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Abstract
Background: Interactions of peripheral microtubule tips with the cell cortex are of crucial
importance for nuclear migration, spindle orientation, centrosome positioning and directional cell
movement. Microtubule plus end binding proteins are thought to mediate interactions of
microtubule tips with cortical actin and membrane proteins in a dynein-dependent manner.
XMAP215-family proteins are main regulators of microtubule plus end dynamics but so far they
have not been implicated in the interactions of microtubule tips with the cell cortex.

Results: Here we show that overexpression of an N-terminal fragment of DdCP224, the
Dictyostelium XMAP215 homologue, caused a collapse of the radial microtubule cytoskeleton,
whereby microtubules lost contact with the cell cortex and were dragged behind like a comet tail
of an unusually motile centrosome. This phenotype was indistinguishable from mutants
overexpressing fragments of the dynein heavy chain or intermediate chain. Moreover, it was
accompanied by dispersal of the Golgi apparatus and reduced cortical localization of the dynein
heavy chain indicating a disrupted dynein/dynactin interaction. The interference of DdCP224 with
cortical dynein function is strongly supported by the observations that DdCP224 and its N-terminal
fragment colocalize with dynein and coimmunoprecipitate with dynein and dynactin.

Conclusions: Our data show that XMAP215-like proteins are required for the interaction of
microtubule plus ends with the cell cortex in interphase cells and strongly suggest that this function
is mediated by dynein.

Background
Interactions of peripheral microtubule plus ends with the
cell cortex are of crucial importance for nuclear migration,
spindle orientation, centrosome positioning and direc-
tional cell movement. Cortical dynein and dynactin com-
ponents play an important role in mediating such
interactions, in cooperation with a microtubule plus end
complex consisting of a growing number of microtubule-
associated proteins [1,2]. Only little is known about a role
of the XMAP215-family (named after their Xenopus repre-

sentative) of microtubule-associated proteins in this proc-
ess. The ubiquitous occurrence of these proteins in all
kinds of organisms including plants suggests general and
indispensable functions [3]. In addition to their role as
promoters of microtubule elongation, further functions in
microtubule growth and nucleation [4,5] and centrosome
duplication [5,6] have been described. In most species,
XMAP215-family proteins are elongated, monomeric
molecules with a size of approximately 230 kDa [7]. By
contrast, the yeast homologues (Stu2p in S. cerevisiae, dis1
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and Alp14 in S. pombe) occur as dimers and are less than
half as long as their counterparts in Dictyostelium and
higher cells [8-10]. In budding yeast the major function of
Stu2p is observed during mitosis where it regulates micro-
tubule dynamics and is required for chromosome segrega-
tion [11-13]. Furthermore, Stu2p interacts with the
cortical protein Kar9p [13] and genetic evidence, i.e. cross-
ings of temperature sensitive stu2p mutants with kar9∆ or
dynein (dhc1∆) mutants, suggests that Stu2p plays a role
in the Kar9p dependent pathway for spindle orientation
[12]. However, until this work there was no evidence for a
physical interaction of the long, monomeric members of
the XMAP215-family with dynein or a Kar9p-like protein
such as APC [14], and there were no data supporting a role
in microtubule plus-end/cell cortex interactions in inter-
phase cells.

Like XMAP215, its Dictyostelium homologue, DdCP224, is
both a microtubule-associated protein and a genuine cen-
trosomal component [6,15]. Furthermore, it was the first
member of the XMAP215-family that was clearly localized
at microtubule plus ends, both at kinetochores and micro-
tubule tips near the cell cortex [6,16]. Overexpression of
the N-terminal half of DdCP224 as a GFP-fusion protein
caused a cytokinesis defect [6]. Since cleavage furrow posi-
tioning is determined by the pattern of interaction of
astral microtubules with the cell cortex [17], both the
cytokinesis defect of ∆C-GFP overexpressing mutants and
the detection of DdCP224 at microtubule tips were in
agreement with a novel role of DdCP224 in the crosstalk
of microtubule tips with the cell cortex. Here we provide

evidence for such a function of XMAP215-like proteins
and suggest that it is mediated through the interaction
with dynein.

Results
DdCP224-∆C-GFP mutants overexpress a C-terminal
fusion of the N-terminal 813 amino acids of DdCP224
with GFP. By contrast to the full-length protein, the
DdCP224-∆C-GFP fragment itself is unable to bind to
microtubules or centrosomes neither in vivo nor in vitro
[6]. In our previous study, we have not analyzed the effect
of DdCP224-∆C-GFP overexpression on microtubules. In
this work we show that overexpression of DdCP224-∆C-
GFP has a profound effect on the arrangement of inter-
phase microtubules. In wildtype or GFP-α-tubulin cells,
all interphase microtubules emanate from the centrosome
and are arranged in a radial array with their tips close to
the cell cortex (Fig 1A). By contrast, in mutants overex-
pressing DdCP224-∆C-GFP, these arrays were collapsed.
Microtubules now frequently appeared bundled, were
longer than usual and whorled around the nucleus (Fig
1B). Moreover, microtubule tips had lost contact with cor-
tical regions. As calculated from Western blots, the
DdCP224-∆C-GFP fragment was overexpressed approxi-
mately 5-fold (Fig. 1C).

In order to investigate the behavior of these unusual
microtubule arrays in living cells, we have transformed
the untagged DdCP-∆C fragment into Dictyostelium cells
expressing GFP-α-tubulin. Four-dimensional confocal
microscopy revealed an extraordinary motility of the

Overexpression of DdCP224-∆C-GFP causes a collapse of interphase microtubule arraysFigure 1
Overexpression of DdCP224-∆C-GFP causes a collapse of interphase microtubule arrays. (A, B, B') Confocal 
microscopy of GFP-α-tubulin cells (A; control) and DdCP224-∆C-GFP cells showing brightest point projections of GFP fluo-
rescence (A, B') or immunofluorescence staining (B) using the YL1/2 anti-tubulin antibody (Chemicon, Hofheim, Germany). 
Cells were fixed with methanol. DNA was stained with TOPRO3 (Molecular Probes, Hilversum, Netherlands) (blue). (C) 
Immunoblot of a cytosolic extract of DdCP224-∆C-GFP cells stained with anti-DdCP-HindIII. This rabbit polyclonal antibody 
was raised against the recombinant His-tagged N-terminus of DdCP224 using the 5'-HindIII fragment of the DdCP224 coding 
sequence. As calculated by the ImageJ program, DdCP224-∆C-GFP is overexpressed approximately 5-fold. Bar 2 µm.
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Microtubule and centrosome dynamics upon overexpression of DdCP224-∆CFigure 2
Microtubule and centrosome dynamics upon overexpression of DdCP224-∆C. GFP-α-tubulin control cells (A, see 
additional data file movie1.mov) and GFP-α-tubulin cells overexpressing DdCP224-∆C (B, see additional data file movie2.mov) 
were analyzed by confocal 4D-microscopy as described [5]. Each image represents a brightest point z-projection of 5 confocal 
slices with a distance of 1 µm each. The time is indicated in seconds. The movements of the centrosome shown in (C) for con-
trol cells and in (D) for DdCP224-∆C/GFP-α-tubulin cells were calculated from 60 single images each using ImageJ.
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microtubule arrays. Microtubules often were arranged like
a comet-tail attached to the centrosome. The centrosome
itself circulated around rapidly and continuously, often
close to the cell cortex (Fig. 2B,2D; see additional data file
movie2.mov). In control cells, the centrosome always
stayed close to the cell center and moved only short dis-
tances (Fig. 2A,2C; see additional data file movie1.mov).
The phenotype upon overexpression of DdCP-∆C was
indistinguishable from Dictyostelium cells overexpressing
the motor domain of the dynein heavy chain [18,19].
Interestingly, disruption of the dynein/dynactin interac-
tion in Dictyostelium cells by overexpression of fragments
of the dynein intermediate chain also resulted in this phe-
notype [20].

The striking similarity of the DdCP-∆C mutants to these
dynein mutants strongly suggested that our phenotype
can also be attributed to a defect of dynein function, e.g.
due to a disruption of dynein/dynactin interaction. Since
this interaction is also crucial for positioning of the Golgi
apparatus, we analysed this issue in our DdCP224-∆C-
GFP mutants. Indeed, cells with disrupted microtubule
arrays often showed complete dispersal of the Golgi appa-
ratus (Fig. 3), suggesting that overexpression of the N-ter-
minal DdCP224 fragment causes dissociation of dynein
and dynactin. This interpretation is also supported by the
observation that such cells usually showed reduced corti-
cal localization of the dynein heavy chain compared to
cells which have maintained a radial microtubule array
(Fig. 4).

The interference of DdCP224 with dynein function raised
the question whether DdCP224 could interact with
dynein. Although a major fraction of cytosolic DdCP224

occurs as a monomer [6], we could coimmunoprecipitate
the dynein heavy and intermediate chains with DdCP224
from a cytosolic extract (Fig. 5A,5B). Vice versa, DdCP224
could be coimmunoprecipitated with both the dynein
heavy and intermediate chains. Hence, a considerable
fraction of DdCP224 occurs in cytosolic complexes with
dynein and possibly other proteins. We cannot judge
whether DdCP224 binds directly to dynein, since these
proteins cannot be functionally expressed in E. coli for
pull-down assays. The cytosolic complex consisting of
DdCP224 and dynein may contain the Dictyostelium EB1
(DdEB1) [16] as well, since DdEB1 coprecipitates both
with DdCP224 and dynein (Fig. 5C,5D).

DdCP224 does not only coprecipitate with dynein, it also
colocalizes with the dynein heavy chain not only at the
centrosome but also at the cell cortex at the leading edges
and in pinocytic cups (Fig. 6A). The DdCP224-∆C-GFP
fragment also strongly colocalized with endogenous
DdCP224 at these cortical regions (Fig. 6B). Visualization
of the cortical localization of DdCP224 was overlooked in
our earlier studies where the cells were fixed with metha-
nol since it requires fixation with formaldehyde/acetone
or glutaraldehyde.

To elucidate how overexpression of the DdCP224-∆C-
GFP fragment could cause the mutant phenotype, we
investigated its intermolecular interactions. Since the
DdCP224-∆C-GFP fragment did not coimmunoprecipi-
tate with either dynein or DdEB1 (data not shown), we
wondered whether it might interact with dynactin. Due to
the lack of specific antibodies against dynactin
components, we cloned the Dictyostelium homologue of
dynactin-p62 (Ddp62) as a marker for dynactin and

Cells with disrupted microtubule arrays show Golgi dispersalFigure 3
Cells with disrupted microtubule arrays show Golgi dispersal. Confocal microscopy of DdCP224-∆C-GFP cells show-
ing brightest point projections of immunofluorescence stainings using the Golgi-specific anti-comitin antibody [34] (A) and the 
YL1/2 anti-tubulin antibody (B). GFP fluorescence is shown in (C). The merged image (D) shows the Golgi in red, microtubules 
in green and GFP fluorescence in blue. Cells were fixed with formaldehyde/acetone. The two cells exhibiting Golgi dispersal 
and disrupted microtubule arrays are marked by an arrow. Bar 2 µm.
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raised antibodies against the recombinant protein. These
antibodies showed only weak staining of denatured
Ddp62 in Western blots. However, they were capable of
specific immunoprecipitation of a GFP-Ddp62 fusion
protein from cytosolic extracts of Dictyostelium GFP-
Ddp62 mutants (Fig. 5E). Hence, we concluded that these
antibodies showed a higher avidity to native than to dena-
tured Ddp62. Using these antibodies we could demon-
strate by co-immunoprecipitation that Ddp62 binds to
endogenous DdCP224 and to the cytosolic DdCP224-∆C-
GFP fragment (Fig. 5F).

Discussion
Centrosome movements and positioning are thought to
be a result of balanced pulling forces that are transmitted
through microtubules interacting with a cell cortex-associ-
ated motor protein. Dynein, which was recently localized
to the cell cortex in Dictyostelium cells [21], provides such
microtubule minus end-directed forces. These pulling
forces are required for maintenance of the radial array of

interphase microtubules and centrosome centering in
wildtype cells (Fig. 7A). If most of the cortical dynein/dyn-
actin complexes were dissociated or non-functional, corti-
cal tethering of most microtubules would be lost. Yet,
single microtubules remaining in contact with intact cor-
tical dynein/dynactin complexes could rapidly be pulled
to the cortex together with the centrosome and all the
untethered microtubules that are dragged behind like a
comet tail (Fig. 7B). An alternative explanation for this
type of centrosome movement would be that the loss of
minus-end directed forces could render microtubules
more susceptible for pushing forces when they occasion-
ally interact with cortically localized plus-end-directed
motors [18]. However, the existence of such cortical plus-
end directed motors remains to be shown, while the
necessity of dynein and dynactin for centrosome
positioning is undisputed, since it has also been proven in
wound-healing experiments using fibroblast monolayers
[22]. During the healing process, cells at the wound edge
reorient their centrosomes toward the direction of migra-

Cells with disrupted microtubule arrays show reduced cortical localization of dyneinFigure 4
Cells with disrupted microtubule arrays show reduced cortical localization of dynein. Confocal microscopy of 
DdCP224-∆C-GFP cells showing brightest point projections of immunofluorescence stainings using anti-dynein-Y7 [19] (A, B) 
and and the YL1/2 anti-tubulin antibody (A', B'). In both examples, the left cell exhibits a disrupted microtubule array and is 
characterized by reduced cortical distribution of the dynein heavy chain compared to the right cell which shows normal micro-
tubules. Cells were fixed with formaldehyde/acetone. Bar 2 µm.
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tion [23]. Centrosome reorientation between the leading
edge of the cell and the nucleus is blocked by inhibition
of cytoplasmic dynein and dynactin and regulated
through the small GTPase Cdc42 and PKCζ [24,25]. This
suggests that cortical dynein/dynactin is required for cap-
turing of microtubules extending into cortical regions of a
freshly formed pseudopod.

What could be the role of the cortical and the microtubule
tip populations of DdCP224 [16] in microtubule/cortex
interactions? At microtubule tips it could play a role in the
capturing of microtubule plus ends at cortical sites, how-
ever, since DdCP224, like XMAP215, promotes microtu-
bule growth [5], it is likely that the major function of tip-
localized DdCP224 is the regulation of microtubule plus-
end dynamics and the prevention of catastrophes induced
by antagonistic Kin I-family kinesins [26]. By contrast, the
cortical population of DdCP224 that colocalizes with
dynein appears to be required for proper dynein function
at the cortex. This is supported by two observations. First,

DdCP224 binds to dynein/dynactin and second, overex-
pression of the DdCP224-∆C-fragment disrupts cortical
dynein function. Excess amounts of this DdCP224 frag-
ment appear to interfere with the interaction between
dynein and dynactin, since the characteristic collapse of
the radial microtubule array was accompanied by reduced
cortical dynein localization and by Golgi dispersal which
is indicative for disrupted dynein/dynactin interaction
[27]. The simplest explanation is that the DdCP224-∆C-
fragment sequesters Ddp62 and possibly other dynactin
components in the cytosol which are then missing at the
cell cortex where they are required for proper dynein func-
tion. The cytokinesis defect observed upon overexpression
of the DdCP224-∆C-GFP fragment [6] also agrees with an
active role of DdCP224 in the interaction of microtubule
tips with cortical sites, since these interactions are
involved in cleavage furrow positioning [17]. 

The pathway of dynein/dynactin/DdCP224-dependent
cortical interactions of interphase microtubules reported
herein has to be distinguished from that of spindle
orientation in mitotic yeast cells. In the latter case, Stu2p
is involved in Kar9p-dependent capture of cytoplasmic
MT plus-ends at the bud tip [12,13], a process that essen-
tially requires yeast EB1 (Bim1p) at the MT tips [28,29].
Although Dictyostelium EB1 interacts with both DdCP224
and dynein, the process of MT/cortex interaction
described here is clearly independent of DdEB1. DdEB1
null mutants showed only a defect in mitotic spindle for-
mation, but neither a defect in microtubule organization
or centrosome positioning, nor a cytokinesis defect [16].

Conclusions
Taken together, our results demonstrate for the first time
that XMAP215-family proteins such as DdCP224 are
involved in microtubule plus-end/cell cortex interactions
and centrosome positioning in interphase cells and that
this is mediated through an interaction of DdCP224 with
dynein and dynactin.

Methods
Generation of the GFP-α-tubulin/DdCP224-∆C mutant
The Dictyostelium vector for expression of the untagged N-
terminal 813 amino acids of DdCP224 was constructed by
deletion of the GFP sequence in p∆C-GFP [6]. It was then
transformed into a Dictyostelium cell line expressing GFP-
α-tubulin [16]. Cells were cultured as described earlier [6].

Cloning of Ddp62, protein expression and generation of 
polyclonal antibodies
The gene encoding the Dictyostelium homologue of the
p62 subunit of dynactin (Ddp62; DictybaseID
DDB0206421) was identified in the Dictyostelium genome
project [30]. Its complete coding sequence (1647 bp) was
amplified by PCR using an oligo dT-primed cDNA library

Coprecipitation of DdCP224 with dynein and DdEB1Figure 5
Coprecipitation of DdCP224 with dynein and DdEB1. 
Experiments were performed using cytosolic extracts from 
wildtype cells (strain AX2) (A-D), GFP-Ddp62 cells (E) and 
DdCP224-∆C-GFP cells (F). The respective co-immunopre-
cipitation (Co-IP) experiment is given in bold letters on top 
of each subfigure. The respective antibodies used for immu-
noprecipitation and staining of the immunoblots are indi-
cated. Abbreviations and antibodies: DHC, anti-dynein heavy 
chain Y7 [19]; DIC, anti-dynein intermediate chain [20]; 
DdCP, anti-DdCP224 mAb 2/165 [35] for immunoblot stain-
ing and anti-DdCP-HindIII for immunoprecipitation; DdEB1, 
anti-DdEB1 [16]; p62, anti-Ddp62; control, anti-rabbit or 
anti-rat (in case of DIC) preimmune serum.
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Colocalization of DdCP224, DdCP224-∆C-GFP and dynein at the cell cortexFigure 6
Colocalization of DdCP224, DdCP224-∆C-GFP and dynein at the cell cortex. Confocal microscopy of DdCP224-
∆C-GFP cells showing brightest point projections of immunofluorescence stainings using anti-dynein-Y7 [19] (A) and anti-
DdCP224 (2/165) (A', B'). GFP fluorescence is shown in (B). The merged images (A", B") shows endogenous DdCP224 in red 
and dynein (A) or DdCP-∆C-GFP (B'), respectively, in green. Cells were fixed with formaldehyde/acetone. Bar 2 µm.

Model for the collapse of radial interphase microtubule arrays by disruption of cortical dynein/dynactin functionFigure 7
Model for the collapse of radial interphase microtubule arrays by disruption of cortical dynein/dynactin func-
tion. (A) Cortical dynein/dynactin in cooperation with DdCP224 provides the pulling force for maintenance of radial microtu-
bule arrays. (B) Collapse of the radial microtubule array and altered centrosome positioning due to disruption of most cortical 
dynein/dynactin complexes and asymmetric pulling forces provided by only a few remaining functional cortical dynein/dynactin 
complexes (shown in red). This pathway may also involve further proteins which are not depicted in this model.
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[6] as a template. The Ddp62 cDNA was re-amplified
using either BamHI and PstI linker primers for cloning
into the pMALc2 (NEB, Frankfurt, Germany) or SalI and
BamHI linker primers for cloning into pIS77, a vector
obtained after replacement of the discoidin promoter of
pDiscGFPSSEB2 [31] by the actin6 promoter. The former
construct was used for protein expression in E. coli, the lat-
ter for expression of a GFP-Ddp62 fusion protein in Dicty-
ostelium. The MBP-Ddp62 fusion protein expressed in E.
coli was purified by affinity chromatography on amylose
resin and used for custom immunization of two rabbits
(Pineda Antikörperservice, Berlin, Germany). Both antis-
era showed the same characteristics.

Immunoprecipitation experiments
Immunoprecipitation was performed essentially as
described previously [32]. In brief, 2 × 108 cells (80 ml)
were lysed in 5 ml of lysis buffer (50 mM Hepes, 100 mM
NaCl, 4 mM EGTA, 2 mM MgCl2, 10% sucrose, 0.3%
NP40, 1 × protease inhibitor cocktail [33]). A cytosolic
extract was obtained after centrifugation at 14.000 × g for
10 min at 4°C. After incubation of 0.6 ml of cytosolic
extract with 10 µg of purified antibodies or 1.5 µl of
antiserum for 1 h at 4°C, 20 µl of Protein G beads (50%
slurry preincubated with 0.1% BSA in Tris-buffered saline)
were added for a further incubation for 1 h at 4°C in a
rotator. Beads were washed 4 times with lysis buffer,
resuspended with 30 µl of SDS sample buffer (10% SDS,
125 mM Tris/HCl, pH = 6.8, 50 mM DTT, 5% glycerol)
and subjected to electrophoresis and Western blotting as
described previously [33].

Microscopy and image processing
Immunofluorescence microscopy and live cell observa-
tion was performed as described previously [5,33]. All
microscopic images were acquired on a Zeiss Axiovert
200M/510META confocal microscope equipped with a
63x/1.4N.A. lens.
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Additional File 2
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