency of NOL7 nuclear import,

based on quantitative immunofluorescence methods
previously established in the literature [63-67]. In both
cases, HA-tagged NOL7 constructs were transfected
into HeLa cells and imaged by immunofluorescence
against the HA tag. Using Image] software, the fluores-
cence intensity was measured and reported as a ratio
of nuclear to total fluorescence. While previous reports
typically utilize the nuclear to cytoplasmic ratio, we
normalized to total cell fluorescence to accommodate
differences in subnuclear localization and expression
level between the different mutant constructs.

For the efficiency experiments, data was collected
twenty hours after transfection, when import had reached
steady-state equilibrium (Figure 7A). It was found that
WT NOL7 was most efficiently localized to the nucleus,
and the strictly nucleoplasmic mutant N23(-), was least
efficiently targeted. The single mutants demonstrated
nearly 10% more efficient nuclear targeting than the dou-
ble mutants, with a p-value of 2.13x10”7. The most dra-
matic loss in targeting efficiency was observed upon the
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combined loss of NLS2 and NLS3, with over a 15%
decrease in efficiency for N23(-) compared to WT NOL7
and over 10% decrease compared to all other mutants.
This decrease was highly significant, with a p-value of
9.45x10°° compared to WT NOL7 and 2.68x10°® and
1.24x10™* compared to the other double mutants N12(-)
and N13(-), respectively. Together, these observations
suggest that NLS2 and NLS3 are the major sequences
involved in the efficient targeting of NOL7 to the
nucleus.

To determine the rate of nuclear import, a similar
approach was used, this time measuring the relative
nuclear fluorescence intensity over a four-hour time
course. To ensure that this rate represented strictly
nuclear import, the increase in fluorescence intensity was
measured prior to the establishment of steady-state NOL7
levels. To determine the time frame for measurement, we

transfected cells with GFP-tagged wild type NOL7 and
measured the time posttransfection when fluorescent
signal can first be detected until it accumulates to a
steady-state level. It was determined that NOL7 protein is
detectable 5 hours posttransfection, and its accumulation
reaches steady-state levels approximately 10 hours after
transfection (Additional file 1: Supplementary Movie 1).
Therefore, the rate was calculated as the change in fluores-
cence intensity at 5, 6, 7, and 8 hours posttransfection
(Figure 7B). Loss of even one NLS had a significant effect
on the change in rate, regardless of identity. The single
NLS mutants had a significantly higher rate of import
than the double mutants (4.94 + 0.34 versus 3.05 + 0.40,
p = 6.19x10™®). The most dramatic decrease was observed
with the N23(-) mutant, which was imported at a rate
nearly 80% less than WT NOL7, with a p-value of
6.13x107"7. This suggests that each NLS plays a unique
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Figure 6 Basic residues within each of the NLSs are required for nuclear localization of full-length NOL7. (

A) Schematic representing the
different mutant constructs used to evaluate nuclear localization in the context of the full length protein. Results demonstrated in (B) are
summarized in the column on the right, where “No" designates nucleolar localization, “Np” designates nucleoplasmic localization, and “C”
designates cytoplasmic localization. (B) Localization of the GFP-tagged constructs in Hela cells was confirmed by fluorescent microscopy and
costaining of the nucleus with DAPI is shown in blue.

role in the targeting of NOL7. Together with efficiency,
this suggests that NLS2 and NLS3 in combination are cri-
tical for efficient and rapid targeting of NOL7 to the
nucleus.

NLS2 and NLS3 of NOL7 comprise domains that are
required for nucleolar localization

It has been previously demonstrated that NOL7 localizes
to the nucleolus via colocalization with the nucleolar
protein NPM [26]. In the analysis of the NLSs, it was
noted that loss of NLS2 and NLS3 together abolished
the nucleolar but not nuclear localization of NOL7 (Fig-
ure 6B). Interestingly, NLS23(-) also significantly
decreased both the rate and efficiency of NOL7 nuclear
transport (Figure 7A and 7B). To identify the possible
NoLS(s) within these signals, systematic mutation of the
basic residues within NLS2 or NLS3 was undertaken
(Figure 8A). Restoration of any basic cluster in NLS2 or

in NLS3 was sufficient to restore nucleolar localization,
suggesting that these regions are capable of individually
functioning as NoLSs (Figure 8B). Thus, NOL7 contains
at least four separate NoLSs within its nuclear targeting
sequences that are individually capable of directing
nucleolar localization.

NOL7 demonstrates rapid recovery but low mobility
within the nucleolus

Protein occupancy and complex assembly in subnuclear
bodies has been shown to relate to function for a majority
of proteins [68-70]. Therefore, the nucleolar occupancy of
NOL7 was evaluated by FRAP. The occupancy was
described by the recovery half life (t;,») and mobile frac-
tion (M) of GFP-fusion constructs. In order to define an
upper and lower limit for nucleolar protein mobility,
NOL?7 was evaluated with the controls NCL, a freely dif-
fusing nuclear/nucleolar shuttle with functions in both the
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Figure 7 Each NLS contributes differently to the rate and efficiency of NOL7 nuclear localization. The steady-state efficiency and rate of
import for NLS mutants was evaluated to determine their relative contribution to the subcellular localization of NOL7 in Hela cells. (A) Twenty
hours after transfection, mutants were imaged by immunofluorescence against the HA tags and costained with DAPI and WGA to delineate the
nucleus and cytoplasm. Using Imagel, the nuclear-to-total cell fluorescence ratio was calculated for twenty cells per construct. Error bars
represent standard error. (B) Cells were transfected with the different NOL7 NLS constructs and imaged at 5, 6, 7, and 8 hours post-transfection.
The nuclear accumulation was measured by a-HA immunofluorescence and the rates were calculated as the change in nuclear signal over time.
Bars represent the average rate for ten cells and error bars are representative of the standard error.

nucleus and nucleolus, and RPS5, a low-mobility resident
nucleolar protein (Figure 9A). These proteins represent
typical controls within the literature and allow for compar-
ison to other dynamic studies [71]. The t;/, of NOL7 was
found to be most similar to a shuttling protein such as
NCL, suggesting that NOL7 can freely exchange with the
nucleoplasm (Figure 9B). Conversely, the immobile frac-
tion (Mg) of NOL7 was found to be most similar to an
immobile, complexed nucleolar protein like RPS5 (Figure
9B). This is consistent with previous reports describing the
nucleolar occupation of a number of nucleolar proteins,
including NPM, NCL, and RPS5 [71,72]. This suggests
that a large pool of nucleolar NOL?7 is functionally occu-
pied in a nucleolar complex, while the free protein is able

to shuttle rapidly between subnuclear compartments.
Compared to literature reports, this data indicates that
NOL?7 is most similar to proteins with multiple nuclear
and nucleolar roles like NPM, which is both a nucleolar
shuttle and associates in functional nucleolar complexes,
than either NCL or RPS5. Further, these data suggest that
NOL7 shuttles between the nucleolus and nucleoplasm
and may play a functional role in both compartments.

NOL?7 localization is dynamically regulated by changes in
RNA composition

The shuttling of NOL7 between the nucleus and nucleo-
lus suggested that specific interactions within these
compartments may regulate the nucleolar occupancy of
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Figure 8 Basic residues within NLS2 and NLS3 are required for nucleolar localization of NOL7. Basic residues within each of the NLSs are
required for nucleolar localization of full length NOL7. A) Schematic representation of the different mutant constructs used to evaluate nucleolar
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nucleus with DAPI is shown in blue.

designates nucleoplasmic localization. B) Localization of the constructs in Hela cells was confirmed by GFP visualization. Costaining of the

NOL7. Due to the highly basic nature of the protein, it
was hypothesized that subnuclear localization of NOL7
may be due to interactions with nucleic acids. To inves-
tigate, various cell treatments were employed to change
the abundance of different nucleic acid species (Figure
10). Cells overexpressing GFP-tagged NOL7 were trea-
ted with RNase, DNase, actinomycin D (ActD), or
o-amanitin and visualized by fluorescence microscopy
for changes in subcellular localization. RNase treatment
resulted in nucleolar loss and nucleoplasmic accumula-
tion of NOL7, while cells treated with DNase did not
show any significant change. Culture of mammalian

cells in low doses of ActD selectively inhibit rRNA
synthesis while having no effect on tRNA, 5S rRNA,
nuclear RNA and mRNA synthesis [73,74]. Similarly,
treatment with low doses of ai-amanitin inhibits RNAPII
and subsequent mRNA synthesis without affecting the
abundances of other RNA species. Loss of these specific
RNA species has been shown to selectively deplete their
RNA-binding protein counterparts from different cellu-
lar compartments, enabling visualization of binding
activities that may participate in protein localization
[75-77]. Upon treatment with ActD, NOL7 was found
to translocate to the nucleoplasm. Upon treatment with
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o-amanitin, no change in the nucleolar localization of
NOL7 was observed. However, the nucleoplasmic locali-
zation of NOL7 previously observed was absent. This
data suggests that targeting of NOL7 to both the
nucleus and nucleolus results in multiple RNA-depen-
dent interactions.

Discussion

Active nuclear transport involves complex interactions
between the transport machinery and protein cargo,
mediated in part through NLSs. Typically composed of
discrete patterns of basic residues, these sequences are
recognized by the transport machinery and can vary in
their affinity, rate, and efficiency of localization, which
in turn can influence the function and biologic relevance

of the cargo protein in different physiologic settings.
Here, we have shown that NOL7 is targeted to the
nucleus via an energy- and nucleoporin-dependent
mechanism. This transport is mediated by three evolu-
tionarily conserved but distinct NLSs. In addition, each
NLS was found to be independently capable of directing
the nuclear localization of the cytoplasmic protein PK
or full length NOL7. Each NLS individually and addi-
tively contributed to the rate and efficiency of NOL7
nuclear targeting, suggesting that each of the NLSs has
differential effects in driving the localization kinetics,
likely reflecting differences in the regulation of import.
Taken together, these data indicate that NOL7 localiza-
tion is tightly regulated and may contribute to functions
in various cellular compartments.
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Figure 10 NOL7 subnuclear localization is dynamically regulated by changes in RNA composition. 293T cells were stably transfected with
NOL7-GFP and treated with RNase A (100 pg/ml, 2 hours), DNase | (100 ug/ml, 2 hours), actinomycin D (0.05 ug/ml, 4 hours), or a-amanitin (50
pg/ml, 4 hours) to specifically deplete individual nucleic acid species. Treatment with DNase (total DNA), RNase (total RNA), ActD (rRNA), or a.-
amanitin (MRNA) was performed and localization of NOL7 was confirmed by fluorescent microscopy of the GFP tag.

The transport of proteins and RNAs into the nucleus
occurs through the NPC and is an important step in
regulating the subcellular location of a number of differ-
ent proteins, including transcription factors, signalling
proteins, and various enzymes. Although alternative
mechanisms exist, the classic nuclear import pathway
appears to be the predominate method of transport into

the nucleus. A recent survey of Saccharomyces cerevisiae
screened over 5800 genomic sequences and found that
45% contained classic NLSs and nearly 60% of nuclear
proteins contained monopartite or bipartite sequences
[78]. This is likely true across species, as a number of
studies have found that the nuclear transport machinery
for essential proteins is highly conserved between
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animals, yeast and plants [30-32]. This observation is
certainly true for the three NLSs present in NOL7,
where sequence alignment of the three NLSs demon-
strated significant evolutionary conservation and aided
in the identification of putative targeting sequences. It
further suggested that targeting may play a significant
role in the regulation and function of NOL7, as these
sequences were highly conserved across species but
demonstrated little similarity to other proteins or
domains.

NOL7’s three functional NLSs are located in the
N terminus, middle, and C terminus of the protein.
While a single functional NLS is sufficient for most pro-
teins, the presence of multiple functional NLSs is seen
frequently among proteins whose function is critically
determined by its localization. Proteins such as p53 [79],
E2F1 [80], c-Abl [81], p14*RF, HPV E6 [82], BRCA2
[83], most ribosomal proteins including RPS7 [84,85],
b-myb [86], ATF2/c-jun heterodimer [87], PAK-1 [88]
and others have been demonstrated to contain more
than one NLS. Interestingly, many of these proteins are
also implicated in cancer, and aberrant or mislocalized
protein plays a significant role in the development and
progression of the disease. As such, nuclear localization,
and the rate and efficiency at which it occurs, has been
shown to have many downstream functional conse-
quences for proteins [89-92].

Terry, et al, have proposed a hierarchical regulation
to classical nuclear transport via NLSs, with multiple
mechanisms acting at the level of the cargo, receptors,
and NPC [93]. The existence of multiple NLSs within
a single protein may therefore provide a mechanism to
exploit these different targeting controls for proteins
whose nuclear localization is critical for function [93].
The first level of regulation involves the NPC, and the
permeability, stability, and expression of the proteins
that comprise this complex can affect the efficiency
and targeting of cargo. The existence of multiple NLSs
within NOL7 may therefore be used to achieve nuclear
localization despite cellular conditions where NPC is
less accessible. The next level of regulation involves
the transport receptors. Here, differing accessibility,
affinity, competition, and expression of the importins
in various cell types and under different cellular condi-
tions can affect transport [40,94-99]. In this case, the
existence of multiple NLSs can increase likelihood of
transporter interaction regardless of environment,
coordinate for better efficiency and rate of localization,
or outcompete other NLS-bearing proteins for these
receptors. Indeed, combined loss of NLS2 and NLS3
significantly impact both the rate and efficiency of
NOL?7 localization, and the presence of more than one
NLS results in a statistically significant increase in
NOL7 nuclear accumulation (Figure 7). Finally, at the
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level of the cargo, modifications and interactions of
the cargo protein itself regulates its own localization.
Inter- and intramolecular interactions can provide or
preclude access to NLSs, and modifications within
NLSs can also affect transport, either inhibiting or pro-
moting import to the nucleus [79,100]. The differential
rate and efficiency of localization observed among
NOL7 mutants, particularly in the N23(-) mutant, sug-
gests each NLS may participate in different levels of
this regulation. In addition, many NLSs have also been
shown to harbor subnuclear targeting sequences such
as NoLSs. NoLSs typically represent interaction motifs
between nucleolar constituents, making nucleolar loca-
lization a dynamic, multidirectional process compared
to nuclear targeting [44-50,101,102]. Our results have
shown that NLS2 and NLS3 include four NoLSs.
These sequences are composed of basic clusters and
each is capable of individually driving nucleolar locali-
zation of NOL7. Whether these regions represent
unique binding domains or are functionally redundant
to ensure efficient interaction with nucleolar cofactors
is unknown at this time.

Investigation of the nucleolar occupancy of proteins
under various cellular conditions has demonstrated that
the kinetics are often highly similar for functionally
related proteins [75]. In particular, FRAP analysis of the
recovery and mobility of proteins within this compart-
ment has been shown to reflect their functional roles.
The nucleolar mobility is typically viewed as a reflection
of the stability of the interactions and size of the inter-
action complex within that compartment, while the
recovery reflects the shuttling characteristics of a protein
between the nucleoplasm and nucleolus. While many
ribosomal proteins are highly immobile within the
nucleolus, proteins such as NCL, UBF, and NPM have
higher mobility and rapid recovery, due to their multiple
functional roles in the nucleus and nucleolus
[60,62,71,72]. FRAP analysis of the nucleolar occupancy
of NOL7 demonstrates that a large fraction of nucleolar
NOL?7 is involved in a relatively stable complex, as evi-
denced by its small M. Interestingly, free NOL7 protein
rapidly shuttles between compartments. These
dynamics, with low M; and high t;,,, have been demon-
strated in the literature to be unique to proteins that
functionally interact with ribonucleoproteins (RNPs) in
both the nucleus and nucleolus such as NPM
[60-62,68-72]. Together, this suggests that NOL7 may
interact in RNP complexes in both compartments.
Further support for the potential nuclear and nucleolar
interactions of NOL7 can be observed by the changes in
localization for NOL7 upon specific depletion of nucleic
acid species. The pattern of NOL7 expression is signifi-
cantly altered by loss of RNA but not loss of DNA, sug-
gesting that NOL7 is an RNA-associated protein, either
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directly or through RNP complexes. Further, changes in
rRNA and mRNA abundance affected the abundance of
NOL?7 in the nucleolus and nucleoplasm, respectively,
suggesting that NOL7 may be participating in distinct
functional complexes within each compartment.
Whether this is a direct effect of rRNA and mRNA
interaction, or an indirect consequence of changes in
the transcriptome of the cell remains to be investigated.
However, together these observations indicate that the
RNA abundance within the cell can influence the locali-
zation of NOL7 protein, and the dynamics of this locali-
zation is similar to the kinetics of proteins that play
functional roles in nuclear and nucleolar RNP com-
plexes. While it is unknown what, if any, function
NOL7 may have in either compartment, it suggests that
its localization is actively regulated and this differential
targeting may influence its role in cancer development
and progression.

Localization and function within multiple cellular
compartments has previously been observed for many
proteins. In addition, regulation of protein function
through localization mechanisms is known to be
employed in multiple cancer signaling pathways, includ-
ing the Wnt, TGFB, and Hh pathways. Oncogenes and
tumor suppressors such as Rb, ¢c-Myc, p53, VHL, and
p14*™ have multiple, different functions depending on
their localization or sequestration [103-117]. Our evi-
dence suggests that like many of these oncogenes and
tumor suppressors, NOL7 may have be regulated
through its subcellular localization, and its targeting
may be critically linked to its tumor suppressive activity.

Conclusions

In summary, we have found that NOL7 requires cytoso-
lic proteins for active transport into the nucleus, consis-
tent with a classical import mechanism. We have
identified three functional NLSs within NOL7, each of
which is independently capable of directing the nuclear
localization of the cytoplasmic protein PK or full length
NOL?7 and contribute to different degrees to the rate
and efficiency of NOL7 nuclear import. Further, these
sequences harbor at least four NoLSs that are indepen-
dently capable of mediating nucleolar localization. The
nucleolar occupancy of NOL7 is balanced by its rapid
recovery and low mobility, similar to other proteins that
play multiple functional roles in both the nucleus and
nucleolus. Further, the nucleolar localization of NOL7 is
dependent upon the presence of rRNA, while the
nucleoplasmic localization of NOL7 is mediated by the
abundance of mRNA. This work provides the basis for
further investigation into the levels, activity, and
mechanism of regulation for NOL7 and elucidation of
its role in tumor growth suppression.
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Methods

Deletion Mutant Constructs

Constructs were cloned as described. Template and pri-
mer sequences are listed in Additional file 2: Supple-
mentary Table 1.

NOL7 Deletion Constructs

Each deletion construct was cloned by PCR and inserted
into the pcDNA3.1/Hygro(+) vector (Invitrogen, Carls-
bad CA). For the mutants, residues were mutated using
the QuickChange site-directed mutagenesis kit (Strata-
gene, La Jolla CA).

NLS-PK Fusion Proteins

Myc-tagged chicken muscle PK expression DNA was
obtained from Gideon Dreyfuss (University of Pennsyl-
vania, Howard Hughes Medical Institute) [118]. It was
cloned in frame with individual NLSs to create fusion
constructs.

GFP-fusion Constructs

Fusion constructs were generated using the GFP Fusion
TOPO TA Cloning kit (Invitrogen, Carlsbad CA).
Briefly, the full-length NOL7 DNA fragments were
TOPO cloned into the plasmid vector pcDNA3.1/NT-
GFP-TOPO, and the cloning reaction was transformed
into chemically competent cells provided in the kit. The
plasmids were purified with Qiagen Plasmid Mini kit
(Qiagen, Valencia CA), and sequenced for verification of
insert orientation. Mutation of individual residues within
the NLSs were constructed by using Quikchange XL
site-directed mutagenesis kit (Stratagene, La Jolla CA).
NOL7-GFP Purification Construct

For nuclear import assays, NOL7-GFP was cloned with
tandem C-terminal GFP-V5-Hisg tags using the Gatwe-
way cloning system from Invitrogen (Carlsbad, CA). All
TOPO and LR cloning reactions were performed as
described by the manufacturer. First, wild-type NOL7
was PCR amplified and TOPO cloned into pENTR-SD-
D-TOPO. The pENTR-NOL?7 construct was transferred
to the pcDNA-DEST47 vector, resulting in a C-terminal
GFP tag. The NOL7-GFP fusion was PCR amplified and
TOPO cloned into the pENTR-SD-D-TOPO vector and
this time transferred to the pcDNA-DEST40 vector,
thereby expressing NOL7 in frame with a tandem C-
terminal GFP-V5-Hise tag.

Tissue Culture

HeLa cells were grown in minimum essential medium
supplemented with 10% fetal bovine serum (FBS), 100
pug/ml penicillin and streptomycin. 293T cells were
grown in DMEM supplemented with 10% FBS, 100 pg/
ml penicillin and streptomycin. Transfections for HeLa,
and 293T cells were done using Lipofectin following the
manufacturer’s directions (Invitrogen, Carlsbad CA) in
75 mm? dishes when the cells were approximately 80%
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confluent. Five hours after addition of the DNA precipi-
tate, cells were washed and refed with minimum essen-
tial medium or Dubecco’s Modified Essential media plus
10% FBS. For stable cell lines, cells were selected in 400
pg/ml G418 (Invitrogen, Carlsbad CA) for three weeks.
For transient expression experiments, cell extracts were
prepared 20-36 hours after transfection.

Immunofluorescence

For immunofluorescence staining, cells were plated on
4-well chamber slides and were transfected using Lipo-
fectin for HeLa and 293T cells according to the manu-
facturer’s instructions. Expression of all constructs was
validated by western blot. Cells were fixed and stained
as previously described [119] thirty-six hours post-trans-
fection unless otherwise stated. Immunostaining was
performed using the following primary antibodies: Rab-
bit a.-HA (Invitrogen, Carlsbad CA), 1:4000; Mouse o.-c-
Myc (Ab-1) (Calbiochem, Gibbstown NJ), 1:500. Second-
ary antibodies were fluorescein isothiocyanate (FITC)
AffiniPure F(ab’), Fragment Goat Anti-Rabbit IgG (H
+L) (Jackson ImmunoResearch Labs, West Grove PA),
1:500; Cy3 AffiniPure F(ab’), Fragment Goat Anti-Rabbit
IgG (H+L) (Jackson ImmunoResearch Labs, West Grove
PA), 1:500. Cells were mounted in DAPI-containing
media (Vector Labs, Burlingame CA) according to the
manufacturer’s instructions. WGA staining (Invitrogen,
Carlsbad CA) was performed at a concentration of 5.0
pg/ml according to the manufacturer’s instructions.

Protein Purification

293T cells were transfected with the NOL7-GFP purifi-
cation construct and positive clones were selected and
maintained as described. For purification, approximately
1 x 10® cells were collected by trypsinization and
washed twice with ice cold PBS. Cells were pelleted by
centrifugation and resuspended in lysis buffer (50 mM
sodium phosphate, pH 7.4; 300 mM NaCl; 1% Triton X-
100; Roche Complete EDTA-free protease inhibitor
tablet). Cell pellets were sonicated 6 x 30 s at 30%
power. Lysates were then cleared by centrifugation and
the supernatant was collected and filtered through a
0.45 pm filter. Size-exclusion chromatography was per-
formed using a 0.7 cm x 50 cm Econo-column (Bio-
Rad, Hercules CA) that was packed with 5-100 kDA
polyacrylamide beads (Bio-gel P-100, 45-90 uM, Bio-
Rad, Hercules CA) according to manufacturer’s instruc-
tions. Fractions of approximately 300 pl were collected
and tested for the presence of NOL7 by SDS-PAGE fol-
lowed by silver staining and western blot using mouse
o-V5 monoclonal antibody (Invitrogen, Carlsbad CA).
Positive fractions were further purified by affinity chro-
matography against the Hiss tag of NOL7 using the Pro-
Pur IMAC Kit (Nunc, Rochester NY) under native
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conditions with 30 mM imidazole washes. The column
was washed five times and five elution fractions were
collected. NOL7-containing fractions were verified by
silver stain and western blot against the V5 tag of
NOL?7. Positive fractions were concentrated and dialyzed
against transport buffer (20 mM Hepes-KOH, pH 7.3,
110 mM potassium acetate, 5 mM sodium acetate, 1
mM EGTA, Roche complete mini protease inhibitor) for
use in the import assay.

Preparation of Cytosol Fractions

Exponentially growing cultures of HeLa cells were col-
lected by low speed centrifugation and washed twice
with cold PBS, pH 7.4, by resuspension and centrifuga-
tion. The cells were then washed with 10 mM Hepes,
pH 7.3, 110 mM potassium acetate, 2 mM magnesium
acetate, 2 mM DTT and pelleted. The cell pellet was
gently resuspended in 1.5 volumes of lysis buffer (5 mM
Hepes, pH 7.3, 10 mM potassium acetate, 2 mM magne-
sium acetate, 2 mM DTT, 20 uM cytochalasin B, 1 mM
PMSEF, and 1 pg/ml each aprotinin, leupeptin, and pep-
statin) and swelled for 10 min on ice. The cells were
lysed with a homogenizer. The resulting homogenates
were centrifuged at 1,500xg for 15 min to remove nuclei
and cell debris. The supernatants were then sequentially
centrifuged at 15,000xg for 20 min and 100,000xg for
30 min. The final supernatants were dialyzed against
transport buffer (20 mM HEPES, pH 7.3, 110 mM
potassium acetate, 5 mM sodium acetate, 2 mM magne-
sium acetate, 1 mM EGTA, 2 mM DTT, and 1 pg/ml
each aprotinin, leupeptin, and pepstatin) and frozen in
aliquots in liquid nitrogen before storage at -80°C.

Cell Permeabilization and In Vitro Transport Assay

Import assays was performed essentially as previously
described [54]. Cells plated on 4-well chamber slides
were rinsed in cold transport buffer (20 mM Hepes, pH
7.3, 110 mM potassium acetate, 5 mM sodium acetate,
2 mM DTT, 1.0 mM EGTA, and 1 pg/ml each aproti-
nin, leupeptin, and pepstain). Wells were immersed in
ice cold transport buffer containing 40 pug/ml digitonin
(Calbiochem, Gibbstown NJ). The cells were allowed to
permeabilize for 5 min, after which the digitonin-con-
taining buffer was removed and replaced with cold
transport buffer. For each assay, 150 pl of transport buf-
fer was supplemented with 10 pg/ml NOL7-GFP and
incubated for 30 minutes at either 37°C or 4°C. Where
indicated, assays were supplemented with 1 mM ATP
and 15 mg/ml cytosol. For heat-inactivated cytosol,
extracts were boiled at 95°C for 5 min, chilled, and then
added to the import assay. For WGA treatment, cells
were pre-incubated with 50 ug/ml WGA for 15 minutes
at 20°C, washed, and then the import assay was per-
formed as described above. After the 30 min incubation,
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all slides were washed, fixed with 4.0% paraformalde-
hyde and analyzed directly by fluorescence microscopy.

Protein analysis, Domain prediction, and sequence
alignment

Protein analysis of NOL7 was carried out using a variety
of prediction programs on the following accession
sequences: Homo sapiens, NP_057251.2; Pan troglo-
dytes, XP_518245.2; Macaca mulatta, XP_001092572.1;
Bos taurus, NP_001029556.1; Canis familiaris,
XP_535892.2; Rattus norvegicus, XP_573999.2; Mus
musculus, NP_076043.2; Gallus gallus, XP_418926.1;
Tetraodon nigroviridis, CAF97792.1; Danio rerio,
XP_687281.1; Saccharomyces cerevisiae, NP_014721.1.
Alignment of sequences was doing using MegAlign soft-
ware under the ClustalW parameters.

FRAP Photobleaching, Imaging, and Quantitation
Approximately forty-eight hours after transfection, HeLa
cells were maintained in MEM supplemented with 30
mM Hepes, pH 7.1, to stabilize the pH of the medium
during imaging. FRAP was performed on a DM4000
microscope (Leica Microsystems, Wetzlar Germany)
equipped with a MicroPoint Laser System (Photonic
Instruments, St. Charles, IL), a Roper Coolsnap HQ
camera (Princeton Instruments, Trenton NJ), and a
Leica 63X HCX PL APO L U-V-I aqueous immersion
objective (Molecular Devices, Sunnyvale CA). Fluores-
cence intensity was measured using Metamorph imaging
software (Universal Imaging Corp, West Chester PA).
The average intensities of the areas of interest, including
before, immediately after, and a series of time points
after bleaching, were measured under the same condi-
tion for each data set. Data was analyzed using Sigma-
Plot software and fit to the curve E(t) = F..(1-e"%). From
the regression values, the half-maximal recovery [t;,; =
In (0.5)/t] and mobile fraction [M¢ = (F..-Fo)/(F;-Fo)]
were calculated for each replicate and statistical signifi-
cance was determined using Student’s t-test.

Transport Efficiency Experiments

HeLa cells were fixed and stained with rabbit a-HA pri-
mary (Invitrogen, Carlsbad CA, 1:4000 dilution) and
FITC AffiniPure F(ab’), Fragment Goat Anti-Rabbit IgG
(H+L) secondary (Jackson ImmunoResearch Labs, West
Grove PA, 1:500 dilution) as described twenty hours
after transfection. Immunofluorescent images were cap-
tured by using Zeiss Axiovert 200 M microscope system.
Image analysis was performed using Image ] to quantify
per unit area staining intensity in the total cell and
nucleus. Twenty high power fields were selected for ana-
lysis of each stain. The efficiency was calculated as the
ratio of nuclear to total intensity and Statistics were
evaluated using Student’s t-test.
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Transport Rate Experiments

HeLa cells were fixed and stained with rabbit a-HA pri-
mary (Invitrogen, Carlsbad CA, 1:4000 dilution) and
FITC AffiniPure F(ab’), Fragment Goat Anti-Rabbit IgG
(H+L) secondary (Jackson ImmunoResearch Labs, West
Grove PA, 1:500 dilution) as described 5, 6, 7, and 8
hours after transfection. Immunofluorescent images
were captured by using Zeiss Axiovert 200 M micro-
scope system. Image analysis was performed using
Image J to quantify the nuclear staining intensity per
unit of area. Ten high power fields were selected for
analysis of each construct. The rate of import was calcu-
lated as the slope of the fluorescent intensity versus time
and the statistical significance of this data was evaluated
using Student’s t-test.

Drug treatment and fluorescence microscopy

HelLa cells were stably transfected with wild-type NOL7-
GFP and plated on 2-well chamber slides. When cells
were approximately 70% confluent, media was replaced
with serum-free DMEM containing 0.05 pg/ml actino-
mycin D (Sigma-Aldrich, St. Louis MO) or 50 pg/ml o-
amanitin (Sigma-Aldrich, St. Louis MO) and incubated
for 4 hours at 37°C in 5% CQO,. Cells were then fixed
with 4% paraformaldehyde, washed with PBS, and
mounted with DAPI-containing media (Vector Labs,
Burlingame CA). For nuclease treatment, cells were first
washed with PBS and permeabilized with ice-cold
methanol for 10 min and then incubated with 100 pg/
ml RNase A (Sigma-Aldrich, St. Louis MO) or 100 pg/
ml DNase I (Sigma-Aldrich, St. Louis MO) at 37°C for 2
hours. Cells were then fixed and mounted in the same
manner. All cells were imaged on a Zeiss Axioplan
microscope.

Additional material

Additional file 1: Supplementary Movie 1 - Detection of NOL7-GFP
Posttransfection. Hela cells were transfected with WT NOL7 in frame
with a GFP fusion tag and imaged every fifteen minutes from the time
fluorescent signal can first be detected, approximately five hours after
transfection, until it reaches steady-state intensity, approximately nine
hours after transfection. Time zero corresponds to five hours
posttransfection.

Additional file 2: Supplementary Table 1 - Primers used to clone
the constructs used in this study. Each construct is listed, along with
the forward and reverse PCR primers and template for cloning PCR
reaction able legend text

Abbreviations

NLS(s): nuclear localization signal(s); CC: cervical cancer; HA: hemagglutinin;
PK: pyruvate kinase; CHX: cycloheximide; VEGF: vascular endothelial growth
factor; TSP-1: thrombospondin-1; NPM: nucleophosmin; NCL: nucleolin; RPS5:
ribosomal protein 5; ribonucleoprotein: RNP; NPC: nuclear pore comples;
NES: nuclear export signal; cNLS: classical nuclear localization signal; NoLS:
nucleolar localization signal; WGA: wheat germ agglutinin; FBS: fetal bovine
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