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Abstract
Background:  Activation of the extracellular signal-regulated kinases ERK1 and ERK2 in
hepatocytes by prostaglandin (PG)F2α was recently found to be inhibited by pertussis toxin (PTX)
suggesting a role for Gi proteins.

Results:  Targeting the Gi2α expression by a specific ribozyme inhibited the PGF2α -induced ERK1/
2 activation in hepatocytes. On the other hand a non-cleaving form of the Gi2α ribozyme did not
significantly decrease the ERK1/2 activation. In ribozyme-treated cells the Gi2α protein level was
reduced, while the Gqα level was not affected thus confirming the specificity of the ribozyme.

Conclusion:  The present data suggest an important role of Gi2 in PGF2α -induced ERK1/2
signaling in hepatocytes.

Introduction
The extracellular regulated kinases ERK1 (p44mapk) and
ERK2 (p42mapk) are believed to be implicated in regula-

tion of cell growth and differentiation [1,2]. They are ac-

tivated in response to stimulation both of heptahelical G

protein coupled receptors (GPCRs) and receptor tyrosine

kinases (RTKs). Epidermal growth factor (EGF), hepato-

cyte growth factor (HGF), PGF2α, norepinephrine, and

several other agents activate ERK1/2 in hepatocytes

[3,4,5,6]. Furthermore, it was observed in these cells that

pretreatment with pertussis toxin (PTX) decreased acti-

vation of ERK1/2 in response to various agents acting on

RTKs or GPCRs [6,7,8,9]. The data suggest an involve-

ment of Gi protein(s) in the mechanisms of ERK1/2 acti-

vation in hepatocytes. However, it is not known which Gi

protein(s) that mediate this effect. To approach this issue

we have targeted the α subunit of Gi2 by a catalytic RNA

(ribozyme) [10,11]. The effect of the ribozyme on PGF2α
-induced ERK1/2 activation, which is strongly sensitive

to PTX, was subsequently assessed.

Results
Inhibition of ERK activation by pertussis toxin
Pretreatment of hepatocytes with pertussis toxin [12]

was reported to decrease ERK1/2 activation by agents

acting both on heptahelical G protein coupled receptors

as well as receptor tyrosine kinases [6,7,8]. These obser-

vations are summarized in Fig. 1. In addition these data

show the persistence with time of the marked inhibitory

effect of PTX on ERK1/2 activation induced by PGF2α .

The EGF- and HGF-induced responses are on the other

hand only partially decreased. These findings suggest
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that ERK1/2 activation in hepatocytes involve Gi pro-

tein(s).

Ribozyme targeting the Gi2α
Although the data shown in Fig. 1 suggest that the activa-

tion of ERK1/2 implicated Gi, they do not determine the
subtype of Gi involved in this process. Accordingly, we

have evaluated the effects of a ribozyme specific for Gi2α
upon ERK1/2 activation. The choice of target was based

on the knowledge of Gi2 as a major member of the Gi
family in hepatocytes, which is also represented by Gi3 in

these cells [9,13,14], and furthermore on the α subunit as

the unifying part of the heterotrimer which additionally

comprises βγ variants of hitherto unknown subtype com-

positions and G protein specificity.

Ribozymes are RNA molecules that specifically cleave

mRNAs [10,11]. These molecules have been shown to in-

hibit gene expression in various cell types [15,16]. To in-

crease the ribozyme stabililty, all hydroxyl pyrimidines

were replaced by their 2'-amino analogs. This type of

modification was shown to enhance the ribozyme stabil-

ity without affecting its cleavage activity [15,17]. Fig. 2A

shows the cleavage of the RNA substrate by the ri-

bozyme.

Several approaches have been explored in order to intro-

duce genes into hepatocytes [18,19]. As a first step, we

have examined the usefulness of the cationic lipid-medi-

ated ribozyme delivery into hepatocytes. In this respect,

the hepatocytes were transfected with a 5'-carboxyfluo-

rescein-conjugated ribozyme and analysed by fluores-

cence (Fig. 2B). As shown, most cells had taken the

ribozyme molecules. Furthermore, no significant cyto-

toxic effect was observed at the concentration used. Thus

DOTAP may represent a versatile transfection reagent

for primary hepatocytes.

Figure 1
Effect of pertussis toxin (PTX) on ERK1/2 activation. PTX was added to cultured hepatocytes at 3 h after the time of
seeding. A: ERK1/2 activation in the absence or presence of PTX (400 ng/ml) in response to stimulation with PGF2α (10 µM)
for 5 min in the period from 8 h to 48 h. B, C: Effect of PTX (300 ng/ml) on ERK1/2 activation in response to stimulation with
EGF (10 nM) (B) or HGF (100 ng/ml) (C) for 5 min at 24 and 48 h. D: Time-course for HGF- (100 ng/ml) induced ERK1/2 acti-
vation in the absence or presence of PTX (300 ng/ml). Results in A-D represent means ± S.E.M. from three experiments.
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Inhibition of Gi2α expression and ERK1/2 activation by ri-
bozyme treatment
Having demonstrated a cellular uptake of ribozymes into

cultured hepatocytes when DOTAP was used as delivery

agent, in the next set of experiments we examined the ef-

fects of the Gi2α ribozyme on Gi2α protein levels as well

as on the total ERK1/2 expression and activation. DO-

TAP formulated test molecules were added to the hepa-

tocyte cultures at 4–5 hours after the time of seeding.

After 30–45 hours transfection time the expression of

Gi2α protein was decreased in ribozyme-treated cells,

while no significant effect was seen with its non-cleaving

form (Fig. 3A). The expression of Gqα (Fig. 3B) or Gsα
(not shown) was not affected by the ribozyme treatment

thus confirming the specificity of the ribozyme effects

upon Gi2α gene expression. To investigate the functional

roles of Gi2 on ERK1/2 activation, we examined the

phosphorylation of ERK1/2 in ribozyme-treated cells fol-

lowing PGF2α stimulation (Fig. 3C, D). The basal level of

ERK1/2 phosphorylation (i.e. in the absence PGF2α
stimulation) was not reduced following ribozyme treat-

ment (Fig. 3C). However, the PGF2α-induced phosphor-

ylation of ERK1/2 was decreased (Fig. 3C and 3D, lower

panel). In contrast, the total ERK1/2 protein level was

not affected by the treatment (Fig. 3D, upper panel). To

further confirm the decrease in ERK1/2 phosphoryla-

tion, we also assessed their activity in response to PGF2α
stimulation (Fig. 4). A marked inhibitory effect was

Figure 2
Gi2α ribozyme. A: Ribozyme in vitro cleavage activity. A PhosphorImager (Molecular Dynamics, Sunnyvale, CA, USA) printout
of a 15 % polyacrylamide gel with 7 M urea. The 5'-end-labelled RNA substrate (200 nM) was incubated with the ribozyme (75
nM) in reaction buffer as described in Materials and Methods. 10 µl samples were taken at the indicated time, added to 5 µl
quenching solution and then analysed by electrophoresis. The arrow indicates cleavage products. B: Ribozyme uptake in cul-
tured hepatocytes. Hepatocytes were transfected with 5'-FITC-labelled ribozyme for 30 h. Following washing with phosphate-
buffered saline (PBS), cells were analysed by fluorescence microscopy.
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found in ribozyme-treated cells. The activation of ERK1/

2 by EGF was, however, reduced to a lesser extent. These

results also show the absence of inhibition by the non-

cleaving form of the Gi2α ribozyme.

Discussion
In the current study we have investigated the role of Gi2α
upon PGF2α -induced ERK1/2 activation in hepatocytes.

The data obtained with the ribozyme suggest that Gi2 is

an important factor in ERK1/2 activation.

Gi proteins are believed to be involved in regulation of

cell growth [20], and a role in activation of ERK1/2 is re-

ported in different cells [21,22,23]. In hepatocytes it has

been observed that PTX inhibited activation of ERK1/2

both by agents acting on G protein coupled receptors in-

cluding vasopressin, angiotensin II, norepinephrine and

PGF2α as well as by agents that bind to receptor tyrosine

kinases like EGF and HGF [6,7,8], also suggesting roles

of Gi. In the present study we explored closer the Gi de-

pendency of PGF2α -induced ERK1/2 activation, which is

strongly PTX-sensitive. We used a ribozyme approach

[10,11], which has been examined in a variety of experi-

mental models to suppress gene expression [15,24], in-

cluding in human hepatocytes and hepatoma cells

[25,26,27]. Notably, ribozymes were recently reported to

effectively suppress the expression of the γ7 subunit of

heterotrimeric G proteins in HEK 293 cells [28,29].

Figure 3
Western analysis of the effects of ribozyme on Gi2α and ERK1/2. Gi2α ribozyme (Rz) or non-cleaving Gi2α ribozyme
(Rzm) complexed with DOTAP giving final ribozyme concentrations of 2.5 µM, or only DOTAP (Ctr) were added to hepato-
cyte cultures at 4–5 hours after the time of seeding. A: Expression of Gi2α protein was assessed after 45 h of ribozyme treat-
ment using antibody (from Calbiochem) directed against C-terminal end of Gi1/i2α . B: Expression of Gi2α and Gqα protein
levels in the same samples subsequent to 30 h of ribozyme treatment using antibodies (from NEN™ Life Science Products)
against C-terminal sequences of Gi1/i2α or Gqα, respectively. The polyclonal antibodies used to assess Gi2α recognize both the
α subunit of Gi2 and Gi1. As shown previously hepatocytes do not express Gi1α [19], so the reactivity with these antibodies
reflects only the Gi2α levels. C, D: After 45 h of ribozyme treatment cells were stimulated with or without PGF2α (10 µM) for
5 min before they were harvested. Immunoblot using antibody against dually phosphorylated ERK1/2 (i.e. ERK1/2-P) (C) is
depicted. In Fig. D is developed images from the same immunoblot using antibody detecting total amount of ERK1/2 (i.e. both
phosphorylated and unphosphorylated forms) (upper panel) and antibody against dually phosphorylated fractions of ERK1/2
(lower panel).
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Pretreatment of the hepatocytes with the Gi2α ribozyme

resulted in a marked inhibition of the PGF2α -induced

ERK1/2 activation. The findings might be explained by

the ability of PGF2α to act through receptors that couple

directly to Gi in these cells [30]. In addition, the Gi2α ri-

bozyme resulted in a partial decrease of the EGF-induced

ERK1/2 activation, in accordance with a role of Gi. How-

ever, the explanation for an involvement of Gi in this

pathway is not known. Observations in different cell

types have indicated that Gi might play a role in EGF-in-

duced cell signaling [31], and in hepatocytes a direct cou-

pling of the EGF receptor to Gi has been proposed [32].

One explanation is that receptor-independent functions

of Gi may be involved in signaling from receptor tyrosine

kinases as well as from seven transmembrane receptors

[9,33,34]. Since cyclic AMP was found to exert a negative

control of ERK1/2 activation in hepatocytes [35], it can

be speculated that the decreases in ERK1/2 responses

observed subsequent to inhibition of Gi function might

be caused by an elevation of intracellular levels of cyclic

AMP. However, in experiments using pertussis toxin

there were no detectable alterations of the cyclic AMP
level under basal conditions (data not shown). Further-

more, as shown in the present study ribozyme treatment

of the hepatocytes did not decrease the basal ERK1/2 ac-

tivation thus suggesting no significant alteration of cyclic

AMP level under these experimental conditions.

The present data show a close correlation between the in-

hibitory effect on ERK1/2 activation produced by the

Gi2α ribozyme compared to the effects obtained with

PTX. This suggests that the PTX effects that have been

observed, at least on ERK1/2 activation in response to

PGF2α as well as EGF stimulation, reflect Gi2-mediated

mechanisms. However, the present data do not rule out

a possible contribution of Gi3 in ERK1/2 activation. In

this regard, it is of note that observations in endothelial

cells have suggested a role for Gi2 proteins, but not Gi3,

in ERK1/2 activation [36]. Further studies involving spe-

cific inhibition of Gi3 proteins will be needed to clarify

this issue in the hepatocyte model.

Previous findings have demonstrated that Gi dependent

activations of ERK1/2 are mediated through βγ subunits.

These results were derived from studies where ERK acti-

vation was elicited by overexpression of βγ [37,38], or an-

tagonized by the βγ-inhibitory peptide β1ct (C-terminal
fragment of the β-adrenergic receptor kinase-1) [39]. Al-

though a possible role for βγ in ERK1/2 activation can

not be ruled out, the present data might be compatible

with a role for the α i2 subunit. This interpretation agrees

Figure 4
Effect of Gi2α ribozyme on ERK1/2 activation. Gi2α ribozyme (Rz) or non-cleaving Gi2α ribozyme (Rzm) complexed with
DOTAP giving final ribozyme concentrations of 2.5 µM, or DOTAP without ribozyme, were added to hepatocyte cultures at
4–5 hours after the time of seeding. After 30 h of treatment the cell cultures were stimulated with PGF2α (10 µM) or EGF (10
nM) for 5 min before they were harvested and ERK1/2 activity assessed. Results are expressed as percent of untreated control
and represent mean ± S.E.M. from three experiments.
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with observations reported by Hedin et al. [40] who

found that in Jurkat T lymphocytes the δ-opioid activa-

tion of ERK1/2 was PTX-sensitive, but unaffected by β1ct

treatment, suggesting an involvement of αi. However, it
should be noted that a strategy based on targeting a par-

ticular subunit of a G protein might affect the overall

function of the heterotrimer.

Conclusion
The present study gives further support to a role of Gi

proteins in ERK1/2 activation in hepatocytes and sug-

gests a role of Gi2. On the other hand, the data can not ex-

clude a possible involvement of Gi3 in the mechanisms of

ERK1/2 activation in these cells or define the precise

contribution of the G protein subunit αi2. The observa-

tion that primary hepatocytes are efficiently transfected

with ribozymes may facilitate studies of cell signaling in

this model system which represents features of normal

cells. Thus, it will be interesting to explore the roles of

different heterotrimeric G proteins and their subunits in

activation of ERK1/2 as well as other mitogen-activated

protein kinases by the nucleic acid enzyme strategy.

Materials and Methods
Materials
Dulbecco's modified Eagle's medium, Waymouth's me-

dium MAB 87/3, penicillin and streptomycin were from

Gibco, Grand Island, NY, U.S.A. Adenosine 5'-triphos-

phate, collagen, collagenase, phenylmethylsulfonyl fluo-
ride, benzamidine, leupeptin, pepstatin A, myelin basic

protein (MBP), epidermal growth factor, prostaglandin

F2α, insulin, pertussis toxin, and 2-mercaptoethanol

were from Sigma, St. Louis, MO, USA. Hepatocyte

growth factor (human) was a gift from Magne Børset,

NTNU, Trondheim, Norway. Sodium(meta)vanadate

was from Fluka Chemie AG, Buchs, Switzerland. Phenyl

Sepharose CL-4B was from Pharmacia Biotech., Uppsa-

la, Sweden. Dexamethasone was from Norwegian Medic-

inal Depot, Oslo, Norway. DOTAP was from Boehringer

Mannheim, Mannheim, Germany. T7 RNA polymerase

and T4 polynucleotide kinase were from Promega Corpo-

ration, Madison, WI, USA. [γ-32 P] Adenosine 5'-triphos-

phate (3000 Ci/mol) was from Amersham International,

Buckinghamshire, England.

Isolation and culture of hepatocytes
Male Wistar rats (170–220 g) fed ad libitum were used.

Parenchymal liver cells were isolated by in vitro colla-

genase perfusion and low-speed centrifugation [41] with

modifications [42]. Cell viability, measured as the ability

to exclude trypan blue, was at least 95 %. The cells were

suspended in culture medium and plated in Costar wells

at 20.000 cells/cm2. The culture medium (0.2 ml/cm2)

was a 1:1 mixture of Dulbecco's modified Eagle's medium
and Waymouth's medium MAB 87/3 containing 16.8

mM glucose, supplemented with penicillin (100 U/ml),

streptomycin (0.1 mg/ml), dexamethasone (25 nM) and

insulin (100 nM). The cultures were gassed with 95 % air

5% CO2 and kept at 37°C.

Measurement of ERK activity
The measurement of ERK1/2 activity was performed as

previously described [5,6]. In brief, the hepatocyte cul-

tures were exposed to agonists for 5 minutes before rins-

ing the cells and scraping them into a buffer containing

10 % ethylene glycol. The lysate was centrifugated

(15,800 × g) for 10 minutes and the supernatant mixed

with phenyl-Sepharose, which was washed twice in a 10

%, twice in a 35 % ethylene glycol buffer, before finally

eluting ERK1/2 with 60 % ethylene glycol buffer [43].

The eluate was assayed for ERK1/2 activity, using MBP

as substrate, in the presence of an inhibitor of protein ki-

nase A (Sigma P-0300). The reaction mixture was spot-

ted onto P81 paper (Whatman, Maidstone, UK), which

was washed, dried and counted in a liquid scintillation

counter. Protein content was determined with the BCA

Protein Assay (Pierce, Rockford, IL, U.S.A.).

Immunoblotting
Aliquots with 20 µg cell protein (total cell lysate prepared

in Laemmli buffer) were electrophoresed on 10 % poly-

acrylamide gels (acrylamide:N'N'-bis-methylene acryla-

mide 30:0.8) followed by protein electrotransfer to

nitrocellulose membranes and immunoblotting with a
polyclonal MAP kinase antibody against the dually thre-

onine- and tyrosine phosphorylated forms of ERK1

(p44mapk) and ERK2 (p42mapk) or an antibody detecting

both the phosphorylated and unphosphorylated forms

(Promega Corporation, Madison, WI, USA). Antibodies

against α-subunits of Gi1/i2 were from Calbiochem (La

Jolla, CA, USA) and NEN™ Life Science Products (Bos-

ton, MA, USA). Antibody against the α-subunit of Gq was

from NEN™ Life Science Products (Boston, MA, USA).

Immunoreactive bands were visualised with ECL West-

ern blotting detection reagents (Amersham Internation-

al).

In vitro RNA synthesis
A 2'-amino pyrimidine modified hammerhead ribozyme

having GUC as cleavage triplet corresponding to the nu-

cleotide number 481 within the rat Gi2α mRNA [44] was

synthesized by in vitro transcription using a short DNA

template for the T7 RNA polymerase as previously de-

scribed [15,45]. Subsequent to transcription ribozymes

were PAGE gel-purified, ethanol-precipitated and then

dissolved in water. The concentration was determined by

assessment of absorbency at 260 nm. A non-cleaving

form of the ribozyme was made by deleting the G12 from

the catalytic core as indicated by lower case letter. The ri-
bozyme short target was synthesized by in vitro tran-
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scription of a synthetic DNA template with the T7 RNA

polymerase. Subsequent to transcription, the gel-puri-

fied RNA was dephosphorylated by alkaline phosphate

and then 5'-end labelled using T4 polynucleotide kinase
and [γ-32 P]ATP. The ribozyme sequence is: 5'GGCAG-

CACAGCU

GAUGAGUCCGUGAGGACgAAACAGUGCGAACAGC3'.

The sequence of the targeted site is:

5'GCUGUUCGCACUGUCCUGUGCUGCC3'. The cleav-

age site within the targeted sequences should be under-

lined.

In vitro cleavage activity of the Gi2α ribozyme
Cleavage reactions were performed at 37°C in a buffer

containing 50 mM Tris-HCl (pH 7.4) and 10 mM MgCl2.

Cleavage products were separated by electrophoresis on

a 15 % polyacrylamide gel containing 7 M urea.

Transfection experiments
Cells were transfected with DOTAP- (25 µg/ml) formu-

lated ribozyme 4–5 h after the time of plating. Only sin-

gle transfections were used giving a ribozyme

concentration in the culture medium of 2.5 µM. After

30–45 hours transfection time, immunoblotting experi-

ments and assessment of ERK1/2 activity were per-

formed.

List of abbreviations
Cyclic AMP, Adenosine 3',5'-cyclic monophosphate, DO-
TAP, N- [1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl

ammonium-methylsulphate; EGF, epidermal growth

factor; ERK1/2, extracellular signal-regulated kinase 1

and 2; G protein, guanine nucleotide binding (regulato-

ry) protein; GPCR, G protein-coupled receptor; HGF,

hepatocyte growth factor; MBP, myelin basic protein;

PTX, pertussis toxin; PGF2α, prostaglandin F2α; RTK,

receptor tyrosine kinase; Rz, ribozyme; Rzm, mutant ri-

bozyme.
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