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Abstract

Pannexin (Panx) is a gene family encoding gap junction proteins in vertebrates. So far, three isoforms (Panx1, 2 and
3) have been identified. All of three Panx isoforms express in the cochlea with distinct expression patterns. Panx1
expresses in the cochlea extensively, including the spiral limbus, the organ of Corti, and the cochlear lateral wall,
whereas Panx2 and Panx3 restrict to the basal cells of the stria vascularis in the lateral wall and the cochlear bony
structure, respectively. However, there is no pannexin expression in auditory sensory hair cells. Recent studies
demonstrated that like connexin gap junction gene, Panx1 deficiency causes hearing loss. Panx1 channels
dominate ATP release in the cochlea. Deletion of Panx1 abolishes ATP release in the cochlea and reduces
endocochlear potential (EP), auditory receptor current/potential, and active cochlear amplification. Panx1 deficiency
in the cochlea also activates caspase-3 cell apoptotic pathway leading to cell degeneration. These new findings
suggest that pannexins have a critical role in the cochlea in regard to hearing. However, detailed information about
pannexin function in the cochlea and Panx mutation induced hearing loss still remain largely undetermined.
Further studies are required.
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Background
Gap junction is an intercellular channel and exists in
both vertebrates and invertebrates. However, the gap
junctional proteins in vertebrates and invertebrates are
encoded by different genes. In vertebrates, gap junctional
proteins are encoded by a connexin gene family, whereas
in invertebrates they are encoded by an unrelated
innexin gene family. About 15 years ago, by application
of genoinformatics, an innexin homologue, termed pan-
nexin, was found in the human genome [1–3]. Later,
Panx expression in rodents, zebrafish, and an inverte-
brate chordate was also identified [3].

Pannexin genomics and expression
So far, three pannexin isoforms (Panx1, 2, and 3) have
been cloned from the human and mouse genomes [2, 3].

Panx1 gene is located on human chromosome
11q14.3 in a 700 kb interval between the genes
CRSP6 and MRE11, Panx2 on human chromosome
22q13.31–q13.33, and Panx3 on human chromosome
11q24.2 in a 150 kb interval between the telomeric
border of the cluster of olfactory gene family 8 and
TBRG1. In the mouse, Panx1, 2, and 3 genes are lo-
cated on chromosome 9, 15, and 9, respectively [3].
Phylogenetic analysis demonstrates that pannexin is
highly conserved in Nematoda, Mollusca, Arthropoda
and mammals [1, 3], implying that pannexins may
have important functions.

Pannexin channels and functions
Despite the lack of similar sequences with connexins,
pannexin proteins share large similarities at the struc-
tural and functional levels. Pannexin proteins also pos-
sess four transmembrane domains, two extracellular
loops, one intracellular loop, and intracellular N- and
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C-termini [3]. The profile of pannexin channel per-
meability is similar to that of connexin channels, per-
meable to ions and small molecules up to 1 kDa [4].
However, despite general parallels with connexin
channels, the properties and pharmacology of pan-
nexin channels are distinct [5, 6]. First, it is becoming
apparent that unlike connexins to form integrated gap
junction channels, pannexins mainly function as plasma
membrane channels ('hemichannels') on the cell surface
to provide an intracellular-extracellular conduit [7–10].
Second, Panx1 channels demonstrate larger currents
with increasing depolarization, faster kinetics of pore
opening, larger unitary conductance (~500 pS, com-
pared to a maximum ~ 300 pS in Cx43 hemichannels),
very weak voltage gating, and multiple substates in
single-channel recordings [2, 11, 12]. Third, both
homomeric and heteromeric (Panx1/Panx2) channels
show significantly higher sensitivity to carbenoxolone
and probenecid [13, 14]. Finally, in contrast to the con-
nexin channels, which are highly sensitive to Ca++ and
can be closed by the physiological levels of extracellular
Ca++ (1–2 mM), pannexin channels are insensitive to
Ca++ and can open and function at the physiological
extracellular levels of Ca++ [11]. These specific proper-
ties of the channel activity imply that pannexin chan-
nels can play an important role in a wider range of
physiological function and pathological processes. So
far, pannexins have been found to play important func-
tions in the ATP release, Ca++ wave propagation, vaso-
dilation, ischemic cell death, inflammatory response,
and release of synaptic neurotransmitters [15–17]. This
review mainly focuses on the expression and function
of pannexins in the inner ear and in hearing.

Pannexin expression in the cochlea
Like connexins, pannexins have ubiquitous expression.
In the mammalian cochlea, we found that all three
pannexin isoforms have expressions [18]. Panx1 ex-
presses at the cochlear supporting cells, the spiral
limbus, and the cochlear lateral wall. Panx2 only ex-
presses at the basal cell layer in the stria vascularis in
the cochlear lateral wall, and Panx3 expression is re-
stricted to the cochlear bony structure (Fig. 1). How-
ever, like connexins, the auditory sensory hair cells
have no pannexin expression (Fig. 1, also see [18]).
These distinct expression patterns strongly suggest
that pannexins have important functions in the inner
ear and in hearing.

Pannexin deficiency induced hearing loss
It has been well-known that connexin mutations can
cause hearing loss [19]. Our recent studies showed that
Panx1 deficiency also induces hearing loss [20, 21]. We
found that the Panx1 deficient mice have hearing loss;

the hearing loss appeared progressive, moderate to se-
vere, and severe at high-frequency range (Fig. 2, also see
[20, 21]). Although pannexin mutation induced hearing
loss has not been identified yet, our findings strongly
suggest that pannexin mutations also can induce hearing
loss in humans.

Pannexin function in the cochlea
Panx1 channels dominate ATP release in the cochlea
A major function of Panx1 channels is to release ATP
[17]. ATP is an important energy source in cells and also
acts as an important cell signaling molecule in the extra-
cellular space, when it is released to the outside of cells.
As mentioned above, pannexin channels possess rela-
tively large pore size and are permeable to ATP. Due to
Panx1 channels can work at normal physiological levels
of Ca++, Panx1 channels in many organs and tissues act
as a major conduit for ATP release under physiological
conditions [22–25].
In the cochlea, ATP physiologically exists in the

endolymph and perilymph [26]. We previously found
that gap junctional hemichannels are responsible for
ATP release in the cochlea [27]. However, it was
unclear at that time which hemichannels were re-
sponsible for ATP release. Recently, we found that
deletion of Panx1 abolished ATP release in the coch-
lea, whereas deletion of Cx26 and Cx30, which are
predominant connexin isoforms in the cochlea [28,
29], had little effect on ATP release under physio-
logical conditions (Fig. 3, also see [21]). Moreover, it
has been found that a gap junction channel antagon-
ist carbenoxolone (CBX) could eliminate ATP release
in the cochlea at the physiological level of extracellu-
lar Ca++ (2 mM) (Fig. 3, also see [21]). These new
data demonstrate that ATP in the cochlea is mainly
released via Panx1 channels under physiological
conditions.
These new findings, however, are inconsistent with a

previous report that Paxn1 “knockout” had no effect on
ATP release in the cochlea [30]. In that study, ATP re-
lease was recorded by use of ATP sensory electrodes,
which sensitivity is only at the micromolar levels and is
too low to measure fmole to submicromolar levels of
ATP in the cochlea [21, 26, 27]. Moreover, their used
“Panx1 KO” mice were created by Cre-loxP technique.
There is no information available for which Cre mouse
line was used. Also, there were no experiments to check
Panx1 expression in the cochlea. So, whether Panx1 was
really deleted or not in the cochlea in that Panx1 ‘KO’
mouse remains unclear. In our experiments [21], we
used a bioluminescent-based method to measure ATP
release, which is the most sensitive and reliable method
for measuring ATP release. We also used immunofluor-
escent staining and confirmed that Panx1 was deleted in
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the cochlea [20, 21]. Finally, we found that Cx26 and
Cx30 deletion had little effect on ATP release in the
cochlea under physiological conditions (Fig. 3, also see
[21]). Thus, these new experiments and data provide
strong evidence that Panx1 channels in the cochlea are re-
sponsible for ATP release under physiological conditions.

Ensuring of endocochlear potential and auditory receptor
current/potential generation in the cochlea
Positive endocochlear potential (EP, +100 ~ 110 mV)
in the cochlea is indispensable for hearing and is a
driving force that compels K+ ions in the endolymph
through the transduction channels at stereocilia of
hair cells to produce auditory receptor current and

potential, thereby initiating hearing. Positive EP is
generated in the cochlear lateral wall. ATP is required
for EP generation [31]. We found that deletion of
Panx1 in the cochlear lateral wall reduced ATP re-
lease and EP generation, thereby reducing auditory
receptor potential and causing hearing loss [21].
However, the detailed mechanisms for Panx1 channel
ATP release and EP generation still remain unclear
and require further studies in future.

The role of Panx1 in active cochlear amplification
We also found that deletion of Panx1 expression in the
cochlea could reduce active cochlear amplification [20].
Distortion product otoacoustic emission (DPOAE) was

Fig. 2 Panx1 deletion induced hearing loss. a: Hearing loss as measured by ABR thresholds, which are significantly increased in Panx1 KO mice.
The increase is large at high-frequency range. b: Hearing loss is progressive. **P < 0.001, two-way ANOVA with a Bonferroni correction. Modified
from [20, 21]

Fig. 1 Immunofluorescent labeling for Panx1, 2, and 3 in the cochlea. a-b: Immunofluorescent staining for Panx1. Outer hair cells (OHCs) are
visualized by prestin staining (red) in (panel b). c-d: Immunofluorescent staining for Panx2. e-f: Immunofluorescent staining for Panx3. HC: Hensen
cell; MO: modiolus; OC: organ of Corti; RM: Reissner’s membrane; SG: spiral ganglion; SLM: spiral limbus; SP: spiral prominence; SPL: spiral
ligament; SV: stria vascularis. Scale bar: 50 μm in (a, c), 100 μm in E, 10 μm in (b, d and f). Modified from [18]
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reduced. Consistent with hearing loss, the reduction was se-
vere at high frequencies [20, 21]. DPOAE in mammals is
mainly produced by outer hair cell electromotility based ac-
tive cochlear amplification. However, as mentioned above
(Fig. 1b, also see [18]), outer hair cells have no any pan-
nexin expression. Currently, the detailed mechanisms for
how Panx1 deficiency can affect outer hair cell electromoti-
lity and reduce active cochlear amplification remain un-
clear. It could be a consequence from EP and auditory
receptor current/potential reduction due to Panx1 knock-
out reduced ATP release (Fig. 3 and Fig. 7 in [21]).

Other downstream effects of ATP release reduction due to
Panx1 deficiency in the cochlea
Extracellular ATP is an important extracellular cell sig-
naling molecule and can activate purinergic P2 receptors
to play broad roles in many physiological functions and
pathological processes [32, 33]. In the cochlea, ATP can
elevate intracellular Ca++ concentration in hair cells
modifying sound transduction and neurotransmission
[34], mediate hearing sensitivity and extent the dynamic
range of hearing [35–37], and synchronize auditory
nerve activity during development [38, 39]. In addition,
ATP can also activate purinergic P2X receptors to medi-
ate stimulation of parasensory cation absorption in the
cochlea [40]. We also found that ATP can activate P2X
receptors to mediate outer hair cell electromotility [27,
41], gap junctional coupling [42], K+-sinking [43], and
EP generation [21]. Recently, it has been found that mu-
tations of P2X2 purinergic receptors induce autosomal
dominant nonsyndromic hearing loss DFNA41 [44, 45]
and increase susceptibility to noise stress [44], indicating
that Panx1-ATP-P2X receptor-mediated purinergic cell
signaling has a critical role in hearing. Thus, Panx1

deficiency leading to ATP release reduction may have
more broad effects on the cochlear function and
hearing.

The role of Panx1 in cell degeneration in the cochlea
One important function of pannexin channels is to
participate in cell apoptotic process. It has been re-
ported that the activation of Caspase-3 cell apoptotic
pathway can permanently open Panx1 channels lead-
ing to cell apoptosis and death [46–50]. Recently, we
found that Panx1 deletion also activates Caspase-3
apoptotic pathway in the cochlea leading to cell de-
generation [20]. The activity of caspase-3 was detect-
able in both hair cells and cochlear supporting cells
in Panx1 knockout (KO) mice. However, hair cells
have neither connexin nor pannexin expression [18,
29]. How Panx1 deletion causes hair cell degeneration
currently remains unknown.

Conclusions
Like connexins, pannexins also have extensive expres-
sion in the cochlea [18]. Panx1 is a predominant iso-
form. Our recent studies showed that Panx1 deficiency
causes hearing loss, abolishes ATP release in the coch-
lea, and reduces EP and auditory receptor potential [20,
21]. Panx1 deficiency also activates caspase-3 cell apop-
totic pathway in the cochlea leading to cell degeneration
[20]. However, pannexin function in the cochlea and in
hearing still remains largely undetermined. Connexin
mutations can induce a high incidence of hearing loss,
responsible for >50% of nonsyndromic deafness [19].
These new findings strongly suggest that Panx1 muta-
tions may also be able to induce hearing loss in humans,
which requires further study in future.

Fig. 3 Panx1 channels dominate ATP release in the cochlea. Deletion of Panx1 and application of 0.1 mM carbenoxolone (CBX) but not
deletion of Cx26 and Cx30, which are predominant connexin isoforms in the cochlea, eliminate ATP release in the cochlea. ATP release
was measured in the normal extracellular solution which contains 2 mM Ca++. **P < 0.001, one-way ANOVA with a Bonferroni correction.
Modified from [21]
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