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Abstract
Background:  In most cells glucocorticoid receptors (GR) reside predominately in the cytoplasm.
Upon hormone binding, the GR translocates into the nucleus, where the hormone-activated GR-
complex regulates the transcription of GR-responsive genes. Serine/threonine protein phosphatase
type 5 (PP5) associates with the GR-heat-shock protein-90 complex, and the suppression of PP5
expression with ISIS 15534 stimulates the activity of GR-responsive reporter plasmids, without
affecting the binding of hormone to the GR.

Results:  To further characterize the mechanism by which PP5 affects GR-induced gene
expression, we employed immunofluorescence microscopy to track the movement of a GR-green
fluorescent fusion protein (GR-GFP) that retained hormone binding, nuclear translocation activity
and specific DNA binding activity, but is incapable of transactivation. In the absence of
glucocorticoids, GR-GFP localized mainly in the cytoplasm. Treatment with dexamethasone results
in the efficient translocation of GR-GFPs into the nucleus. The nuclear accumulation of GR-GFP,
without the addition of glucocorticoids, was also observed when the expression of PP5 was
suppressed by treatment with ISIS 15534. In contrast, ISIS 15534 treatment had no apparent effect
on calcium induced nuclear translocation of NFAT-GFP.

Conclusion:  These studies suggest that PP5 participates in the regulation of glucocorticoid
receptor nucleocytoplasmic shuttling, and that the GR-induced transcriptional activity observed
when the expression of PP5 is suppressed by treatment with ISIS 15534 results from the nuclear
accumulation of GR in a form that is capable of binding DNA yet still requires agonist to elicit
maximal transcriptional activation.
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Background
Glucocorticoids influence a wide spectrum of cellular

functions through their action on soluble intracellular

receptors. In most cells, unliganded glucocorticoid re-
ceptors (GR) reside predominately in the cytoplasm,

where they exist as a heteromeric complex comprised

minimally of GR, 90-kDa and 70-kDa heat shock pro-

teins (hsp90 and hsp70). Other proteins (i.e. p60/Hop,

p23, hsp40, FKBP52, and FKBP51) have been implicated

in the assembly/stabilization of the GR-hsp90-hsp70-

complex in a form that has high affinity for agonist [for

review, see Ref. 1, 2, 3]. Upon agonist binding, the com-

plex undergoes a transformation, and the ligand bound

GR translocates into to the nucleus in a manner that is

determined by a nuclear localization sequence (NLS)

contained in the receptor [4]. There the GR acts as a lig-

and-activated transcriptional stimulator or repressor of

primary response genes by binding to glucocorticoid

hormone-responsive elements (GRE) contained in the

promoter regions of steroid-responsive genes and either

facilitating or repressing the formation of an active tran-

scriptional complex.

Although little is known about the molecular machinery

that regulates steroid receptor movement through the

cytoplasm and into the nucleus, several studies suggest

that movement is influenced by reversible phosphoryla-

tion. Evidence for this originated from the studies of Qi

et al. [5, 6], which revealed that the hormone insensitiv-
ity produced by cellular transformation with v-mos (a

serine/threonine protein kinase that acts as an onco-

gene) results from both a decrease in the nuclear reten-

tion of liganded receptor and a decrease in the

reutilization of GR protein that cycles back into the cyto-

plasm. Subsequently, DeFranco et al. [7] reported that

treatment with okadaic acid, a potent ser/thr protein

phosphatase inhibitor, also results in inefficient nuclear

retention of agonist-bound GR and the cytoplasmic

"trapping" of GR in a form that is unable to "recycle". Re-

cent studies with okadaic acid suggest phosphorylation

alters the high affinity binding of GR to hsp-90, and that

an intact cytoskeleton is required for ligand-activated

GR translocation through the cytoplasm to the nucleus

[8].

The ability of okadaic acid to influence the intracellular

partitioning of GR suggests that an okadaic acid sensitive

ser/thr protein phosphatase (PPase) participates in the

regulation of GR movement. In vitro, okadaic acid acts as

a potent inhibitor of serine/threonine protein phos-

phatases type 1 (PP1) and 2A (PP2A) [9, 10]. Accordingly,

many of the effects produced by the treatment of cells

with okadaic acid have been attributed to the inhibition

of these two enzymes. However, due to toxicity and solu-
bility constraints, in living cells it is difficult to distin-

guish the actions of PP2A from those of PP1 using

okadaic acid. Furthermore, in humans, it is now clear

that there are four isoforms of PP1 [PP1α, PP1δ, PP1γ1
and PP1γ2 [11, 12, 13], two isoforms of PP2A (PP2A α and
PP2Aβ [14, 15]) and four structurally related phos-
phatases, PP4 [16], PP5 [17, 18], PP6 [19] and PP7 [20].

Although detailed dose-response studies have not been

reported for native PP5, PP6 and PP7, studies with PP4

[21] and recombinant PP5 [18] indicate they are also sen-

sitive to okadaic acid. Like calcineurin (PP2B) and PP2C,

PP7 is apparently insensitive to inhibition by okadaic

acid [20].

Recent studies indicate that PP5 associates with the GR-

hsp90 complex [22, 23] suggesting that PP5 may influ-

ence the actions of GRs. However, studying the cellular

roles of PP5 has proven difficult, in part, because no

physiological substrates for PP5 have been identified. In

addition, in crude cell homogenates PP5 resides predom-

inately in an inactive state that represents <1% of the

measurable PPase activity. To characterize the cellular

roles of PP5 we have, therefore, developed chimeric anti-

sense 2'-O-(2-methoxy) ethylphosphothioate oligonucle-

otides capable of inhibiting the expression of human PP5

at nanomolar concentrations. Because the lead com-

pound targeting PP5 (ISIS 15534) acts via RNAase H me-

diated degradation, studies with ISIS 15534 do not allow

us to assess how rapid changes in PP5 activity affect cel-

lular functions (Northern analysis indicate that it takes ~
6 for the mRNA degradation to occur and, due to the

half-life of the preexisting protein, it takes ~ 24 hours for

the protein levels to fall [24]. Nonetheless, ISIS 15534

potently inhibits the expression of PP5 in cultured cells

for ~ 48-72 hours (IC50 of <75 nm), which affords a ~ 24-

48 hour window in which the expression of PP5 is essen-

tially ablated [24, 25]. More importantly, because ISIS

15534 has no effect on the structurally related PPases

[24], it can be employed to specifically inhibit the actions

of PP5 by suppressing PP5 protein levels in cultured hu-

man cells.

To assess the role of PP5 in the regulation of GR-mediat-

ed events, binding studies were conducted with [3H]dex-

amethasone before and after ISIS 15534-mediated

suppression of PP5 expression. These studies revealed

that the suppression of PP5 expression had no apparent

effect on dexamethasone binding, suggesting that PP5

does not affect the formation of the high-affinity ligand

binding complex or hormone binding to the GR [25]. In

contrast, mobility gel-shift analysis revealed that treat-

ment with ISIS 15534 produces a marked increase in the

association of GR with GRE-containing DNA, and tran-

sient transfection studies employing a GR-responsive re-

porter plasmid revealed that the suppression of PP5
expression activates GR-dependent transcription in the
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absence of hormone [25]. When A549 cells were treated

with ISIS 15534 and then dexamethasone, the effect was

additive, with maximal dexamethasone induced luci-

ferase activity ~ 10 times greater than the maximal dex-
amethasone-induced response attainable in the presence

of PP5 [25]. Together, these studies indicate that PP5

acts as a suppressor of GR-induced transcription.

To further characterize the mechanism by which PP5 af-

fects GR function, in the present study we employed a

GR-GFP fusion protein and fluorescent microscopy to

follow the movement of GR in cells treated with dexam-

ethasone and ISIS 15534. These studies indicate that PP5

mediated suppression of GR-function arises from the

ability of PP5 to suppress the nuclear accumulation of

GRs.

Results
Inhibition of PP5 by okadaic acid
Okadaic acid is widely employed to inhibit PPase activity

in eukaryotic cells, and the observed effects are often at-

tributed to the inhibition of PP1 and PP2A. However, as

seen in Figure 1, the dephosphorylation of phosphohis-

tone by the catalytic subunit of purified PP5 from bovine

brain is also potently inhibited by okadaic acid. Okadaic

acid inhibits the activity of PP5 in a dose-dependent

manner, having an IC50 of 5.58 +/- 0.41 nM. Under iden-

tical assay conditions, okadaic acid is a more potent in-

hibitor of PP2A (IC50~ 0.05 nM) and weaker inhibitor of
PP1 (IC50~ 45 nM). However, the activity of PP5 against

histone (865 +/- 31 nMoles Pi/min/mg protein) is less

than that of PP2A. Therefore, whereas assays conducted

with PP1 and PP2A were conducted with a concentration

of enzyme that is diluted below the titration endpoint

(defined as the concentration of enzyme after which fur-

ther dilution no longer affects the IC50; [26]) because the

activity of PP5 upon further dilution was below that nec-

essary for accurate quantification, we could not establish

a clear titration endpoint with PP5. Based on titration

studies with microcystin-LR to estimate the actual

amount of PP5 in the reaction, an estimate of the Ki for

okadaic acid is 4.07 +/- 0.16 nM. Still, it should be kept

in mind that the true Ki may be slightly lower. Nonethe-

less, it is clear that PP5 is sensitive to inhibition by oka-

daic acid at the concentrations that also affects the

activity of PP1 and PP2A. Therefore, when okadaic acid

is employed to treat cells at a concentration of >1-5 nM,

the activity of PP5 is also affected.

ISIS 15534 promotes nuclear localization of GR
To determine whether the suppression of PP5 activity in-

fluenced the subcellular distribution of GR, plasmids ex-

pressing a GR-GFP fusion protein were microinjected

into cells that were previously treated with ISIS 15534. In
these studies the GR-GFP used was derived from the fu-

sion of GFP to a GR mutant that retained the ability to

bind agonist, translocate to the nucleus, and bind DNA,

but lacked transactivation activity [27]. When plasmids
expressing the GR-GFP were injected into the nuclei of

cells and the cells were grown in serum-containing medi-

um, the majority of the expressed GR-GFP localized to

the nuclei of the injected cells, as expected due to the

presence of glucocorticoids in the serum. Thus, after mi-

croinjection, the cells were grown in medium supple-

mented with serum for 4 to 6 hours and then serum

starved overnight to cause the redistribution of GR-GFP.

In the absence of serum, GR-GFP localized throughout

the cells, with equal intensity in both the nucleus and cy-

toplasm (Fig. 2A). Upon treatment of these cells with

dexamethasone (500 nM for 30 minutes) the GR-GFP ef-

ficiently translocated to the nucleus. To assess the role of

PP5 in the intracellular partitioning of GR, cells were

treated with ISIS 15534 or a mismatched control (ISIS

15521) at a concentration of 500 nM, which essentially

ablates PP5 expression in A549 cells after 24 hours [24,

25]. Approximately 24 hours after antisense treatment,

the cells were microinjected with pGR(Ala)-GFP and

subjected to serum-starvation as described above. In

cells treated with the mismatch control prior to microin-

jection, GR-GFP expression was indistinguishable from

that in untreated cells: GR-GFP was distributed evenly

throughout the cytoplasm and nucleus (Figure 2A). In

contrast, following treatment with ISIS 15534, GR-GFP
was localized in the nucleus without dexamethasone

Figure 1
Inhibition of PP5 by okadaic acid. The purified catalytic
subunit of PP5 was assayed, using [32P]labeled phosphohis-
tone as a substrate as described in Materials and Methods.
The data is expressed as % of controls, with control activity
being 4.2 ± 0.25 µmole/min/mg protein. Okadaic acid was
mixed with the enzymes for 10 min at 23°C prior to the initi-
ation of the reaction with the addition of substrate. Inhibition
assays contained ~ 200 pM PP5. The data represent the mean
SD (n = 4).
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treatment. The percentage of cells displaying predomi-

nantly nuclear GR-GFP or cytoplasmic GR-GFP from 4
independent experiments were tabulated and are pre-

sented in Figure 2B. In control cells in the absence of

dexamethasone, 10% of the cells showed nuclear>cyto-

plasmic localization of GR-GFP. Similarly, 20% of the

cells treated with mismatch oligonucleotide displayed

greater nuclear than cytoplasmic localization of GR-

GFP. By contrast, the percentage of cells showing more

nuclear than cytoplasmic distribution of GR-GFP was ~

93%, ~ 88% and ~ 98% in cells treated with either dex-

amethasone, ISIS 15534, or ISIS 15534 and dexametha-

sone, respectively. These results suggest that PP5 plays a

role in the nucleo-cytoplasmic partitioning of GR.

Inhibition of PP5 expression does not globally affect nucle-
ar shuttling
The ability of ISIS 15534 treatment to induce the nuclear

accumulation of GR-GFP suggests that PP5 influences

the subcellular distribution of GR. Alternatively, PP5

could have a more global role, possibly regulating entire

nuclear transport pathways. To test the latter, the effect

of PP5 suppression on the nucleo-cytoplasmic shuttling

of another transcription factor, NFAT, was investigated.

In these studies, a stable GFP-NFAT expressing HeLa

cell line was employed [38]. As seen in Figure 3, in the

absence of any drug, the GFP-NFAT protein is localized

entirely within the cytoplasm. Upon treatment with the

calcium ionophore ionomycin, GFP-NFAT translocates

Figure 2
Effects of ISIS 15534 and dexamethasone on the subcellular distribution of GR-GFP. A. Representative subcel-
lular distribution of GR-GFP. A549 cells were grown and treated with ISIS 15521 (a mismatched control antisense oligonu-
cleotide for ISIS 1535), ISIS 15534 (antisense targeting PP5), dexamethasone (500 nM), ISIS 15534 and 500 nM dexamethasone,
or vehicle alone (control) as described in Material and Methods. Eighteen hours later, GR-GFP expressing plasmids were
microinjected into the nuclei of cells, incubated for 6 hours in serum-containing medium, and then serum-starved for an addi-
tional 18 hours. Between 150 and 200 cells were injected for each condition. The cells were either left untreated (control, ISIS
15521, ISIS 15534) or incubated with 500 nM dexamethasone (dexamethasone, ISIS + dexamethasone) for 30 minutes, prior to
fixing and observation by fluorescence microscopy. Representative cells from 4 independent experiments are shown. B. Per-
centage of cells displaying nuclear GR-GFP. Cells from 4 independent experiments were scored for their intracellular
distribution of GR-GFP and the mean percentage of cells having greater fluorescence in their nuclei than cytoplasm are shown
(± SD). *p ≤ 0.0001 by ANOVA vs untreated or mismatch-treated cells.
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rapidly to the nucleus. The fusion protein then relocates

to the cytoplasm if the drug is washed out of the cells for

6 hours. When the GFP-NFAT HeLa cells were treated

with ISIS 15534, the distribution of GFP-NFAT was in-

distinguishable from untreated cells or cells treated with

mismatched control oligonucleotides. Northern analysis

confirmed the ability of ISIS 15534 to suppress PP5 ex-

pression in Hela cells. Therefore, the results indicate that

suppression of PP5 expression does not have a global ef-

fect on all nuclear shuttling proteins.

Discussion
Like other steroid hormone receptors, GRs are phospho-

proteins, and reversible phosphorylation of specific ser/

thr residues on the GR or associated proteins has been

implicated in the regulation of 1) hormone binding to the

cytoplasmic GR-complex, 2) the translocation of the GR

between the cytoplasm and the nucleus, 3) the binding of

ligand activated GR to consensus GRE in the promoter

regions of GR-responsive genes, and 4) the formation of

an active transcriptional complex [1, 2, 5, 6, 7, 8, 28, 29,

Figure 3
Nucleo-cytoplasmic shuttling of GFP-NFAT. A) GFP-NFAT expressing HeLa cells were grown on glass coverslips and
either left untreated (control) or treated with ISIS 15534 or the mismatched control (ISIS 15521) as described in Materials and
Methods. Twenty-four hours after oligonucleotide treatment, the cells were either directly fixed with paraformaldehyde (No
ionomycin), or ionomycin was added to 1 µM for 30 minutes. After treatment with ionomycin, the cells were either fixed (+
ionomycin) or rinsed in PBS and grown for an additional 6 hours in medium in the absence of drug (washout) before fixing.
Representative fields of cells were viewed by fluorescence microscopy and photographed. B). Northern analysis of HeLa cells
following treatment with 500 nM ISIS 15534, 500 nM ISIS 155521 or lipofectin alone (control), probing for PP5 and GAPDH
confirms that the antisense oligonucleotides are also effective HeLa cells.
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30, 31]. Many of the kinases that catalyze the phosphor-

ylation of GRs and associated proteins have been identi-

fied. However, little is known about the PPases that must

also participate in the regulation of GR-mediated signal-
ing networks.

Several recent studies indicate that PP5 participates in

the regulation of GR-induced gene expression. First,

dexamethasone-induced transcription is markedly en-

hanced when the expression of PP5 is suppressed by

treatment with ISIS 15534 [25]. Second, both co-immu-

noprecipitation studies and studies with mutant forms of

PP5 indicate that PP5 associates with the GR-hsp90

complex [22, 23]. However, binding assays revealed that

the suppression of PP5 expression has no apparent effect

on [3H]dexamethasone binding [25]. Therefore, PP5 ap-

pears to act as a suppressor of GR-induced gene expres-

sion via a mechanism that does not alter receptor

number or the binding of hormone to the GR. To further

characterize the relationship between PP5 and GR, in the

present study we employed a GR-GFP fusion protein to

track the movement of GRs in A549 cells following treat-

ment with hormones or ISIS 15534. These studies re-

vealed that in the absence of glucocorticoids, GR-GFP

localized mainly in the cytoplasm. As expected, treat-

ment with dexamethasone results in the efficient trans-

location of GR-GFPs into the nucleus. Nuclear

accumulation of GR-GFP was also observed when the ex-

pression of PP5 was suppressed by treatment with ISIS
15534 after ~ 24 hours. This translocation of GR-GFP oc-

curred without the addition of glucocorticoids and in the

presence of serum free media. Thus, in the absence of

physiological concentrations of PP5, GRs accumulate in

the nucleus of A549 cells. This finding is consistent with

data obtained from gel-shift analysis and transfection

studies conducted with GR-reporter plasmids, where a

decrease in PP5 levels facilitates the association of GR

with DNA and produces an increase in GR-transactiva-

tion [25]. Together, these studies suggest that the in-

crease in GR-induced transcriptional activity observed

when the expression of PP5 is suppressed by treatment

with ISIS 15534 results from the nuclear accumulation of

GR.

The mechanism by which PP5 suppresses the nuclear ac-

cumulation of GR is not clear. The current data is con-

sistent with PP5 acting to suppress the nuclear import of

GRs. Alternatively, the data is also consistent with PP5

acting to promote the nuclear export of the GRs. Because

the effects of ISIS 15534 treatment are not readily revers-

ible, the washout experiments needed to distinguish be-

tween these two possibilities cannot be conducted until a

specific and reversible inhibitor of PP5 is developed.

Recent studies indicate that okadaic acid inhibits nuclear

transport mediated by import receptors, importin β and
transportin, suggesting that an okadaic acid sensitive

phosphatase participates in a mechanism that negatively
regulates entire nuclear transport pathways [32]. Since

PP5 is sensitive to inhibition by okadaic acid, we tested

the possibility that PP5 acted at a more global level by as-

sessing the effect of ISIS 15534 on the cellular distribu-

tion of NFAT-GFP. In contrast to the findings obtained

with GR-GFP, the suppression of PP5 expression had no

apparent effect on calcium induced nuclear import or the

subsequent export of NFAT-GFP (Figure 3). Therefore,

PP5 does not appear to regulate entire nuclear transport

pathways.

Conclusions
These studies indicate that PP5 participates in the regu-

lation of GR nucleocytoplasmic shuttling, and that the

suppression of PP5 expression results in the nuclear ac-

cumulation of GR in the absence of hormone. Therefore,

the previously reported increase in GR-induced tran-

scriptional activity that occurs after ISIS 15534 induced

suppression of PP5 expression likely results from the nu-

clear accumulation of GR in a form that is capable of

binding DNA yet still requires agonist to elicit maximal

transcriptional activation. Still, it is not yet clear if PP5

acts to suppress the nuclear accumulation or to facilitate

the nuclear export of GRs. Thus, the precise molecular

mechanism by which PP5 suppresses the nuclear accu-
mulation of GR remains to be elucidated.

Materials and Methods
Reagents
Tissue culture medium, Lipofectin® and TRIzol® were

purchased from Life Technologies (Gaithersburg, MD).

DECEprime™ II DNA labeling, and MAXIscript™ in vit-

ro transcription kits were purchased from Ambion Inc.

(Austin, TX). [α-32P]dATP and [α-32P]UTP were pur-

chased from Dupont NEN (Boston, MA). Protein kinase

A (3':5'-cyclic AMP dependent), phosphorylase b (EC

2.4.1.1), crude histone (type 2AS) and p-nitrophenyl

phosphate (PNPP) were obtained from Sigma Chemical

Company.

Cell Culture
A549 lung carcinoma cells were obtained from the Amer-

ican Type Tissue Collection. A stable HeLa cell line ex-

pressing GFP-NFAT was generously provided by Larry

Gerace (The Scripps Research Institute, La Jolla, CA).

HeLa and A549 cells were grown in Dulbecco's modified

Eagle's medium containing 1 g of glucose/liter (DMEM)

and 10 % heat-inactivated FBS. All cell cultures were rou-

tinely passed when 90-95% confluent.
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Oligonucleotide Synthesis Assay for Oligonucleotide Inhi-
bition of PP5 Expression
2'-O-(2-methoxy)ethylphosphothioate oligonucleotides

were synthesized and purified as previously described
[33]. To suppress the expression of PP5, the indicated

cells were plated in 60 mm dished and cultured in

DMEM containing 10% FCS. When the cells were about

70% confluent, they were treated with oligonucleotides

as previously described [24, 25]. Briefly, cells were

washed with DMEM. A solution (1 ml) of DMEM con-

taining the oligonucleotides at the indicated concentra-

tion and 15 µg/ml DOTMA/DOPE (Lipofectin®; GIBCO-

BRL) was then added. After incubating the cells at 37°C
for 4 hours, the cells were washed and cultured in fresh

DMEM containing 10% FCS for 17 hours. The cells were

then harvested, and total RNA was extracted with TRIzol

Reagent (GIBCO-BRL) according to the methods of the

manufacturer. Total RNA (20 µg) was fractionated on 1%
agarose gels containing formaldehyde and transferred to

DURLON-UV (Stratagene) nylon membranes. Following

UV cross-linking, the filters were hybridized with a

[32P]probe for human PP5. The human PP5 cDNA probe

was generated from the full length coding region of PP5

and [32P]labeled with DECAprime® DNA Labeling Kit

(Ambion) according to the manufacturer's protocol. Hy-

bridization was performed in the presence of 50% forma-

mide at 42°C for 16 hours. Following hybridization, the
membrane was subjected to two low stringency washes

(2 × SSC) at room temperature and then two high strin-
gency washes (0.1 × SSC/0.5% SDS) at 55°C. Hybridiza-

tion was visualized by autoradiography, and the filters

were then stripped and reprobed with a [32P]labeled

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

cDNA probe to confirm equal loading. Quantification of

hybridization signals was achieved by analysis of the

scanned autoradiograms using the NIH Image program

(ImagePC).

Preparation of phosphoprotein substrates
Histone (type 2AS from Sigma) was phosphorylated with

cAMP-dependent protein kinase (protein kinase A) as

described previously [34]. Briefly, 20 mg of histone was

incubated with 1 mg of protein kinase A, in a 20 mM Tris-

Cl buffer (pH 7.4) containing 1 mCi [32P]ATP (150 µM
ATP), 100 µM cAMP, 5 mM DTT, and 5 mM MgCl2 in a

final volume of 4 ml. The reaction was allowed to contin-

ue for 3.5 to 4 hrs at 30°C and terminated by the addition

of 1.3 ml of 100% TCA. The precipitated phosphohistone

was collected by centrifugation at 3000 × g for 5 min. The

supernatant was discarded, and the pellet was redis-

solved in 4 ml of 1 M Tris-Cl (pH 8.2). TCA was added to

precipitate the phosphohistone, and this precipitation-

resuspension wash was repeated 5 times. The pellet pro-

duced upon the sixth TCA precipitation was washed 2
times with 4 ml of ethanol:ethyl ether (1:4; v:v) and then

2 additional times with acidified ethanol:ethyl ether (1:4;

0.1 N HCl). The washed histone was allowed to air dry

and was then resuspended in 5 mM Tris-Cl (pH 7.4). This

procedure yields phosphohistone with a specific activity
> 4.5 × 106 CPM/nMole incorporated phosphate.

Determination of phosphatase activity
Phosphatase activity against phosphohistone was deter-

mined by the quantification of [32P] liberation from

phosphohistone as described previously [34]. Assays, 80

µl total volume, containing 50 mM Tris-HCl, pH 7.4, 0.5

mM DTT, 1 mM EDTA, 100 µM oleic acid (assay buffer)

and [32P]phosphoprotein (1-2 µM PO4), were conducted

at 37°C as described previously [34] using PP5 purified
from bovine brain. The serine/threonine protein phos-

phatase type 5 (PP5) was purified from bovine brain ac-

cording to the following procedure: a bovine brain was

homogenized in ~ 3 volumes of buffer A (50 mM HEPES

pH 7.5 4°C, 1 mM EDTA, 10 mM PMSF and 0.1% 2-mer-

captoethanol) and subjected to centrifugation at 15,000

g for 40 min. followed by a 45%-60% ammonium sulfate

fractionation of the supernatant. The pellets from the

ammonium sulfate fractionation were resuspended in 60

ml of buffer B (20 mM HEPES pH 8.5 4°C, 1 mM EDTA,

and 0.1% 2-mercaptoethanol), desalted on a G-25 sepha-

dex column equilibrated with buffer B, then subjected to

sequential chromatography on a 5 ml HiTrap Heparin

column (Pharmacia), a 5 ml HiTrap Q column (Pharma-

cia) and a HiTrap SP column (Pharmacia) respectively.
The eluate from the SP column was then diluted 5-fold

with buffer C (20 mM tris pH 8.5, 1 mM EDTA and 0.1%

2-mercaptoethanol) and subjected to anion-exchange

chromatography on a BioScale Q column (2 ml from Bio-

Rad). All steps in the purification procedure were per-

formed at 4°C except for the last step which was
performed at 23°C. PP5 activity was followed during the
purification by assaying for trypsin-stimulated phospho-

hydrolase activity at 37°C vs. p-nitrophenyl phosphate in
200 µl reactions containing: 25 mM tris pH 8.3, 25 mM

MgCl2, 1 mM DTT and 10 mM p-nitrophenyl phosphate.

Dephosphorylation reactions were routinely conducted

for 10 minutes and initiated with the addition of sub-

strate. The dephosphorylation of substrate was kept to

less than 10 % of the total phosphorylated substrate, and

the reaction was linear with respect to enzyme concen-

tration and time. [32P]phosphate liberated by the en-

zymes was extracted as a phosphomolybdate complex

and measured according to the methods of Killilea et al.

[35]. Inhibition of phosphatase activity by okadaic acid

was determined by adding the inhibitors to the enzyme

mixture 10 minutes prior to initiating the reaction with

the addition of substrate.
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GR-GFP expression vectors
A mutant rat glucocorticoid receptor that retained hor-

mone binding, nuclear translocation activity, and specif-

ic DNA binding activity, but was incapable of
transactivation was fused to a S65T mutant of green flu-

orescent protein to create pGR(Ala)-GFP. GR(Ala)-GFP

expression is driven by the CMV immediate early pro-

moter and enhancer. All manipulations were performed

as described, and all constructs were confirmed by se-

quencing [36]. Protein-free plasmid DNA was purified

using Qiagen maxiprep columns (San Diego, CA) and

contained predominantly supercoiled plasmid with no

contaminating RNA or low molecular weight contami-

nants.

GFP-GR translocation
Cells were plated on etched coverslips and grown until

the cultures were ~ 70 % confluent. The cells were then

either treated with oligonucleotides as described above

or left untreated. Eighteen hours later, purified protein-

free pGR(Ala)-GFP suspended in phosphate-buffered sa-

line (0.25 mg/ml) was microinjected into the nuclei of

the cells [37]. Typically, 150-200 cells were injected for

each condition. After microinjection the cells were incu-

bated in medium containing 10% FBS for 6 hours at

37°C. The cells were then washed several times with se-

rum-free media and placed in serum deficient media for

14 hours to prevent GFP-GR translocation to the nucle-

us, prior to treatment with 500 nM dexamethasone (30
min.) or with vehicle alone. The cells were washed 3

times with PBS, fixed by incubation in PBS supplement-

ed with 4 % paraformaldehyde for 10 min and washed

again 3 times with PBS before mounting on slides with

DABCO/DAPI mounting solution. GR-GFP expression

and localization were monitored by fluorescence micros-

copy. Nuclei were localized by DAPI staining. Images

were captured with an Optronics cooled CCD camera and

imported into Adobe Photoshop. The experiments were

repeated 4 times (6 for control). One-way ANOVA was

performed to determine statistical significance of the re-

sults using Instat 2.03 (GraphPad Software, San Diego,

CA).

GFP-NFAT nuclear shuttling assay
Stably-transfected HeLa cells expressing GFP-NFAT

[38] were grown on glass coverslips to approximately

30% confluency and either left untreated or treated with,

ISIS 15534, or ISIS 15521 (a mismatched oligonucleotide

control for ISIS 15534) in the absence of serum as de-

scribed above. Four hours later, FBS was added to 10%

and the cells were grown for an additional 24 hours. The

cells were then treated with 1 µM ionomycin for 30 min-

utes, after which time they were either fixed immediately

or washed extensively with PBS and incubated for 6
hours in medium lacking the drug ("washout"). Control

cells were not incubated with ionomycin. GFP-NFAT lo-

calization was monitored by fluorescence microscopy,

and images were captured with an Optronics cooled CCD

camera and imported into Adobe Photoshop.
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