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Abstract

Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter
modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates
they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with
nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory
mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal
connexins and the molecules involved suggest this phenomenon is widespread and represents a property of
electrical transmission in general.

Background
The functions of electrical synapses have recently been
of increasing interest within the neuroscience commu-
nity. Electrical transmission is supported by gap junc-
tions, structures that are formed by plaques of paired
and docked connexin-formed hemichannel pores in ap-
posed neuronal cell membranes. These channels form a
physical connection between cells, allowing ionic current
to flow directly between coupled neurons. Electrical
synapses in most mature mammalian neuronal systems
are composed of connexin36 (Cx36) [1–3] and connect,
amongst many cell types, GABAergic neurons of similar
biochemical subtype [4, 5], which are widespread. Both
gap junctions between neurons and electrical transmis-
sion have been identified in a still-increasing number of
systems and brain areas, reinforcing the notion that elec-
trical synapses contribute vitally to information process-
ing across the brain.

Like chemical synapses, electrical synapses can vary
their gain [6, 7]. Modifications of synaptic strength are
thought to underlie important functional processes, in-
cluding learning and memory [8, 9]. Modification of the
strength of electrical synapses was initially reported as a
result of the action of neurotransmitter modulators [6,
10], such as dopamine [11], which also modulates chem-
ical synapses [12] and neuronal excitability [13].
More recent evidence indicates that the strength of

electrical synapses is influenced by ongoing activity in
neural networks, via interactions with chemical synapses
[14]. ‘Activity-dependent plasticity’ of electrical transmis-
sion was initially reported in fish, at auditory nerve
mixed synapses on the Mauthner cells [15]. Here we re-
view mammalian structures in which activity-dependent
plasticity of electrical transmission has been demon-
strated: the retina, the thalamic reticular nucleus (TRN)
and the inferior olive, as well early evidence in the anterior
hypothalamus. Both the widespread distribution of the in-
volved molecules and common regulatory mechanisms
suggest that plasticity is an essential and ubiquitous prop-
erty of electrical transmission in the mammalian brain.
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Mixed synapses on the Mauthner cells
Mauthner cells mediate escape reflex in fish (and amphib-
ian tadpoles) and receive auditory input from the nerve
afferents that terminate as ‘club endings’, a synapse that
combines chemical and electrical transmission [16–18].
Electrical synapses between VIIIth-nerve auditory affer-
ents and Mauthner cells are composed of hemichannels
formed by two teleost homologs of the mammalian Cx36:
Cx35 at presynaptic hemiplaque sides, and Cx34.7 at post-
synaptic hemiplaques, form heterotypic gap junctions
[19]. This molecular asymmetry is mirrored by functional
asymmetry, averaging a 4-fold differential of electrical
transmission in favor of the presynaptic club ending, also
enhancing the excitability of neighboring club endings
onto the same Mauthner cell.
Several types of stimuli have been shown to induce

plasticity of the electrical component within these synap-
ses. Discontinuous bursts of tetanizing stimulation of
the VIIIth nerve leads to long-term potentiation of the
electrical component of the EPSP [15, 20, 21] with a par-
allel increase in the chemical excitatory component of
the EPSP. This form of plasticity depends on calcium
(Ca2+) increase, which activates a Ca2+/calmodulin-
dependent kinase (CaMKII) [22], and involves nearby
NMDARs [23]. Brief continuous high-frequency stimula-
tion of the VIIIth nerve also leads to potentiation, through
mGluR1-dependent endocannabinoid production and re-
lease of dopamine, which in turn acts postsynaptically via
activation of D1/5 receptors and cAMP-dependent pro-
tein kinase A (PKA) [24]. Thus, both forms of activity-
dependent potentiation of the Mauthner synapse depend
on the activation of glutamate receptors localized in the
same contact. In addition, activation of opioid receptors
was shown to lead to long-term enhancement of electrical
(and glutamatergic) transmission at Mauthner cells.
Although no specific forms of neuronal activity patterns
have been so far identified for this mechanism it also
requires as in the case of endocannabinoids activation of
dopamine D1/5 receptors and postsynaptic PKA [25],
suggesting the existence of interactions between both
potentiating mechanisms.
Together, these results indicate a high degree of sensitiv-

ity of Mauthner electrical synapses to neuronal activity
and signaling. While the sensory stimulus that triggers an
escape response is likely multimodal, and combines ves-
tibular and lateral line information [26, 27], the plasticity
of the electrical component of the synapse is likely to ren-
der the Mauthner cell more responsive to afferent stimuli
both from the VIIIth nerve and, potentially, from other
afferents. Enhanced electrical coupling would feed the
depolarization produced by other active afferents back to
neighboring inactive synapses, increase their excitability
and promote cooperativity between afferents to the
Mauthner cell [28, 29]. The phenomenon of lateral

excitation is also supported by the functional asymmetry
of this synapse, which favors electrical transmission in the
antidromic direction (from the Mauthner cell to the pre-
synaptic afferents) [19]. While reliable depressing stimuli
has yet to be identified (but see [30]), we speculate that
plasticity in this synapse is an important component in
online adjustments in the overall sensitivity of the
Mauthner cell, and the associated escape reflex, to afferent
sensory information.

Retina
The retina has provided the earliest and more numerous
examples of regulation of electrical synapses by neurotrans-
mitter modulators. Electrical synapses appear widely across
the retina, which contains layered structures of cells that
are conserved between fish and mammalian retinas. Varia-
tions in electrical synapse strength contribute to tuning the
sensitivity of retinal circuits for transitioning between
nighttime and daytime visual tasks. In the outer layer,
coupling connects both functionally similar (e.g. cone-
cone) and dissimilar (rod-cone) types of photoreceptors.
Dispersion of voltage signals between cells helps to
suppress voltage noise in individual cells. Moreover, the
rod pathway informs the cone pathway of light levels at the
upper end of its dynamic range. In bright light, rod-cone
coupling is reduced and rod input is effectively eliminated
from the cone pathway by a dopamine-mediated circadian
mechanism [31, 32]. In goldfish, activation of dopamine
receptors in the daylight, and adenosine by night, regulates
PKA-mediated phosphorylation of Cx36 in mouse cone
cells [33]. Modifications in coupling have also been
demonstrated in the inner nuclear layer. Here, dopamine
regulates coupling between horizontal cells, which express
gap junctions based on the connexins Cx57 or Cx50 in
mammals and several homologous connexins in fish, by
modulating open probability [11, 34]. Retinal AII amacrine
cells are extensively coupled with other AII amacrine cells,
and with cone bipolar cells.
In addition to the action of neuromodulators, recent data

indicates that mammalian retinal electrical synapses are
also sensitive to activity of glutamatergic synapses. That is,
AII amacrine cell synapses undergo changes in electrical
coupling driven by light adaptation [35], in which glutam-
ate spillover from bipolar cell spiking activity produces
enhancement of coupling via activation of NMDA recep-
tors, CaMKII, and phosphorylation of Cx36 [36]. Retinal
electrical synapses are but one of many mechanisms that
contribute to the visual adaptation processes necessary to
meaningfully handle overall changes in light intensity
over a billion-fold range. The retina contains many
embedded microcircuits that process different specific
features of the visual world in parallel. Activity-driven
glutamate-dependent electrical synapse plasticity may
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tune and/or isolate these feature-selective pathways
within that circuit.

Inferior olive
The olivo-cerebellar network provides the timing signals
necessary for precise coordination of motor actions, and
for non-motor and cognitive tasks. Within the network,
neurons of the inferior olive (IO) provide the powerful
excitatory climbing fiber input to Purkinje neurons. The
clock of the timing signals in the cerebellum is thought
to be provided by subthreshold 5–10 Hz oscillations
produced by intrinsic mechanisms within neurons of the
IO [37–39]. Electrical coupling between IO cells is
thought to synchronize their sparse spikes [37, 40, 41].
IO neurons are also influenced by GABAergic input

from the cerebellar nuclei in IO glomeruli, where dendrites
of neighboring IO neurons are connected via gap junctions
[42] that are thus electrotonically distant from the somatic
integrator. [For this reason, coupling coefficients measured
between somas in IO neurons are typically weak [40]].
Rodolfo Llinás and colleagues hypothesized that electrical
coupling between IO neurons is transiently modulated by
synaptic inputs that act as a shunt between the GJs
and soma, which results in an apparent depression of
electrical synapse strength [43]. This mechanism has
been recently directly confirmed by optogenetic acti-
vation of GABAergic input from the cerebellar nuclei
that caused a transient decrease in electrical coupling
strength between olivary cells [44].
Another recent set of work has investigated long-term

electrical synaptic plasticity coincident with glutamater-
gic activity in this structure. Long-term potentiation of
electrical synapses between pairs of IO cells results from
high-frequency stimulation or NMDA application, an
effect dependent on intracellular Ca2+ and CaMKII
activity [45]. Conversely, lower-frequency stimulation
(1 Hz) of adjacent white matter leads to depression of
coupling, an effect also mediated via activation of NMDA
receptors [46]. The involvement of NMDA receptors in
triggering both activity-dependent potentiation and
depression of synaptic transmission was previously
reported for chemical synapses [47]. NMDAR-dependent
bi-directional plasticity of electrical transmission in the IO
is likely related to differences in the induction protocols
or small variations in the experimental conditions.
Coupling among IO neurons is highly variable, hetero-

geneity that was proposed to result from short-term
activity-dependent plasticity at individual glomeruli [48].
Coupling was also reported to be asymmetrical [40],
suggesting that substructures or microcircuits within IO
circuits, defined by coupling, are formed and adjusted by
ongoing changes in the strength of electrical synapses.
Indeed, plasticity of electrical synapses has been proposed
as a mechanism whereby motor learning and increased

precision of timing is accomplished by gradual reduction
of coupling strength in small subsets of IO neurons [49].

Thalamic reticular nucleus
The thalamic reticular nucleus (TRN) forms a dorsolat-
eral shell around the thalamus proper. This structure
primarily receives glutamatergic input from the corti-
cothalamic and thalamocortical axons, and projects in-
hibitory GABAergic synapses to neurons of the thalamus
[50, 51]. Together, TRN neurons act to gate information
between the cortex and the thalamus [52, 53]. This
“spotlight” has been proposed to focus cortical attention
on important stimuli though coordinated inhibition of
distractions. Within the TRN, neurons are densely and
strongly coupled [54, 55] by Cx36-based GJs [1].
Two forms of electrical synapse depression have

emerged in the TRN. First, tetanic stimulation of cortical
afferents to the TRN result in an glutamate-mediated
long-term depression of electrical synapses [56]; activa-
tion of Group I mGluRs induces long-term depression,
while activation of Group II receptors induces long-term
potentiation, of electrical synapses in a competing
pathway through cAMP and PKA [57].
Synchronous low-frequency bursting activity induced in

coupled TRN neurons also leads to depression of the elec-
trical synapses between them [58] via a yet-undetermined
mechanism. Bursting activity in TRN neurons is a promin-
ent component of both sleep spindle rhythms [59, 60] and
the sharp wave discharges that characterize absence
seizures [61, 62]. Depression resulting from induced
paired bursting in TRN neurons offers the most specific
evidence to date that ongoing glutamate-driven physiolo-
gically patterned activity can modify electrical synapse
strength.
In the TRN, depression of electrical synapses generally

acts to desynchronize the spiking of active neurons. The
TRN is a regulator of thalamocortical spindle rhythms [63];
plasticity of electrical synapses may be a regulatory mech-
anism for maintaining physiological levels of synchrony, by
uncoupling neurons that are overly synchronized. Interest-
ingly, transmission at electrical synapses in the TRN is
asymmetrical [64] and, further, activity-induced depression
of those asymmetrical synapses acts to increase that
inequality of transmission [58], suggesting that plasticity
could play a physiological role by selectively enhancing or
diminishing asymmetry of transmission, and thereby the
direction of information flow across the TRN. A thought-
provoking possibility is that depression could occur
between active sensory subsectors within the TRN, and
results in dynamic isolation of one sensory modality within
the nucleus from others. Alternatively, activity-dependent
plasticity of electrical synapses may desynchronize neurons
within a sensory subsector that are active in response to
specific stimuli.
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Anterior hypothalamus
The established role of glutamatergic transmission in
promoting activity-dependent plasticity of electrical trans-
mission is consistent with earlier reports in hypothalamus.
Glenn Hatton and colleagues [65, 66] reported that

electrical stimulation of the lateral olfactory tract led
to an increase in dye coupling between neurons of
the supraoptic nucleus. Remarkably, this increase was
observed in lactating but not virgin or male rats [66].
Although the involvement of glutamate receptors was

Fig. 1 Interactions between glutamatergic and electrical synapses that leads to activity-dependent potentiation of electrical transmission. a At
goldfish mixed synapses the activity of co-existing glutamatergic synapses leads to activation of NMDARs which initiates changes in electrical (and
chemical) transmission [the second form of activity-dependent potantiation involvimg mGluRs, endocannabinoids and dopamine is not represented].
b, At mammals, activation of mGluRs or NMDARs, including extrasynaptic NMDARs (eNMDAR), leads to changes in electrical transmission

Fig. 2 Activity-dependent plasticity of electrical transmission across the mammalian brain. a Both Cx36 and GluA (a marker of glutamatergic
transmission) are expressed (light filled background) broadly across the rat brain. Darker areas represent areas with higher Cx36 expression.
b Activity-dependent modification of electrical transmission has been currently reported in only four areas (TRN, thalamic reticular nucleus;
HY, hypothalamus; IO, inferior olive)
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not pharmacologically tested in those experiments, the
lateral olfactory tract is known to carry monosynaptic pro-
jections from mitral cells in the olfactory bulb which are
glutamatergic in nature [67, 68] suggesting the involve-
ment of their receptors in the induction of plastic changes.
In retrospect this report could be then considered the first
evidence of activity-dependent increase in coupling
resulting from synaptic activation in the mammalian CNS.
Subsequent results in the suprachiasmatic nucleus of the
hypothalamus have shown a decrease in dye coupling
resulting from TTX blockade of activity [69], while
application of vasoactive intestinal peptide increases
spiking activity [70] and coupling coefficients [71].
From the functional point of view, these data suggest

that coupling increases following strong sensory inputs
associated with behavior that result in increased hormone
or peptide release in response to other incoming stimuli.

Conclusions
While electrical synapses are known to be the target of
the neuromodulatory transmitters, increasing evidence
indicates that they are profoundly influenced by the
activity of the networks in which they are embedded.
This activity-dependent plasticity of electrical transmis-
sion has been shown to rely, so far, on interactions with
nearby chemical synapses via activation of glutamate
receptors. Originally identified in fish (Fig. 1a), this form
of interaction between chemical and electrical synapses
has been shown to occur in at least four different mam-
malian structures (Fig. 1b). The widespread distribution
of Cx36 and glutamate transmission in the mammalian
CNS (Fig. 2a) suggests this interaction might be com-
mon, while these examples (Fig. 2b) represent just the
tip of the iceberg. Furthermore, similar to goldfish mixed
synapses, glutamate receptor-containing postsynaptic
densities have been shown to be located nearby Cx36-
containg gap junctions in various structures of the
mammalian brain [14], extrasynaptic NMDA receptors
were identified in close proximity to Cx36-containing
gap junctions [45, 72], and new anatomical evidence
points towards the possibility of mixed synapses in the
mammalian auditory brainstem [73]. Although is not the
topic of this article, interactions between glutamate
receptors and electrical synapses are not restricted to
the adult brain. Activation of Group II mGluRs at early
developmental stages leads to an increase in Cx36 expres-
sion, whereas activation of NMDARs leads to its decrease
at late developmental stages (for review see [74]).
The distinction between neuromodulator-dependent

and activity-dependent plasticity is somewhat arbitrary,
and both regulatory processes are likely to interact. For
instance, a form of activity-dependent potentiation at
goldfish mixed synapses was shown to require activation
of mGluR1 receptors that, by promoting the release of

endocannabinoids, led to the release of dopamine from
nearby varicose terminals, which in turn triggers
potentiation via a postsynaptic mechanism [24, 74].
Beyond interactions with chemical synapses, activity-

dependent plasticity of electrical transmission is likely to
occur via other mechanisms. Interestingly, a recent
report indicates that the induction of gap junction plasti-
city occurred in the absence of chemical synaptic
stimulation and was driven by bursting cellular activity
[58], suggesting that plastic changes can indeed occur in
the absence of interactions with nearby glutamate
receptors, and are possibly initiated by ion influx during
spiking activity. Finally, could the activity of electrical
synapses themselves lead to their potentiation? Although
so far there are no examples of this exciting possibility,
gap junction channels are part of multiprotein com-
plexes [75] and are known to be associated to a range of
signaling molecules [76] including transcription factors
[77, 78], suggesting they might be endowed with the
machinery required to induce plasticity.
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