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Ca2+-mediated activation of ERK in hepatocytes by norepinephrine 
and prostaglandin F2α: role of calmodulin and src kinases
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Abstract
Background: Previous studies have shown that several agents that stimulate heptahelical G-
protein coupled receptors activate the extracellular signal regulated kinases ERK1 (p44mapk) and
ERK2 (p42mapk) in hepatocytes. The molecular pathways that convey their signals to ERK1/2 are
only partially clarified. In the present study we have explored the role of Ca2+ and Ca2+-dependent
steps leading to ERK1/2 activation induced by norepinephrine and prostaglandin (PG)F2α.

Results: Pretreatment of the cells with the Ca2+ chelators BAPTA-AM or EGTA, as well as the
Ca2+ influx inhibitor gadolinium, resulted in a partial decrease of the ERK response. Furthermore,
the calmodulin antagonists W-7, trifluoperazine, and J-8 markedly decreased ERK activation.
Pretreatment with KN-93, an inhibitor of the multifunctional Ca2+/calmodulin-dependent protein
kinase, had no effect on ERK activation. The Src kinase inhibitors PP1 and PP2 partially diminished
the ERK responses elicited by both norepinephrine and PGF2α.

Conclusion: The present data indicate that Ca2+ is involved in ERK activation induced by
hormones acting on G protein-coupled receptors in hepatocytes, and suggest that calmodulin and
Src kinases might play a role in these signaling pathways.

Background
The extracellular signal regulated kinases ERK1 (p44mapk)
and ERK2 (p42mapk) are activated in response to stimula-
tion of receptor tyrosine kinases (RTKs) as well as hepta-
helical G protein coupled receptors (GPCR) and transmit
signals which regulate cell differentiation and growth [1–
3]. The molecular steps involved in signaling from GPCRs
to ERK are incompletely understood. Data obtained in

various cell systems have provided evidence in support of
several signaling pathways including protein kinase C
(PKC) [4], Ca2+-mediated mechanisms [5–12], and trans-
activation of receptor tyrosine kinases [13,14]. In hepato-
cytes several hormones, including vasopressin,
angiotensin II, norepinephrine, and PGF2α, that bind to
GPCRs activate ERK [15–17]. The mechanisms mediating
the ERK activation by GPCR agonists are not clarified;
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there is evidence that protein kinase C is involved [15,18],
but a role for Ca2+ also appears likely, since all the agents
above activate phospholipase C and elevate intracellular
Ca2+ in hepatocytes [19,20]. Furthermore, agents that ele-
vate intracellular Ca2+ through mechanisms bypassing re-
ceptors have been found to activate ERK [15,21].
However, agonist-stimulated phospholipase C activity is
rapidly down-regulated upon culturing of hepatocytes
[22,23], and we recently reported that norepinephrine
and PGF2α activate ERK under conditions where the level
of inositol 1,4,5-trisphosphate (InsP3) was only slightly,
and transiently elevated [17]. In the present study we
have, therefore, examined more closely the role of Ca2+ in
ERK activation induced by norepinephrine and PGF2α
and mechanisms downstream of elevated [Ca2+]i.

Results
Agents that elevate [Ca2+]i activate ERK
In agreement with previous observations [15,21] treat-
ment of hepatocytes with thapsigargin, which inhibits
Ca2+ reuptake to endoplasmatic reticulum [24], and
A23187, which induces Ca2+ influx, stimulated ERK1/2
activity 2–2.5 fold (Fig. 1A). The elevation of intracellular
Ca2+ resulting from stimulation with thapsigargin is
shown in Fig. 1B. These observations are compatible with
a role for Ca2+-elevating mechanisms in the events that
trigger ERK1/2 activation in hepatocytes.

Activation of ERK by norepinephrine and PGF2α involves 
Ca2+

We then examined the role of Ca2+ in activation of ERK1/
2 induced by stimulation of α1-adrenoceptors (with nore-
pinephrine in the presence of timolol) and prostaglandin
receptors (using PGF2α) [21,25,26]. The hepatocytes were
pretreated with BAPTA-AM, which is activated intracellu-
larly to bind Ca2+, EGTA, which binds extracellular Ca2+

and eventually may deplete intracellular Ca2+[27,28], or
gadolinium, a competitive inhibitor of Ca2+ influx [29–
31]. BAPTA-AM completely attenuated the norepine-
phrine-induced rise of [Ca2+]i (Fig. 2A), while the ERK1/2
activity in response to norepinephrine was partially de-
creased (Fig. 2B,2C). ERK1/2 activity induced by PGF2α
and the Ca2+ ionophore A23187 was also inhibited by
BAPTA-AM, while the TPA response was unaffected (Fig.
2B,2C,2D). When the cells were pretreated with EGTA, the
initial peak of the Ca2+ elevation was only slightly affect-
ed, while the prolonged phase of the Ca2+-response was
abolished (Fig. 3A). The activation of ERK1/2 by nore-
pinephrine or PGF2α was partly decreased by EGTA (Fig.
3B,3C,3D). EGTA also markedly decreased the ERK1/2 re-
sponse induced by A23187 and thapsigargin, while the
TPA-induced ERK1/2 activation was unaffected (Fig.
3B,3C). Pretreatment with gadolinium decreased the
adrenergic activation almost to the level obtained by
EGTA (Fig. 4A). Gadolinium also decreased the A23187-
induced activation of ERK1/2 (Fig. 4B). Taken together,
the results suggest a role for Ca2+ in the activation of ERK
by norepinephrine and PGF2α and that this involves Ca2+

influx as well as release from internal pools.

Effect of antagonists of calmodulin and the multifunction-
al Ca2+/calmodulin-dependent protein kinase in ERK acti-
vation in hepatocytes
A major mechanism for Ca2+-induced signaling is
through formation of a complex with calmodulin [32,33].
Calmodulin has been found to stimulate as well as inhibit
ERK1/2 activity [12,34,35]. We therefore examined the
role of calmodulin in these pathways. Pretreatment of
hepatocytes with the calmodulin inhibitors trifluopera-
zine, J-8, and W-7 markedly inhibited the ERK1/2 activa-
tion after stimulation with norepinephrine and PGF2α
(Fig. 5). The results were confirmed with immunoblots
(Fig. 6). Activation of ERK1/2 by A23187 was also mark-
edly sensitive to pretreatment with W-7 (Fig. 5, 6).

Calmodulin may act on several regulatory enzymes
[32,36–40], including the Ca2+/calmodulin-dependent
protein kinases, which have been implicated in the activa-
tion of ERK1/2 [7–9]. We explored a possible role for the
multifunctional Ca2+/calmodulin-dependent protein ki-
nase in ERK1/2 activation in hepatocytes stimulated by
norepinephrine and PGF2α. Pretreatment of the cells with
KN-93, an inhibitor of the multifunctional Ca2+/calmod-

Figure 1
ERK1/2 activation and Ca2+ response in hepatocytes. A: At 3
h after the time of seeding hepatocytes were preincubated
with timolol (10 µM) for 30 min prior to stimulation with
thapsigargin (1 µM), A23187 (10 µM) or norepinephrine (10
µM) for 5 min before they were harvested and ERK 1/2 activ-
ity assessed. Results represent mean ± S.E.M. of five different
experiments. B: Single cell measurement of [Ca2+]i as
described in Materials and Methods. Results given as ratio
(345/385 fluorescence) represent a typical single cell
response after stimulation with thapsigargin (10 µM) in a
fura-2 AM loaded hepatocyte.
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ulin-dependent protein kinase [41], did not decrease the
activation of ERK1/2 either by norepinephrine, PGF2α, or
A23187 (Fig. 5, 6). In supplementary experiments we ex-
amined the effects of higher concentrations of KN-93 (up
to 100 µM) or prolonged exposure times (up to 24 hours)
which in none of the cases resulted in a decreased ERK1/2
activation (data not shown). These results suggest that cal-
modulin might be involved in hormone-induced activa-
tion of ERK1/2 in hepatocytes, however the data do not
support a role for the multifunctional Ca2+/calmodulin-
dependent protein kinase in Ca2+/calmodulin-mediated
activation of ERK1/2 in hepatocytes

Inhibitors of src kinases attenuate ERK activation in hepa-
tocytes
Src kinases [42] have been implicated in the mechanisms
resulting in ERK1/2 activation in response to stimulation
of both Gi- and Gq- coupled heptahelical receptors [43–
45], and several observations suggest that activation of Src
in these pathways involves Ca2+[46,47]. Data obtained in
this study showed that the Src inhibitors PP1 and PP2,
which are reported to primarily inhibit the Lck, Fyn, and
Hck subtypes of Src kinases [48], markedly decreased the
PGF2α-induced ERK1/2 activation and led to partial inhi-
bition of the effect of norepinephrine, while the EGF in-
duced ERK1/2 response was not reduced (Fig. 7).
Furthermore, ERK1/2 activation induced by A23187 and

Figure 2
Effect of BAPTA-AM on [Ca2+]i and ERK1/2 activation. A: Measurement of [Ca2+]i. Hepatocytes were preincubated with 0.55
% DMSO or BAPTA-AM (40 µM) during the last 25 minutes of the fura-2 AM loading. After 60 seconds of registration the cells
were stimulated with norepinephrine (10 µM) in the presence of timolol (10 µM). Results show a typical single cell response.
B-D: ERK1/2 responses. Hepatocytes cultured for 3 h were pretreated for 30 min with BAPTA-AM (40 µM) in the presence of
timolol (10 µM) prior to stimulation with norepinephrine (10 µM), A23187 (10 µM), TPA (1 µM) or PGF2α (10 µM) for 5 min
before cells were harvested. All cultures contained DMSO at a concentration of 0.5 % during the preincubation and a final con-
centration of 1 % DMSO during incubation with agonist. B: Activity measurements of ERK1/2 representing mean ± S.E.M. of
three experiments. C, D: Immunoblots using antibody against dually phosphorylated ERK1/2.

Ctr           NE          TPA        A23187

0          50 100       150 200       250
0

1

2

3

4

5

6  - BAPTA-AM
 +BAPTA-AM

NER
at

io
 (3

45
/3

85
 fl

uo
re

sc
en

ce
)

Time (s)
Ctr   NE   A23187

Ctr           PGF2α
E

R
K

1/
2 

ac
tiv

ity
 (%

 o
f c

on
tr

ol
)

-ERK1
-ERK2

A                                                               B      

C                                                               D

0

100

200

-BAPTA-AM
+BAPTA-AM

BAPTA-AM -+       -+       -+        -+-+        -+
Page 3 of 11
(page number not for citation purposes)



BMC Cell Biology 2002, 3 http://www.biomedcentral.com/1471-2121/3/5
thapsigargin was also decreased after Src inhibition (Fig.
7). The results suggest a role for Src kinases in the mecha-
nisms leading to ERK1/2 activation both by PGF2α and
norepinephrine, and that this step at least in part may be
located distal to increases in the intracellular level of Ca2+.

Discussion
The present findings confirm previous reports of a role for
Ca2+ in ERK1/2 activation in hepatocytes [15,21] and sug-
gest that release of Ca2+ from intracellular stores as well as
influx of extracellular Ca2+ is of importance for the hor-
mone-induced activation of ERK1/2. Furthermore, the re-
sults suggest that calmodulin and Src kinases might be
involved in the Ca2+-dependent activation of ERK1/ERK2.

Evidence from several experimental models suggest that
activation of ERK1/2 may occur through Ca2+-dependent
as well as Ca2+-independent mechanisms [5,28,49–54].
The present data suggest that Ca2+ is involved in activa-
tion of ERK1/2 in hepatocytes in response to norepine-
phrine and PGF2α. The ERK1/2 response was decreased by
chelation of intracellular and extracellular Ca2+ with BAP-

TA-AM and EGTA, respectively, as well as by gadolinium,
which competitively inhibits Ca2+ influx. It may appear
that extracellular and intracellular Ca2+ act in a concerted,
possibly sequential manner in the mechanisms involved
in activation of ERK1/2 by norepinephrine and PGF2α. An
integration of Ca2+ signals from the extracellular and in-
tracellular environment is presumably due to store-oper-
ated Ca2+ influx [31,55,56]. The mechanisms that initiate
Ca2+ influx subsequent to depletion of intracellular stores
are incompletely understood, but recent studies have sug-
gested that direct interaction between InsP3 receptors and
calcium channels in the plasma membrane may lead to
activation of the calcium channels [57]. A diffusible Ca2+

influx factor may also be involved [58]. Previous studies
have suggested that hormone-induced Ca2+ influx in-
volves heterotrimeric Gi proteins in hepatocytes [59,60].
It is notable that norepinephrine and PGF2α activate
ERK1/2 in the presence of a barely detectable increase in
intracellular InsP3[17]. This may suggest either the occur-
rence of local elevations of InsP3 which do not affect glo-
bal InsP3, or that Ca2+ pools are regulated by other
mechanisms such as generation of sphingosine-1-phos-

Figure 3
Effect of EGTA on [Ca2+]i and ERK 1/2 activation. A: [Ca2+]i measurements. Hepatocytes were preincubated in Krebs-Ringer-
Hepes buffer with or without 5 mM EGTA for 15 min after fura-2 AM loading. After 60 seconds of registration the cells were
stimulated with norepinephrine (10 µM) in the presence of timolol (10 µM). Results show a typical single cell response. B-D:
ERK1/2 responses. Hepatocytes cultured for 3 h were pretreated with timolol (10 µM) for 30 min and EGTA (5 mM) for 15
min before stimulation with norepinephrine (10 µM), TPA (1 µM), thapsigargin (1 µM), A23187 (10 µM) or PGF2α (10 µM) for
5 min (in the presence of 0.5 % DMSO). B: Activity measurements of ERK1/2 representing the mean ± S.E.M. of three experi-
ments. C, D: Immunoblots using antibody against double phosphorylated, i.e. activated, forms of ERK1/2.
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phate [61]. A role for ryanodine-sensitive Ca2+ stores in
the endoplasmatic reticulum has also been proposed in
hepatocytes [62] and EGTA-sensitive pools that are locat-
ed in plasma membrane micro villar structures have been
described [63].

Our data further suggest that calmodulin, which has pre-
viously been implicated in growth regulation in liver [64],
is involved in activation of ERK1/2. The ERK1/2 responses
induced by norepinephrine and PGF2α were markedly de-
creased after pretreatment with the calmodulin inhibitors
trifluoperazine, J-8, or W-7. Besides calmodulin, it is con-
ceivable that the effect of Ca2+ is mediated through other
Ca2+-binding proteins [39,65]. Calmodulin may also act
in a Ca2+-independent manner [38,66], which might ac-
count for the more pronounced inhibition of hormone-
stimulated ERK activity by calmodulin antagonists than

by agents inhibiting the Ca2+ signal. Alternatively, non-
specific effects produced by calmodulin antagonists in
higher doses might explain their relatively stronger inhibi-
tion. Among the downstream targets of calmodulin, the
Ca2+/calmodulin-dependent protein kinases have been
implicated in ERK1/2 activation in smooth muscle cells
[8,9], but not in other cells [67,68]. Furthermore, the mul-
tifunctional Ca2+/calmodulin-dependent protein kinase
was located downstream of ERK1/2 activation by platelet-
derived growth factor (PDGF) in vascular smooth muscle
cells [69]. Pretreatment of hepatocytes with KN-93 did not
decrease ERK1/2 activation induced by hormones or the
Ca2+ ionophore A23187. Thus, while the multifunctional
Ca2+ /calmodulin-dependent protein kinase exerts several
effects in hepatocytes, including growth inhibition under
certain conditions [70–72], it does not appear to be in-
volved in ERK activation. It is of interest that the α1-adren-
oceptor-induced c-fos expression in fibroblasts was also
observed to involve calmodulin, but not the multifunc-
tional Ca2+/calmodulin-dependent protein kinase [73].

Increasing evidence suggest a role of Src kinases down-
stream of Ca2+/calmodulin in ERK1/2 signaling
[10,14,46]. The present results suggest that Src kinases
may be involved in ERK1/2 activation induced by PGF2α
and norepinephrine, while the EGF induced ERK1/2 re-
sponse appears to be independent of these Src kinases.
Furthermore, the ERK1/2 activation induced by the Ca2+

ionophore A23187 or by thapsigargin was partially de-
creased by Src inhibition suggesting a role of Src distal to
increases in intracellular Ca2+. Of the possible down-
stream targets for Ca2+/calmodulin in ERK signaling in
hepatocytes our findings thus lend support to a role of Src
kinases, although the results do not exclude the possibility
that Src kinases and calmodulin act in parallel pathways
leading to ERK activation.

While the present results show a role for Ca2+ in ERK1/2
activation by norepinephrine and PGF2α, it is notable that
even complete inhibition of Ca2+ signaling only partially
inhibited ERK1/2 activity. Taken together with previous
observations that inhibition of PKC almost completely in-
hibited ERK1/2 activation by norepinephrine, vaso-
pressin, and angiotensin II [18], the results suggest that
several mechanisms contribute to and may act in concert
in the hormonal stimulation of ERK1/2 in hepatocytes.

Conclusion
Our present data indicate that both extracellular and in-
tracellular Ca2+ is involved in hormone-induced ERK1/2
activation in cultured hepatocytes, and suggest that cal-
modulin and Src kinases might play a role in these signal-
ing pathways, while the multifunctional Ca2+/
calmodulin-dependent protein kinase does not appear to
be involved.

Figure 4
Effect of gadolinium on ERK1/2 responses. A: Hepatocytes
cultured for 3 h were pretreated with gadolinium (100 µM)
or EGTA (5 mM) for 15 min in the presence of timolol (10
µM) prior to stimulation with norepinephrine (10 µM) for 5
min before cells were harvested. Results are activity meas-
urements of ERK1/2 given as pmol 32P incorporated into
MBP/mg protein representing mean ± S.E.M. of three experi-
ments. B: Immunoblot showing the effect of pretreatment
with gadolinium (100 µM) for 15 min on A23187 (10 µM)
induced ERK1/2 response. Antibody against dually phosphor-
ylated ERK1/2 was used.
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Figure 5
Effect of inhibitors of calmodulin (Trifluoperazine, J-8, W-7) and the multifunctional Ca2+/calmodulin dependent protein kinase
(KN-93). Hepatocytes were cultured for 3 h before preincubation with timolol (10 µM) for 30 min in the presence or absence
of indicated inhibitors prior to stimulation for 5 min with norepinephrine (10 µM), PGF2α (10 µM) or A23817 (10 µM), before
cells were harvested and ERK1/2 activation assessed. A: Pretreatment with trifluoperazine (50 µM) in 0.5 % DMSO. The results
represent one typical experiment out of three and are expressed as percent of untreated control. B: Pretreatment with J-8 (10,
25, and 50 µM) in 0.5 % DMSO. The results represent mean ± S.E.M of three experiments and are expressed as percent of cor-
responding control values. C: Pretreatment with W-7 (100 µM) or KN-93 (20 µM) in 0.5 % DMSO, while the final DMSO con-
centration during incubation with agonist was 1 %. Results represent mean ± S.E.M. of five experiments and are expressed as
percent of untreated control.
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Materials and Methods
Materials
Dulbecco's modified Eagle's medium, Waymouth's medi-
um MAB 87/3, penicillin and streptomycin were from
Gibco, Grand Island, NY, U.S.A. Adenosine 5'-triphos-
phate, collagen, collagenase, EGTA, phenylmethylsulfo-
nyl fluoride, benzamidine, leupeptin, pepstatin A, myelin
basic protein (MBP), norepinephrine, prostaglandin F2α,
epidermal growth factor, insulin, timolol, gadolinium
chloride (hexahydrate), sulfinpyrazone, and 2-mercap-
toethanol were from Sigma, St. Louis, MO, USA. A23187,
12-O-tetradecanoyl phorbol-13-acetate, thapsigargin, N-
(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W-
7), trifluoperazine dimaleate, 2-[N-(2-hydroxyethyl)-N-
(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocin-
namyl)-N-methylbenzylamine (KN-93), and l,2-bis(o-
aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tet-
ra(acetoxymethyl)ester (BAPTA-AM), PP1, PP2 were from
Calbiochem, La Jolla, CA, USA. (N-8-Aminooctyl)-5-
iodo-1-naphtalenesulfonamide (J-8) was from Alexis Bio-
chemicals, Lausen, Switzerland. Fura-2 AM and Pluronic
F-127 were from Molecular Probes, Eugene, OR, USA. So-
dium(meta)vanadate was from Fluka Chemie AG, Buchs,
Switzerland. Phenyl Sepharose CL-4B was from Pharma-
cia Biotech., Uppsala, Sweden. Dexamethasone was from
Norwegian Medicinal Depot, Oslo, Norway, [γ-32P] Ade-
nosine 5'-triphosphate (3000 Ci/mol) was from Amer-
sham International, Buckinghamshire, England.

Isolation and culture of hepatocytes
Male Wistar rats (170–220 g) fed ad libitum were used.
Parenchymal liver cells were isolated by in vitro colla-
genase perfusion and low-speed centrifugation [74] with
modifications as previously described [75]. Cell viability
was at least 95 %, measured as the ability to exclude
trypan blue. The cells were suspended in medium and
plated in Costar wells at 20.000 cells/cm2, unless other-
wise specified. The culture medium (0.2 ml/cm2) was a
1:1 mixture of Dulbecco's modified Eagle's medium and
Waymouth's medium MAB 87/3 containing 16.8 mM glu-
cose [76], supplemented with penicillin (100 U/ml),
streptomycin (0.1 mg/ml), dexamethasone (25 nM) and
insulin (100 nM). The cultures were gassed with 95 % air/
5 % CO2 and kept at 37°C.

Measurement of ERK activity
The measurement of ERK1/2 activity was performed as
previously described [17,77]. In brief, the hepatocyte cul-
tures were exposed to agonists for 5 minutes before rins-
ing and scraping the cells into a 10 % ethylene glycol
buffer. The lysate was centrifugated (15,800 × g) for 10
min, and the supernatant was mixed with phenyl-Sepha-
rose which was washed twice in a 10 %, twice in a 35 %
ethylene glycol buffer, and finally ERK1/2 was eluted with
a 60 % ethylene glycol buffer [78]. The eluate was assayed
for ERK1/2 activity with MBP as substrate, thereafter spot-
ted onto P81 paper (Whatman, Maidstone, UK), which
was washed, dried and counted in a liquid scintillation
counter. Protein content was determined with the BCA
Protein Assay (Pierce, Rockford, IL, U.S.A.).

Immunoblotting
Aliquots with 20 µg cell protein (total cell lysate prepared
in Laemmli buffer) were electrophoresed on 10 % poly-
acrylamide gels (acrylamide:N'N'-bis-methylene acryla-
mide 30:0.8) followed by protein electrotransfer to
nitrocellulose membranes and immunoblotting with a
polyclonal ERK1/2 antibody against the dually threonine-
and tyrosine phosphorylated forms of ERK1 and ERK2
(Promega Corporation, Madison, WI). Assessment of the
multifunctional Ca2+/calmodulin dependent protein ki-
nase was performed by immunoblotting using an anti-
body against the phosphorylated from of the enzyme.
Immunoreactive bands were visualised with ECL Western
blotting detection reagents (Amersham International).

Measurement of cytosolic Ca2+ in single hepatocytes
The calcium measurements were done as described previ-
ously [20,79]. Freshly isolated hepatocytes (50.000/cm2)
were plated onto glass coverslips coated with collagen and
kept in the culture medium for 30 minutes in an atmos-
phere of 95 % air/5 % CO2 at 37°C. The cells were loaded
in Krebs-Ringer-Hepes buffer (KRH) with 1 % albumin
and 16.8 mM glucose, supplemented with 5 µM fura-2

Figure 6
Immunoblots showing the effect of inhibitors of calmodulin
(W-7, J-8, trifluoperazine) and the multifunctional Ca2+/cal-
modulin dependent protein kinase (KN-93) on ERK1/2 acti-
vation (A-C). Hepatocytes were cultured for 3 h before
preincubation for 30 min with timolol (10 µM) A: in the pres-
ence or absence of W-7 (25 µM) before stimulation for 5
min with norepinephrine (10 µM), PGF2α (10 µM) or A23187
(10 µM) or B, C: with or without J-8 (40 µM), trifluoperazine
(50 µM) or KN-93 (20 µM) before 5 min of stimulation with
norepinephrine (10 µM). Western analyses were based on
the use of antibody against dually phosphorylated ERK1/2.
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AM, 0.25 % (v/v) DMSO, 0.025 % Pluronic F-127 and
250 µM sulfinpyrazone for 90 minutes at 37°C. After
loading, the cells were washed once and incubated with
400 µl KRH buffer with 16.8 mM glucose. Cells were pre-
incubated with timolol (10 µM) in the presence or ab-
sence of EGTA (5 mM) for 15 minutes after loading and
the experiments were performed in the same buffer. Pre-
incubation with timolol (10 µM) and DMSO or BAPTA-
AM (40 µM) was performed within the last 25 minutes of
the loading period. 100 µl norepinephrine was injected
after 60 seconds of registration to a final concentration of
10 µM. The experiments were carried out at 37°C. Single
cell Ca2+ measurements were based on the ratios of the
fluorescence with excitation at 345 and 385 nm. Because
fura-2 AM is partly compartmentalized in hepatocytes af-
ter loading, we did not calculate apparant values for

[Ca2+]i from the ratios. The equipment consisted of a PTI-
∆-scan excitation device, a Nikon inverted microscope, a
Hamamatsu CCD video camera and a Sony video record-
er.

List of abbreviations
BAPTA-AM, l,2-bis(o-aminophenoxy)ethane-N,N,N',N'-
tetraacetic acid tetra (acetoxymethyl)ester; EGF, epidermal
growth factor; EGTA, ethyleneglycol-bis(β-aminoethyl)-
N,N,N',N'-tetraacetic acid; ERK1/2, extracellular signal-
regulated kinase 1 and 2; Gd, gadolinium chloride (hex-
ahydrate); GPCR, G protein-coupled receptor; J-8; (N-8-
Aminooctyl)-5-iodo-1-naphtalenesulfonamide; InsP3, in-
ositol (l,4,5)-trisphosphate; KN-93, 2-[N-(2-hydroxye-
thyl)-N-(4-methoxybenzenesulfonyl)] amino-N-(4-
chlorocinnamyl)-N-methylbenzylamine; MBP, myelin

Figure 7
Effect of inhibition of Src kinases on ERK1/2 activation. A-D: Hepatocytes were cultured for 3 h prior to preincubation for 30
min with timolol (10 µM) and the Src kinase inhibitors PP1 or PP2 at indicated concentrations in 0.5 % DMSO before stimula-
tion for 5 min with norepinephrine (10 µM), PGF2α (10 µM), EGF (10 nM), thapsigargin (1 µM), or A23187 (10 µM). A: ERK1/
2 activity, given as percent of untreated control, induced by hormonal agents expressed as the mean ± S.E.M. of four experi-
ments after treatment with PP1 (10 µM). The inset shows an immunoblot of the effect of PP1 (20 µM) on thapsigargin-induced
ERK1/2 response. B: A23187-induced ERK1/2 response after PP1 (10 µM) treatment. Results represent mean ± S.E.M of three
experiments. C: Dose-response curve for the effect of PP2 on ERK1/2 activity induced by A23187. Results represent mean ±
S.E.M of three experiments. All activity measurements (A-C) are expressed as percent of untreated control. D: Immunoblots
showing the effect of PP1 (10 µM) or PP2 (10 µM) on ERK1/2 responses. Antibody against dually phosphorylated ERK1/2 was
used.
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basic protein; NE, norepinephrine; PGF2α, prostaglandin
F2α ; PP1, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyra-
zolo [3,4-d]pyrimidine; PP2, 4-amino-5-(4-chlorophe-
nyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine; RTK, receptor
tyrosine kinase. TFP, trifluoperazine dimaleate; Thaps,
thapsigargin; TPA, 12-O-tetradecanoyl phorbol-13-ace-
tate; W-7, N-(6-aminohexyl)-5-chloro-1-naphtalenesul-
fonamide.
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