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Abstract

Background: Metabolites are genetically and environmentally determined. Consequently, they can be used to
characterize environmental exposures and reveal biochemical mechanisms that link exposure to disease. To explore
disease susceptibility and improve population risk stratification, we aimed to identify metabolic profiles linked to
carcinogenesis and mortality and their intrinsic associations by characterizing subgroups of individuals based on serum
biomarker measurements. We included 13,615 participants from the Swedish Apolipoprotein MOrtality RISk Study who
had measurements for 19 biomarkers representative of central metabolic pathways. Latent Class Analysis (LCA) was
applied to characterise individuals based on their biomarker values (according to medical cut-offs), which were then
examined as predictors of cancer and death using multivariable Cox proportional hazards models.

Results: LCA identified four metabolic profiles within the population: (1) normal values for all markers (63% of
population); (2) abnormal values for lipids (22%); (3) abnormal values for liver functioning (9%); (4) abnormal
values for iron and inflammation metabolism (6%). All metabolic profiles (classes 2–4) increased risk of cancer
and mortality, compared to class 1 (e.g. HR for overall death was 1.26 (95% CI: 1.16–1.37), 1.67 (95% CI: 1.47–
1.90), and 1.21 (95% CI: 1.05–1.41) for class 2, 3, and 4, respectively).

Conclusion: We present an innovative approach to risk stratify a well-defined population based on LCA
metabolic-defined subgroups for cancer and mortality. Our results indicate that standard of care baseline
serum markers, when assembled into meaningful metabolic profiles, could help assess long term risk of
disease and provide insight in disease susceptibility and etiology.

Keywords: Risk stratification, Biomarkers, Metabolic profiles, Latent class analysis, Disease susceptibility, Cancer
epidemiology

Background
Cancer is a multi-pathway disease, assembled as a hetero-
geneous and hierarchically organized system, and still one
of the major causes of death worldwide – with an increas-
ing burden given the aging population [1–3]. Cancer data
has grown exponentially in the last decade with new ad-
vanced technologies resulting in highly diverse, mixed
data types and huge volumes of information (e.g.: 542045
is the number of publications retrieved in PubMed when

searching the terms ‘cancer’ AND ‘data’ on August 2017).
Due to the nature of this emerged “Big Cancer Data” and
the demand for high-sensitive and high-specific biomarkers,
there is a need for significant sample sizes and advanced
mathematical and statistical models [4, 5] capable of extract-
ing relevant clinical and biological information [6, 7]. These
more systematic-based approaches, replacing single bio-
marker analyses by multiple profiling testing, may provide
new avenues for biomarker development in cancer diagnosis
and management [8, 9]. Recent studies have adopted these
integrative approaches assessing multiple serum markers
simultaneously for cancer diagnosis [10–13]. Furthermore,
the concept of the exposome has been introduced into the
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field of cancer epidemiology [14]. It refers to every non-gen-
etic exposure to which an individual is subjected from con-
ception to death [14, 15] . Specifically, metabolites, part of
the internal exposome, are both genetically and environ-
mentally determined and can consequently be used to
characterize environmental exposures and reveal biochem-
ical mechanisms that link exposure to disease [15–18].
Hence, the internal distribution of metabolites and their in-
teractions might help unravelling cancer susceptibility in a
population.
With the overall goal of identifying statistical methods to

stratify individuals based on their underlying risk of devel-
oping cancer and risk of increasing mortality, we conducted
a data driven approach utilizing standard serum markers
available from routine health check-ups to study suscepti-
bility to cancer and death in a well-defined cohort of 13,615
participants from the AMORIS study (Apolipoprotein
MOrtality RISk) [19, 20]. More specifically, the study was
set out to explore population heterogeneity and cancer sus-
ceptibility by investigating serum metabolic profiles using
latent class analysis (LCA). This data reduction method
clusters covariates based on models of data distribution
probabilities. It allows for evaluation of clusters of bio-
markers linked to carcinogenesis and their intrinsic associa-
tions, which ultimately helps us assess their possible role in
predicting long-term cancer and mortality.

Results
Characteristics of the study population
A total of 1,956 individuals (14.37%) developed cancer after
at least 3 years of follow-up, including 655 breast and gen-
ito-urinary cancers, 330 cases of digestive cancer, 133 cases
of respiratory cancers and 129 lymphatic and hematopoietic
cancers during a mean follow-up time for cancer of 16.6
years, median follow-up time in the cohort of 17.22 years
with a minimum of 3.01 years and a maximum of 24.77.
Three thousand one hundred fifty-eight participants
(23.20%) died during a mean follow-up of 17.3 years, com-
prising 706 cancer-specific deaths. Study population charac-
teristics by cancer status is illustrated in Table 1.

Latent class analysis characterizes the study population
into four metabolic profiles
LCA was executed using the dichotomized values of the
biomarkers to facilitate the biological interpretation of
the results. The Chi-squared distribution criterion for
model selection indicated a best fit model comprehend
of four LCA classes, while AIC and BIC stabilized at 4
classes (Fig. 1a, b) [21]. All the criterions did not con-
verge to a local maximum from class 12 onwards. The
class allocation of the observations (individuals), the
class conditional probability of each biomarker and the
latent mixing proportions were obtained when running
poLCA package in R statistical language.

Table 2 and Fig. 2 outline the LCA-derived classes
with the estimated class population proportions, the
class conditional probabilities of belonging to each latent
class for each of the biomarkers and the biological inter-
pretation of the LCA-derived classes. The four mutually
exclusive classes characterize the population in meta-
bolic profiles based on class conditional probabilities: (1)
those with probabilities for all abnormal values of the
markers under 0.3; therefore, considered the normal
class (63% of population); (2) those with abnormal values
for lipid markers (22%); (3) those with abnormal values
for liver function markers (9%); (4) those with abnormal
values for iron and inflammation metabolism (6%).
A validation of the characterization of the population

performed with the Latent class methodology is outlined
in Additional file 1: Table S3. The baseline clinical charac-
teristics of the individuals by LCA-derived metabolic clas-
ses (Additional file 1: Table S3) replicate the results
displayed in Table 2 for the class conditional probabilities.

LCA derived metabolic profiles as cancer and mortality
predictors
We then investigated the prediction capabilities of the
four LCA-derived metabolic profiles to estimate overall
cancer risk, specific cancer types risk, cancer mortality
and overall mortality, assigning the reference level to the
healthy metabolic profile Class 1 (Tables 3 and 4).
All metabolic profiles increased risk of cancer and mortal-

ity compared to Class 1. For instance, individuals in Class 3
(abnormal liver function profile) had a higher risk of overall
cancer (HR: 1.28 (95% CI: 1.10–1.50)), but also a worse can-
cer-specific survival and overall survival as compared to
those in Class 1 (Tables 3 and 4). Class 2 (abnormal lipid
profile) and Class 4 (abnormal iron markers and inflamma-
tory) were positively associated with overall death, while
Class 2 was also associated with cancer–specific death. The
results were consistent for both time-scales (Tables 3 and 4).
When assessing the risk of specific cancer types, several

patterns occurred (Tables 3 and 4). Individuals in Class 2
(abnormal lipid markers) presented a higher risk of
lymphatic and hematopoietic tissue cancer (HR: 1.72
(95% CI: 1.15–2.56)). There was a greater risk of digestive
cancers in individuals in Class 3 (abnormal values of liver
enzymes) (HR: 2.12 (95% CI: 1.54–2.91)), while individuals
in Class 4 (abnormal iron markers and inflammation)
were exposed to a higher risk of buccal and oral system
cancers in comparison with the individuals in Class 1
(HR: 3.94 (95% CI 1.38–11.30)) (Table 3).
Moreover, the connective tissue and endocrine glands can-

cer risk was higher in individuals grouped in liver metabolic
profile (HR: 2.65 (95% CI: 1.00–7.02) and in participants be-
longing to the iron markers and inflammation (HR: 3.00
(95% CI: 1.11–8.11)). Similar associations were observed
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Table 1 Characteristics of the study population by cancer status defined at the end of the follow up period. All the serum markers
are dichotomized using standard clinical cut-offs

Total
N = 13,615 (100%)

No Cancer
N = 11,659 (85.63%)

Cancer
N = 1,956 (14.37%)

Age (years)

Mean (SD) 51.91 (14.80) 50.86 (15.00) 58.14 (11.75)

Under 40 2951 (21.67) 2841 (24.37) 110 (5.62)

40–50 3550 (26.07) 3148 (27.00) 402 (20.55)

50–60 3065 (22.51) 2491 (21.37) 574 (29.35)

Above 60 4049 (29.74) 3179 (27.27) 870 (44.48)

Sex

Female 7588 (55.73) 6636 (56.92) 952 (48.67)

Male 6027 (44.27) 5023 (43.08) 1004 (51.33)

Socio-economics Status

High 6493 (47.69) 5416 (46.45) 1077 (55.06)

Low 5007 (36.78) 4368 (37.46) 639 (32.67)

Not employed or missing 2115 (15.53) 1875 (16.08) 240 (12.27)

Educational Status

High 4313 (33.42) 3688 (33.40) 625 (33.57)

Middle 5495 (42.58) 4725 (42.79) 770 (41.35)

Low 3097 (24.00) 2630 (23.82) 467 (25.08)

Missing b 710 (5.21) 616 (5.28) 94 (4.80)

CCI

0 12258 (90.03) 10520 (90.23) 1738 (88.85)

1 963 (7.07) 807 (6.92) 156 (7.98)

2 221 (1.62) 188 (1.61) 33 (1.69)

3+ 173 (1.27) 144 (1.24) 29 (1.48)

Total Cholesterol (mmol/L)

Mean(SD) 5.82 (1.17) 5.79 (1.18) 6.00 (1.13)

< 6.50 9774 (71.79) 8453 (72.50) 1321 (67.54)

≥ 6.50 3841 (28.21) 3206 (27.50) 635 (32.46)

Triglycerides (mmol/L)

Mean(SD) 1.44 (1.00) 1.43 (1.00) 1.48 (0.93)

< 1.71 10128 (74.39) 8716 (74.76) 1412 (72.19)

≥ 1.71 3487 (25.61) 2943 (25.24) 544 (27.81)

Apolipoprotein A-1 (g/L)

Mean(SD) 1.44 (0.23) 1.44 (0.23) 1.43 (0.23)

< 1.05 328 (2.41) 278 (2.38) 50 (2.56)

≥ 1.05 13287 (97.59) 11381 (97.62) 1906 (97.44)

Apolipoprotein B (g/L)

Mean(SD) 1.22 (0.35) 1.22 (0.35) 1.29 (0.34)

< 1.50 10902 (80.07) 9431 (80.89) 1471 (75.20)

≥ 1.50 2713 (19.93) 2228 (19.11) 485 (24.80)

HDL Cholesterol (mmol/L)

Mean(SD) 1.54 (0.43) 1.54 (0.43) 1.52 (0.43)

< 1.03 1457 (10.70) 1231 (10.56) 226 (11.55)

≥ 1.03 12158 (89.30) 10428 (89.44) 1730 (88.45)

LDL Cholesterol (mmol/L)

Mean(SD) 3.64 (1.06) 3.61 (1.06) 3.82 (1.04)

< 4.10 9345 (68.64) 8128 (69.71) 1217 (62.22)

≥ 4.10 4270 (31.36) 3531 (30.29) 739 (37.78)
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Table 1 Characteristics of the study population by cancer status defined at the end of the follow up period. All the serum markers
are dichotomized using standard clinical cut-offs (Continued)

Total
N = 13,615 (100%)

No Cancer
N = 11,659 (85.63%)

Cancer
N = 1,956 (14.37%)

Glucose (mmol/L)

Mean(SD) 5.22 (1.53) 5.21 (1.53) 5.30 (1.53)

< 6.11 12223 (89.78) 10488 (89.96) 1735 (88.70)

≥ 6.11 1392 (10.22) 1171 (10.04) 221 (11.30)

Fructosamine (mmol/L)

Mean(SD) 2.09 (0.27) 2.08 (0.27) 2.10 (0.25)

< 2.6 13184 (96.83) 11291 (96.84) 1893 (96.78)

≥ 2.6 431 (3.17) 368 (3.16) 63 (3.22)

GGT (IU/L) d

Mean(SD) 33.21 (48.12) 32.74 (48.09) 36.03 (48.21)

Normal (< 18) 5511 (40.48) 4827 (41.40) 684 (34.97)

Normal high (18–36) 4983 (36.60) 4236 (36.33) 747 (38.19)

Elevated (36–72) 2098 (15.41) 1750 (15.01) 348 (17.79)

Highly elevated (> 72) 1023 (7.51) 846 (7.26) 177 (9.05)

AST (IU/L)

Mean(SD) 22.84 (19.23) 22.70 (19.60) 23.64 (16.88)

< 45 13155 (96.62) 11271 (96.67) 1884 (96.32)

≥ 45 460 (3.38) 388 (3.33) 72 (3.68)

ALT (IU/L)

Mean(SD) 29.02 (34.35) 28.95 (35.73) 29.41 (24.54)

< 50 12296 (90.31) 10546 (90.45) 1750 (89.47)

≥ 50 1319 (9.69) 1113 (9.55) 206 (10.53)

Albumin (g/L)

Mean(SD) 43.05 (2.82) 43.13 (2.83) 42.58 (2.72)

< 35 28 (0.21) 23 (0.20) 5 (0.26)

> 35 13587 (99.79) 11636 (99.80) 1951 (99.74)

Leukocytes (109 cells/L)

Mean(SD) 6.52 (1.97) 6.49 (1.96) 6.65 (2.01)

< 10 12956 (95.16) 11106 (95.26) 1850 (94.58)

≥ 10 659 (4.84) 553 (4.74) 106 (5.42)

C-Reactive Protein (mg/L)

Mean(SD) 5.86 (15.14) 5.82 (14.25) 6.16 (19.58)

< 10 11858 (87.1) 10193 (87.43) 1665 (85.12)

10–15 1196 (8.78) 993 (8.52) 203 (10.38)

15–25 265 (1.95) 223 (1.91) 42 (2.15)

25–50 200 (1.47) 167 (1.43) 33 (1.69)

> 50 96 (0.71) 223 (0.71) 13 (0.66)

Iron (μmol/L) d

Mean(SD) 18.13 (5.80) 18.13 (5.83) 18.11 (5.59)

Low 636 (4.67) 540 (4.63) 96 (4.91)

Normal 12512 (91.90) 10715 (91.90) 1797 (91.87)

High 467 (3.43) 404 (3.47) 63 (3.22)

TIBC (mg/dL) d

Mean(SD) 0.39 (0.11) 0.31 (0.11) 0.31 (0.10)

Low 4067 (29.87) 3494 (29.97) 573 (29.29)

Normal 6650 (48.84) 5683 (48.74) 967 (49.44)

High 2898 (21.29) 2482 (21.29) 416 (21.27)
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Table 1 Characteristics of the study population by cancer status defined at the end of the follow up period. All the serum markers
are dichotomized using standard clinical cut-offs (Continued)

Total
N = 13,615 (100%)

No Cancer
N = 11,659 (85.63%)

Cancer
N = 1,956 (14.37%)

Creatinine (μmol/L) d

Mean(SD) 79.65 (16.16) 79.38 (16.37) 81.26 (14.74)

Low 40 (0.29) 31 (0.27) 9 (0.46)

Normal 12088 (88.78) 10392 (89.13) 1696 (86.71)

High 1487 (10.92) 1236 (10.60) 251 (12.83)

Phosphate (mmol/L) d

Mean(SD) 1.07 (0.17) 1.07 (0.17) 1.05 (0.17)

Low 95 (0.70) 76 (0.65) 19 (0.97)

Normal 12796 (93.98) 10948 (93.90) 1848 (94.48)

High 724 (5.32) 635 (5.45) 89 (4.55)

Calcium (mmol/L) d

Mean(SD) 2.38 (0.09) 2.38 (0.09) 2.38 (0.10)

Low 191 (1.40) 167 (1.43) 24 (1.23)

Normal 13195 (96.92) 11300 (96.92) 1895 (96.88)

High 229 (1.68) 192 (1.65) 37 (1.89)

Log (triglycerides/HDL) c

mean(SD) (−)0.19 (0.81) (−)0.20 (0.82) (−)0.14 (0.80)

< 0.5 11197 (82.24) 9618 (82.49) 1579 (80.73)

≥ 0.5 2418 (17.76) 2041 (17.51) 377 (19.27)

ApoB/ApoA-I c

mean(SD) 0.87 (0.29) 0.87 (0.29) 0.92 (0.30)

< 1.00 9584 (70.39) 8347 (71.59) 1237 (63.24)

≥ 1.00 4031 (29.61) 3312 (28.41) 719 (36.76)

Life Status

Alive 10457 (76.80) 9385 (80.50) 1072 (54.81)

Death 3158 (23.20) 2274 (19.50) 884 (45.19)

Cancer 1956 (14.90) 11659 (0.00) 1956 (100.00)

The following abbreviations have been used in Table 1: High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Gamma-Glutamyl transferase (GGT), Alanine aminotransferase
(ALT), Aspartate aminotransferase (AST) and Total iron binding capacity (TIBC).
aClinically abnormal cut-off values are highlighted for each biomarker.
bThe missing values are not included in the percentage of the Educational Status categories.
cRatios are dimensionless.
dClinical cut-offs
The following cut-offs criteria was applied:
GGT reference interval:
Low [GGT < 18 IU/L].
Normal high [18 IU/L ≥ GGT < 36 IU/L].
Elevated [36 IU/L ≥ GGT < 72 IU/L].
High elevated [GGT ≥ 72 IU/L].
Iron reference interval:
Men [Low ≤11, Normal = 11–31, High ≥31].
Women [Low ≤9, Normal = 9–30, High≥30].
TIBC reference interval:
Men [Low ≤0.257, Normal = 0.257–0.379, High ≥0.379].
Women [Low ≤0.246, Normal = 0.246–0.391, High ≥0.391].
Creatinine reference interval:
Men [Low ≤60, Normal = 60–100, High ≥100].
Women [Low ≤45, Norma l = 45–90, High ≥90].
Phosphate reference interval:
Men [Low ≤0.7, Normal = 0.7–1.4, High ≥1.4].
Women [Low ≤0.8, Normal = 0.8–1.4, High ≥1.4].
Calcium reference interval per gender by age:
Men
[Age < 40, Low ≤2.22, Normal = 2.22–2.60, High ≥2.60].
[Age 40–60, Low ≤2.20, Normal = 2.20–2.59, High ≥2.59]
[Age > 60, Low ≤2.19, Normal = 2.19–2.58, High ≥2.58]
Women
[Age < 40, Low ≤2.17, Normal = 2.17–2.56, High ≥2.56].
[Age 40–60, Low ≤2.19, Normal = 2.19–2.60, High ≥2.60]
[Age > 60, Low ≤2.21, Normal = 2.21–2.60, High ≥2.60]
Abnormal clinical cut-off values of the biomarkers are indicated in the table in boldface
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when using the age scale for the multivariable cox propor-
tional hazard regression model (Tables 3 and 4).

Discussion
We demonstrated that standard of care baseline serum
markers when assembled into meaningful metabolic pro-
files can help stratify the population for cancer risk, can-
cer mortality and overall mortality. More specifically, we
observed that abnormal values for markers of the lipid
metabolism, liver function and inflammatory and iron
metabolism distinguish participants into metabolic pro-
files, which are predictive of long term cancer risk and/
or mortality.

Metabolic profiles
Among the biological pathways addressed in our
LCA, abnormalities in the lipid metabolism were the
most common. Hyperlipidemia was present in about a
quarter of the study population explaining the largest

abnormal metabolic profile. The weight of the lipid
profile in the analysis was consistent with the re-
ported global prevalence of hypercholesterolemia
among adults (37% for males and 40% for females) as
reported in the Global Health Observatory in 2008
estimates by the World Health Organization (WHO)
and the results from the Swedish population in the
WHO MONICA project [22]. Dyslipidemias are associ-
ated with higher risk of CVD and other chronic diseases
such as cancer, as also observed in our study [23]. Liver dys-
function, iron deficiency and altered inflammatory markers
profiles also distinguished important subgroups in our study
population. About 9% of our population had abnormal
values for markers of liver functioning (GGT, AST and
ALT), which is similar to the results obtained in a popula-
tion-based survey in the United States that estimated ab-
normal alanine aminotransferase (ALT) was present in 9%
of respondents in absence of viral hepatitis C or excessive al-
cohol consumption [24]. Moreover, these enzymes are

Fig. 1 a Line-graph depicting the goodness of fit indicators AIC and BIC. The model that best fits the dataset comprehends of four latent classes
as determined by the minimum value reached by AIC and BIC criterions before stabilization of the values. The criterion did not converge to a
local maximum from class 12 onwards. b Line-graph depicting the goodness of fit indicators (X^2 (1) (Chi-square). The model that best fits the
dataset comprehends of four latent classes as determined by the minimum value reached by Chi-square. The criterions did not converge to a
local maximum from class 12 onwards
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known to be linked to cancer because of their role in pre-
serving the intracellular homeostasis of the oxidative stress
[25–27], which is concordant with the results of these ana-
lyses. The iron profile and inflammatory markers clustered
6% of individuals in the study, which was predominantly

driven by low levels of serum iron and TIBC, as well as high
levels of CRP and leukocytes. This could potentially point to-
wards anemia of inflammation, a chronic inflammation pre-
senting low iron values, that occurs because the iron
deficiency provides the body with infection resistance, which

Table 2 Predicted class memberships of the clinically abnormal biomarkers cut-off values for the 4 latent classes model. Estimated
class population shares for the four different LCA classes

LCA-derived Classes Class 1 Class 2 Class 3 Class 4

% on the population 63% 22% 9% 6%

Biological interpretation Normal Lipids Liver Iron/ Inflammation

ApoB/ApoA-I≥ 1.00 b 0.1320 0.6840 0.4519 0.2480

Log (Triglycerides/HDL)≥ 0.50 b 0.0126 0.5436 0.3852 0.1421

Glucose ≥6.11 mmol/L 0.0342 0.2401 0.2174 0.0919

Fructosamine ≥2.60 mmol/L 0.0039 0.0967 0.0555 0.0280

ALT ≥50 IU/L 0.0051 0.0107 1.0000 0.0291

GGT Elevated36–72 IU/L 0.0848 0.2532 0.3521 0.1732

GGT Highly elevated ≥72 IU/L 0.0240 0.0843 0.4098 0.0619

AST≥ 45 IU/L 0.0052 0.0045 0.3168 0.0180

CRP > 10 mg/L 0.0282 0.0715 0.0771 0.2740

Albumin < 35 g/L 0.0007 0.0022 0.0024 0.0114

Leukocytes ≥109 cells/L 0.0265 0.0786 0.0438 0.1344

Iron low μmol/L 0.0001 0.0040 0.0281 0.5527

Iron high μmol /L 0.0404 0.0155 0.0712 0.0000

TIBC low mg/dL 0.2201 0.2807 0.2622 1.0000

TIBC high mg/dL 0.2438 0.1707 0.2984 0.0000

Creatinine low μmol /L 0.0022 0.0037 0.0041 0.0051

Creatinine high μmol /L 0.0822 0.1765 0.1166 0.1116

Phosphate low mmol/L 0.0078 0.0041 0.0063 0.0098

Phosphate high mmol/L 0.0425 0.0611 0.0544 0.1110

Calcium low mmol/L 0.0124 0.0092 0.0099 0.0458

Calcium high mmol/L 0.0121 0.0253 0.0299 0.0135
aHigh probabilities of the biomarkers to belong to a class are highlighted.
bRatios are dimensionless.
Higher proportions of the abnormal biomarkers belonging to a class is indicated in the table in boldface

Fig. 2 Class Membership Probabilities for abnormal clinical values of the serum markers for the four LCA – derived metabolic classes. The four
different biomarker profiles are represented in the graph
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Table 3 Hazard ratios and 95% confidence interval for the association of LCA-derived metabolic classes and overall cancer risk and
cancer specific risk

Hazard Ratios (95% CI) a Hazard Ratios
(95% CI) b

Cancer Risk: All cancer types

Number of events 1956 1956

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.09 (0.98–1.22) 1.05 (0.94–1.17)

3 - Liver 1.28 (1.10–1.50) 1.28 (1.09–1.49)

4 – Inflammation & Iron 1.17 (0.97–1.41) 1.17 (0.97–1.41)

Cancer Risk: Buccal cavity and pharynx

Number of events 34 34

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.79 (0.77–4.14) 1.70 (0.73–1.17)

3 - Liver 2.66 (0.96–7.35) 2.60 (0.94–7.16)

4 - Inflammation & Iron 3.94 (1.38–11.30) 3.77 (1.31–10.82)

Cancer Risk: Digestive organs and peritoneum

Number of events 133 133

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 0.83 (0.62–1.11) 0.83 (0.62–1.11)

3 - Liver 2.12 (1.54–2.91) 2.12 (1.54–2.91)

4 - Inflammation & Iron 0.86 (0.51–1.46) 0.86 (0.51–1.46)

Cancer Risk: Respiratory system

Number of events 133 133

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.40 (0.94–2.08) 1.32 (0.88–1.96)

3 - Liver 0.90 (0.44–1.82) 0.87 (0.43–1.77)

4 - Inflammation & Iron 1.48 (0.76–2.88) 1.46 (0.75–2.84)

Cancer Risk: Skin melanoma

Number of events 205 205

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 0.78 (0.56–1.10) 0.78 (0.56–1.11)

3 - Liver 0.71 (0.40–1.26) 0.73 (0.41–1.31)

4 - Inflammation & Iron 0.70 (0.35–1.37) 0.70 (0.35–1.37)

Cancer Risk: Breast and genito-urinary organs

Number of events 655 655

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.19 (0.99–1.42) 1.12 (0.94–1.33)

3 - Liver 1.04 (0.80–1.37) 1.04 (0.80–1.37)

4 - Inflammation & Iron 1.25 (0.91–1.71) 1.25 (0.91–1.71)

Cancer Risk: Brain & nervous system, Thyroids

Number of events 34 34

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.01 (0.51–1.99) 0.96 (0.48–1.00)

3 - Liver 1.01 (0.38–2.67) 0.99 (0.38–2.59)

4 - Inflammation & Iron 0.92 (0.28–2.99) 0.91 (0.28–2.96)
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demonstrates the tightly connection between the inflamma-
tory response and the iron and its homeostasis [28]. This
condition has been reported in more than 30% of cancer pa-
tients at time of diagnosis.

Metabolic profiles as a risk factor for long term cancer
and mortality
The above-described three classes of abnormal metabolic
profiles were all associated with an increased risk of cancer
and worse survival, as compared to the healthy class. The
findings therefore confirm the key importance of these

metabolisms in the maintenance of the intracellular homeo-
stasis and how their unbalance can be related with the eti-
ology of cancer disease and mortality [2]. The LCA adapted
in this study thus illustrates how a biomarker-wide approach
can help assess markers of the blood exposome in the con-
text of carcinogenesis and mortality [29] (Fig. 3).
More specifically, individuals presenting abnormal liver

function markers carried worse outcomes in terms of over-
all cancer risk and cancer death, and a positive association
with digestive, connective and endocrine cancers diagnosis.
Moreover, the participants with this profile had a higher
probability of overall death. These results are consistent with
previous published data. A positive association between ele-
vated GGT and overall cancer risk, with no interaction of
ALT, was found in the AMORIS cohort previously [30], and
it was also reported in other large cohort studies [31, 32].
These studies also found strong associations with elevated
levels of GGT and digestive and respiratory cancer inci-
dence. Elevated GGT has been associated with mortality
from all causes, liver disease, cancer and diabetes, while
ALT only showed associations with liver disease death in a
large US cohort [33]. However, in a study based on an eld-
erly population it was found that GGT was associated with
increased cardiovascular disease mortality, and ALP and
AST with increased cancer-related mortality [34]. Moreover,
a meta-analysis evaluating the associations between liver en-
zymes and all-cause mortality found positive independent
associations of baseline levels of GGT and ALP with all-
cause mortality [35]. In the present study, the liver
biomarker profile was positive associated with all the out-
comes studied, suggesting a key role of this pathway in the
development of cancer, probably related with its active

Table 3 Hazard ratios and 95% confidence interval for the association of LCA-derived metabolic classes and overall cancer risk and
cancer specific risk (Continued)

Hazard Ratios (95% CI) a Hazard Ratios
(95% CI) b

Cancer Risk: Connective and endocrine tissue

Number of events 56 56

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 0.65 (0.21–1.95) 0.64 (0.21–1.94)

3 - Liver 2.65 (1.00–7.02) 2.67 (1.01–7.07)

4 - Inflammation & Iron 3.00 (1.11–8.11) 2.96 (1.10–8.00)

Cancer Risk: Lymphatic and hematopoietic tissues:
Hodgkin lymphoma, Non-H lymphoma, Leukemia
and Myeloma

Number of events 129 129

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.72 (1.15–2.56) 1.68 (1.12–2.51)

3 - Liver 1.65 (0.91–3.00) 1.68 (0.93–3.05)

4 - Inflammation & Iron 1.23 (0.56–2.68) 1.25 (0.57–2.73)
aTime scale adjusted for age, sex and CCI.
bAge scale adjusted for age, sex and CCI.

Table 4 Hazard ratios and 95% confidence interval for the
association of LCA- derived metabolic classes and all causes death
and Cancer death

Hazard Ratios
(95% CI) a

Hazard Ratios
(95% CI) b

All causes death

Number of events 3158 3158

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.26 (1.16–1.37) 1.29 (1.19–1.40)

3 - Liver 1.67 (1.47–1.90) 1.70 (1.49–1.93)

4 - Inflammation & Iron 1.21 (1.05–1.41) 1.20 (1.04–1.40)

Cancer death

Number of events 706 706

1 - Normal class 1.00 (ref) 1.00 (ref)

2 - Lipids 1.22 (1.02–1.45) 1.20 (1.01–1.42)

3 - Liver 1.44 (1.11–1.86) 1.46 (1.13–1.90)

4 - Inflammation & Iron 0.93 (0.66–1.32) 0.93 (0.66–1.32)
aTime scale adjusted for age, sex and CCI.
bAge scale adjusted for age, sex and CCI.
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role maintaining the intracellular redox regulation. Fur-
ther investigations are necessary to establish the potential
of the altered liver enzyme profile as a tool for cancer risk
stratification.
Individuals allocated to the lipid profile presented posi-

tive associations with cancer mortality, and overall mortality
and higher risk of lymphatic and hematopoietic cancers.
The link between hyperlipidemia and mortality has been
studied broadly, with associations with established links for
cancer and all-cause mortality [36–38]. The association be-
tween lipids and lymphatic and hematopoietic cancers is
more controversial, as other studies found an inverse associ-
ation for these cancers and high levels of serum cholesterol
[39, 40]. However, a systematic literature review from 2016
found no association [41].
Participants clustered in the unbalanced iron profile

and inflammation had an increased risk of endocrine,
buccal and oral cancers and were observed to have a
higher risk of all-causes death. Altered inflammation and
iron metabolisms are key metabolic ‘hallmarks of cancer’
[2, 42, 43]. Our observation of an association with an in-
creased risk of buccal and oral cancer corroborates pre-
vious findings in AMORIS [42].

Population heterogeneity and risk stratification: the need
for data reduction techniques
The modulation effect of population heterogeneity on
the association between potential risks factors and dis-
ease is a new avenue to understand the variability of risk
in the population [44]. For instance, in a targeted meta-
bolomics exercise Shan et al. performed a principal com-
ponent analysis and time to event analysis identifying
metabolic profiles to predict risk of CVD [13]. Another

study used Monte Carlo Cross Validation and Lasso logistic
regression to evaluate serum biomarkers as an alternative
to fecal immunochemical testing to improve detection of
colorectal cancer [11]. In 2010, the European Prospective
Investigation on Cancer and Nutrition (EPIC) cohort re-
ported that a specific prediagnostic plasma phospholipid
fatty acid profile could predict the risk of gastric cancer
[45]. As rationalized in the HELIX project, these multiple
profiling approaches aim to identify groups of individuals in
the population that share a similar exposome that might ac-
count for differences on the specific risk of study [46].To-
gether with these studies, our systematic data integration
approach based on LCA demonstrates the potential of in-
vestigating population heterogeneity using metabolic profil-
ing as risk factors for long term cancer risk and mortality
prediction. However, in order to establish the prediction
capability of these LCA metabolic profiles and implement
their use in a clinical setting, further studies to validate the
results whilst allowing to measure sensitivity and specificity,
will need to be conducted such as a nested case-control in
AMORIS that could determine the predictive capabilities of
the metabolic profiles to estimate cancer risk and mortality.

Strengths and limitations
The present study has been conducted in a large and well-
defined population, applying a multi-faced approach cov-
ering main biological pathways to assess biomarker pro-
files that could indicate cancer risk, cancer survival and
mortality. The major strength of these analyses lies in the
innovative avenue to study population heterogeneity and
susceptibility to disease and mortality in a large cohort of
participants with multiple measurements, all measured on
fresh blood samples on the same day at the same clinical

Fig. 3 Study statistical pipeline describing the methodology followed in the project. We explored the blood exposome using metabolic markers
of the population to assess how population heterogeneity is associated with cancer risk and mortality
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laboratory. We included all the markers available in the
cohort for a large population (n > 13000), however not
every marker of the central metabolic pathways was
available in the database (i.e. Complete Blood Count).
Life-style factors established as cancer risk factors such as
tobacco smoking, low physical activity, poor diet, alcohol
intake, obesity and hypertension were partially available in
AMORIS which limited their used in the study. To
mitigate the lack of some of these external factors such as
BMI, the analyses have been adjusted for Charlson
Comorbidity Index which includes comorbidities such as
obesity and hypertension. The lack of others life-style factors
such as alcohol consumption was mitigated by using infor-
mation on serum biomarkers such as gamma glutamyl
transferase and other liver enzymes. All participants were se-
lected by analyzing blood samples from health check-ups in
non-hospitalized individuals from the greater Stockholm
area ensuring good internal validity in the study. Future
studies will benefit from a longitudinal approach with re-
peated serum markers measurements that will capture the
population phenotypic variations in relation to disease over
long periods of time and will help to improve our under-
standing of the biomarkers’ impact on carcinogenesis and
mortality.

Conclusion
Our findings support the recently expressed need for a
shift from the classical epidemiological approach of asses-
sing one exposure to a systemic approach with multiple
exposures. The LCA adapted in this study illustrates how
a biomarker-wide approach can help assess population
susceptibility to disease and provide insight into disease
etiology in the context of carcinogenesis and mortality
(Fig. 3). Given the environmental and genetic modulation
of metabolic molecules, metabolic profiling based on
standard of care serum markers could become a useful
non-invasive predictive signature for risk stratification and
an important area of research for mechanisms and clinical
relevance.

Methods
Study design and study population
The AMORIS study, a large prospective cohort study, has
been described in detail elsewhere [19, 47, 48]. Briefly, the
AMORIS database is based on linkages with the Central
Automation Laboratory (CALAB) database, which analyzed
fresh blood samples from subjects from the greater
Stockholm area. All individuals were either healthy individ-
uals referred for clinical laboratory testing as part of a gen-
eral health check-up or outpatients between 1985 and 1996.
The AMORIS cohort has been linked to several Swedish
national registries such as the National Cancer Register, the
Patient Register, the Cause of Death Register, the consecu-
tive Swedish Censuses during 1970–1990, and the National

Register of Emigration, using the Swedish 10-digit personal
identity number. These linkages provide detail information
on demographics, lifestyle, socio-economic status, vital sta-
tus, cancer diagnosis, comorbidities and emigration. The
AMORIS study conformed to the declaration of Helsinki
and was approved by the ethics board of the Karolinska
Institute.
From the AMORIS cohort, we included all individuals

aged 20 years or older with measurements for the fol-
lowing serum biomarkers (n = 13,615), which were all
measured on the same day, using fully automated
methods with automatic calibration performed on fresh
blood samples, at the same laboratory (CALAB) of high
quality according to international blinded testing [49]
(Additional file 1: Table S1 and Table S2): total choles-
terol (TC) (mmol/L), triglycerides (TG) (mmol/L), apoli-
poprotein A-1 (ApoA-I) (g/L), apolipoprotein B (ApoB)
(g/L), high density lipoprotein (HDL) (mmol/L), low
density lipoprotein (LDL) (mmol/L), glucose (mmol/L),
fructosamine (FAMN) (mmol/L), gamma-glutamyl
transferase (GGT) (IU/L), alanine aminotransferase
(ALT) (IU/L), aspartate aminotransferase (AST) (IU/L),
albumin (g/L), leukocytes (WBC) (109 cells/L), C-react-
ive protein (CRP) (mg/L), iron (FE) (μmol/L), total iron
binding capacity (TIBC) (mg/dL), creatinine (μmol/L),
phosphate (mmol/L) and calcium (mmol/L). All methods
have previously been described [48].
These biomarkers were selected to reflect common

metabolic pathways: lipid (TC, TG, ApoA-I, ApoB, HDL
and LDL) and glucose metabolism (Glucose, FAMN), liver
function (GGT, ALT and AST), inflammation (Albumin,
WBC and CRP), iron metabolism (FE and TIBC), kidney
function (Creatinine) and phosphate (Phosphate and
Calcium). The blood metabolites included in the ana-
lysis were all the standard serum markers available
from routine health check-ups. Most of the markers
included have been previously studied individually in
AMORIS, however no systemic integrative approach to
examine the metabolic markers interactions and suscepti-
bility to cancer has been conducted to date [30, 42, 50–59].
All participants were free from cancer at time of study
entry and none were diagnosed with cancer within the first
three years of follow-up to avoid reverse causation.
The main exposure variables for the analyses were the

above-mentioned metabolic biomarkers, for which the
values were categorized using standardized clinical cut-
offs based on recognized medical criteria to facilitate in-
terpretation of the results (Additional file 1: Table S2).
The main outcomes were first cancer diagnosis, as regis-
tered in the National Cancer Register using ICD-9 for
the years 1987–1992, ICD-O/2 for years 1993–2004 and
for year 2005 onwards has been coded in ICD-O/3), and
mortality. As secondary outcomes, we explored those
cancer types for which there were more than 30 events
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during follow-up. Likewise, cancer mortality was ex-
plored. Follow-up time was assessed specifically for each
of the outcomes studied. For cancer diagnosis, follow-up
time was defined as time from blood drawn until date of
first cancer diagnosis, death, emigration or study closing
date (31st of December 2012), whichever occurred first.
The follow-up time for death was described as time from
blood drawn until date of death, emigration or study
closing date (31st of December 2012), whichever oc-
curred first.
Information on the following potential confounders

was also incorporated: age, sex and comorbidities. The
latter was quantified using the Charlson Comorbidity
Index (CCI) calculated based on data from the National
Patient Register. The CCI comprises 19 disease categor-
ies, all assigned a weight. The sum of an individual’s
weights was used to create the CCI ranging from no co-
morbidity to severe comorbidity (0, 1, 2, and ≥ 3) [60].

Data analysis
First, we calculated Pearson correlation coefficients to
measure the strength of association between the bio-
markers included in the analysis. Pearson’s correlation
analyses showed strong correlation between the different
biomarkers in the lipid metabolism (TC, LDL and ApoB
(r > 0.7); HDL and ApoA-I (r > 0.8)). We replaced the in-
dividual lipid biomarkers by the established ApoB/
ApoA-I ratio and log (TG/HDL) ratio [20, 49, 61, 62] to
avoid collinearity and to comply with the principle of
local independence as required by latent class analysis
[63]. Most of the markers were normally distributed ex-
cept from the liver biomarkers.
Latent Class Analysis (LCA) [63, 64] is a model-

based clustering method that reduces the dimension of
the data by clustering covariates into latent classes, using
a probabilistic model that describes the data distribution,
and it assesses the probability that individuals belong to
certain latent classes. LCA avoids the use of a linear
combination or a random distance definition to reduce
the number of covariates [65] and has recently been
employed in health sciences [21, 66]. More specifically,
we applied LCA to characterize different classes of indi-
viduals based on their metabolic profiles [67] and to
evaluate intrinsic associations between the biomarkers,
using the poLCA package [68] in R statistical program-
ming language. We first determined the optimal number
of LCA-derived classes by executing step-wise models
with different numbers of classes, starting with the null
model and adding one extra class in each model until
reaching the total number of biomarkers in the data,
while the model kept converging into a local maximum
likelihood. The criterions used for model selection
(Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC) and Chi-squared distribution) were

evaluated to estimate the best goodness of fit model and
to define the optimal number of LCA-derived metabolic
classes that characterized our dataset. To identify which
sets of biomarkers predominantly explained each latent
class, how the classes were distributed across the study
population and which individuals were allocated to each
class, we assessed the conditional probabilities, mixed
proportions and class memberships of the best fitted la-
tent class model.
Once each subject was assigned to its LCA-derived meta-

bolic class, we conducted multivariable Cox proportional
hazard regression to examine whether the LCA-derived
metabolic classes were associated with long term risk of
overall cancer as well as specific cancer types. In addition,
we evaluated how the classes were associated with all
cause-death and cancer-specific death. All models were ad-
justed for age, sex, and CCI. We performed a sensitivity
analysis using age as a time-scale, as this is potentially a
strong confounder. Moreover, Schoenfeld residuals were
tested to ensure the proportional hazard assumption of the
multivariable cox proportional hazard regression analysis.
Data management and statistical analyses were per-

formed using Statistical Analysis Systems (SAS) release
4.3 (SAS Institute, Cary, NC) and R version 3.0.2 (R
Foundation for Statistical Computing, Vienna, Austria).

Additional file

Additional file 1: Table S1. Laboratory fully automated methods with
automatic calibration were performed at one accredited laboratory
(CALAB to measure the serum biomarkers examine in the study.
Table S2. Panel of serum markers describing standard medical cut-
offs information. Table S3. Characteristics of the study population by
LCA-derived metabolic classes. (DOCX 28 kb)
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