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Abstract

Background: Proteins perform their functions by interacting with acid radical ions. Recently, it was a challenging
work to precisely predict the binding residues of acid radical ion ligands in the research field of molecular drug
design.

Results: In this study, we proposed an improved method to predict the acid radical ion binding residues by using
K-nearest Neighbors classifier. Meanwhile, we constructed datasets of four acid radical ion ligand (NO2

−, CO3
2−, SO4

2

−, PO4
3−) binding residues from BioLip database. Then, based on the optimal window length for each acid radical

ion ligand, we refined composition information and position conservative information and extracted them as
feature parameters for K-nearest Neighbors classifier. In the results of 5-fold cross-validation, the Matthew’s
correlation coefficient was higher than 0.45, the values of accuracy, sensitivity and specificity were all higher than
69.2%, and the false positive rate was lower than 30.8%. Further, we also performed an independent test to test the
practicability of the proposed method. In the obtained results, the sensitivity was higher than 40.9%, the values of
accuracy and specificity were higher than 84.2%, the Matthew’s correlation coefficient was higher than 0.116, and
the false positive rate was lower than 15.4%. Finally, we identified binding residues of the six metal ion ligands. In
the predicted results, the values of accuracy, sensitivity and specificity were all higher than 77.6%, the Matthew’s
correlation coefficient was higher than 0.6, and the false positive rate was lower than 19.6%.

Conclusions: Taken together, the good results of our prediction method added new insights in the prediction of
the binding residues of acid radical ion ligands.

Keywords: K-nearest neighbors classifier, Acid radical ions, Binding residues
Introduction
The protein is the foundation of life and participates in
almost all life processes, such as heredity, growth and
development. Most of the proteins need to binding with
other specific proteins and form a protein complex to
perform their normal biological functions, and previous
researchers have made numerous related works and gave
us more understanding for the mechanism proteins
functions [1–10]. Many proteins require binding to acid
radical ions to perform their functions. For instance,
protein enzymes bind to phosphate ions (PO4

3−), which
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cause phosphorylation that can regulate enzyme activity
[11]; sulfate ion are involved in several important pro-
cesses of cell metabolism, such as the synthesis process
of cysteine and the sulfation process of protein [12, 13].
However, it’s still a limit to completely understand the
cellular mechanism of protein function. Therefore, it is a
valuable work to accurately predict the binding residues
of acid radical ion ligands, which can help us illustrate
the function of proteins.
Up to now, some researchers have studied acid radical

ion binding residues by the experimental methods. In
1966, Pardee used the experimental method to study
proteins combining with sulfate ion in Salmonella typhi-
murium, and analyzed the mechanism of interaction
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Table 1 Benchmark dataset of four acid radical ions

Acid radical ion Chains Positive segments Negative segments

NO2
− 22 98 8144

CO3
2− 62 316 22,766

SO4
2− 303 2125 99,729

PO4
3− 339 2168 112,279
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between sulfate ion and binding residues [14]. In 2002,
the experimental method was adopted by Richard et al.
to study the interaction between proteoglycans and sul-
fate ions, locating the sites of interaction with heparan
sulfate in the protein [15]. Tamada studied the sulfation
of proteins by the experimental method in 2003 [16].
Some researchers have studied acid radical ion binding
residues by the theoretical methods. For instance, Hu
et al. developed the model (IonSeq) for predicting four
acid radical ion (NO2

−, CO3
2−, SO4

2−, PO4
3−) binding

residues that were taken from the BioLip database and
achieved an accuracy of nearly 98% for all ions in 2016
[17]. In 2016, Hu et al. predicted binding residues of
SO4

2− and PO4
3− in the BioLip database by the ensemble

classifier, and obtained Matthew’s correlation coefficient
was higher than 0.23 and overall accuracy was higher
than 97% [18]. In 2017, SVM algorithm was used by Li
et al. to identify the binding residues of SO4

2− from
LPC, achieving the Matthew’s correlation coefficient of
0.571 and the overall accuracy of 78.5% in the five-fold
cross-validation [19]. In 2017, Zhang et al. updated the
online server COFACTOR by combining structure, se-
quence and protein-protein interaction information to
improve proteins function prediction, in which obtained
the Matthew’s correlation coefficient was greater than
that obtained by Concavity and Findsite for ligand-
binding residues of the same set of proteins [20]. 2018,
Peyton et al. used an interpretable confidence-rated
boosting algorithm to predict protein-ligand interactions
with high accuracy from ligand chemical substructures
and protein sequence motifs [21].
In this paper, we reconstructed datasets of acid radical

ion ligands from BioLip database and developed an im-
proved method to predict the binding residues of four
acid radical ions. We explored the optimal window
length and extracted the refined characteristics from the
composition and position information. Besides, we also
integrated the information of amino acid, hydrophilic-
hydrophobic, polarization charge and predicted structure
as characteristics parameters for the K-nearest Neigh-
bors classifier. In comparison with previous work, we
obtained better results in the predicted of NO2

−, CO3
2−

and PO4
3− ligands.

Materials and methods
Dataset
BioLip database contains 13 acid radical ion ligands. The
proteins interacting with acid radical ions were down-
loaded from BioLip database and their pairwise sequence
identity was below 95%. Then, the proteins with a reso-
lution less than 3 Å and a sequence length above 50 resi-
dues were further selected. Finally, the proteins with
sequence identity threshold higher than 30% were re-
moved using the CD-HIT software [22]. Through the
above screening, it was found that the number of bind-
ing residues of only four acid radical ions (NO2

−, CO3
2−,

SO4
2− and PO4

3−) conformed to the requirement of stat-
istical analysis. Other acid radical ion ligands, such as
Cl−, WO4

2−, NO3
−, SO3

2−, PO3
3− have fewer number of

binding residues. Therefore, we only selected the binding
residues of NO2

−, CO3
2−, SO4

2− and PO4
3− as research

objects. The non-redundant datasets of the four acid
radical ion ligands were shown in Table 1.
Since the interaction between the proteins and ligands

is not only related to the binding residues, but surround-
ing residues also have certain effects, we used the sliding
window method to cut the protein sequence into over-
lapping segments according to the window length of 5,
7, 9, 11, 13, 15 and 17 amino acid residues, respectively.
If the central residue was an acid radical ion binding
residue, we grouped it into positive; otherwise, we
grouped it into negative segment. In order to ensure that
each amino acid residue appeared in the center of the
segment, we added a (L-1)/2 dummy residue “X” at both
terminals of the protein chains, where L is the length of
the amino acid sequence segments.

The selection of feature parameters
Based on our group’s previous research on acid radical
ion binding residues [19], it was found that the informa-
tion of amino acid, polarization charge, hydrophilic-
hydrophobic, predicted secondary structures and relative
solvent availability could well identify the binding resi-
dues of acid radical ion ligands. Therefore, we selected
the information of these five basic parameters to predict
binding residues of four acid radical ion ligands.
The polarization charge, hydrophilic-hydrophobic, and

relative solvent accessibility have different classifications
according to various standards. The twenty amino acids
are divided into three categories according to the
polarization charge, including positively charged amino
acids (K, R, P), negatively charged amino acids (D, E), and
uncharged amino acids (N, Q, H, L, I, V, A, M, F, S, T, Y,
W, C, G) [23]; they are grouped into six categories accord-
ing to the hydrophilic-hydrophobic properties (Table 2)
[24]. In this paper, the relative solvent accessibility (RSA)
threshold value of 25% is chosen to indicate whether the
residue is exposed (RSA > 25%) or buried (RSA < 25%).
There are three predicted secondary structures: α-helix

(H), β-strand (E) and coil (C).



Table 2 Hydrophilic-hydrophobic classification of amino acids

Classification Amino Acids Classification Amino Acids

strongly hydrophobic R, D, E, N, Q, K, H Proline P

strongly hydrophilic L, I, V, A, M, F Glycine G

weakly hydrophilic S, T, Y, W Cysteine C

Liu et al. BMC Molecular and Cell Biology 2019, 20(Suppl 3):52 Page 3 of 10
Extraction methods of feature parameters
Increment of diversity algorithm
Increment of diversity (ID) algorithm is of great signifi-
cance to the research of biology. It has achieved success
in the prediction of subcellular localization and protein
folds [25, 26]. It not only can be used as an algorithm
for prediction, but also can reduce dimension and refine
composition information into discrete increment (ID)
values. Its use in this paper belonged to the latter. ID al-
gorithm is introduced as follows:
In the state space of dimension S, the measure of di-

versity for a vector X: [n1, n2, …, ns] is

D Xð Þ ¼ N logN−
Xs

i¼1

ni logni ð1Þ

In the two state spaces of dimension S, for two vectors
X: [n1, n2, …, ns] and Y: [m1, m2, …, ms], the measure of
diversity for mixed diversity resources X + Y is

D X;Yð Þ ¼ N þMð Þ log N þMð Þ−
Xs

i¼1

ni þmið Þ log ni þmið Þ

ð2Þ

Here, N ¼Ps
i¼1 ni logni , M ¼Ps

i¼1 mi logmi . ni / mi is
the number of occurrences of ith information symbol in
the state space.
The increment of diversity of X and Y is

ID X;Yð Þ ¼ D X þ Yð Þ � D Xð Þ � D Yð Þ ð3Þ

The measure of diversity is a measure of information
diversity, it can describe the uncertainty of the overall
information, while the ID is a measure of the spatial
similarity between two diversity sources. If X is similar
to Y, the value of ID(X, Y) will be small; otherwise, the
value of ID(X, Y) will be large. For example, amino acid
composition information was input to the ID algorithm,
two standard discrete sources were constructed by train-
ing set. Then we obtained two ID values for each seg-
ment of the testing set. Thus, 20-dimensional vector
corresponding to frequencies of 20 amino acids of each
sequence segment was compressed into two dimensions.
Finally, two ID values were used as feature parameters of
the K-nearest Neighbors classifier.

Position weight scoring matrix
Position weight scoring matrix (PWSM) is a classifier
that has achieved great success in the prediction of
super-secondary structures and transcription factor
binding sites in genomes [27, 28]. The PWSM algorithm
was used in this paper to extract feature parameters.
The scoring function can be defined as:

S ¼

XL

i¼1

Ci mi; j−mi; min
� �

XL

i¼1

Ci mi; max−mi; min
� �

ð4Þ

Here,

mi; j ¼ log
pi; j
po; j

 !
ð5Þ

pi; j ¼ ðni; jþ
ffiffiffi
Ni

p
21 Þ

ðNiþ
ffiffiffiffi
Ni

p Þ, the conserved parameters of ith position

is

Ci ¼ 100
log21

X21

i¼1

pi; j logpi; j þ log21

 !
ð6Þ

Here j is 20 amino acids and dummy residue “X”. mi, j

is the matrix element of position weight matrix and de-
notes the weight probability of the jth amino acid at the
ith position, mi, max and mi, min are the maximum value
and minimum value of mi, j, respectively. pi, j is the ob-
served probability of the jth amino acids at the ith pos-
ition, and po, j is the background probability of the jth

amino acid. ni, j is the frequency of jth amino acids at the
ith position. Ni is total number of amino acids at the ith

position. L is the length of the amino acid sequence
segments.
We constructed two standard position weight matrices

using binding segments and non-binding segments from
training set, respectively. For each segment from the
testing set, 2 L-dimensional position information was ob-
tained straightly from standard position weight matrices
and two matrix scoring (S) values were obtained by scor-
ing function. Thus, 21*L-dimensional vector correspond-
ing to position conservation of 21 amino acids of each
sequence segment was compressed into 2 L and 2 di-
mensions. We used 2-dimensional S value and 2 L-
dimensional position information as feature parameters,
respectively.
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Etraction of feature parameters
The composition features
Since the same amino acid residue had different fre-
quencies in the binding segments and the non-binding
segments, the amino acid composition information was
selected as a feature parameter in this paper. We also se-
lected the composition information of polarization
charge, hydrophilic-hydrophobic, secondary structure
and relative solvent availability as feature parameters.

The position features
Since the conservation of amino acids was different at
the same position in the binding segments and the non-
binding segments, we selected the 2 L-dimensional pos-
ition amino acid information as a feature parameter,
which was obtained from standard position weight
matrices. Similarly, we selected the 2 L-dimensional pos-
ition information of the polarization charge, hydrophilic-
hydrophobic, secondary structure and relative solvent
availability as feature parameters. Then we combined the
position information of five basic parameters as feature
parameters, namely position combination features and
input to the K-nearest Neighbors classifier to identify
binding residues of acid radical ion ligands.

The reduced dimension and refined features
For the amino acid composition information, we ob-
tained the 2-dimensional ID value by using the formula
(3). We replaced the amino acid composition with the
polarization charge composition, hydrophilic-
hydrophobic composition, secondary structures compos-
ition and relative solvent availability composition and
obtained the 2-dimensional ID value, respectively.
Therefore, we obtained the 10-dimensional ID value.
For the position amino acid information, we obtained

the 2-dimensional S value by using the formula (4).
Similarly, for the position information of polarization
charge, hydrophilic-hydrophobic, predicted secondary
structures and relative solvent availability, we obtained
the 2-dimensional S value, respectively. Therefore, we
obtained the 10-dimensional S value.
The 10-dimensional ID value and the 10-dimensional

S value were combined as feature parameters, namely
the 20-dimensional combination feature and input to
the K-nearest Neighbors classifier to predict binding res-
idues of acid radical ion ligands.

K-nearest neighbors classifier
K-nearest Neighbors (KNN) classifier is a statistical-
based machine learning method, which was proposed by
Cover and Hart in 1967 [29]. The basic idea of KNN
classifier is that k nearest samples of a test sample are
found by using a distance formula, then the test sample
belongs to the category with the largest number in the k
nearest samples. Different k values will yield different clas-
sification results, the performance of KNN classifier is op-
timal when k takes an appropriate value. KNN classifier
has been widely used in classification and regression prob-
lems, and made a great success in predicting various attri-
butes of proteins, such as proteins subcellular localization
and protein structure classification [30, 31].
KNN classifier can get better prediction results when

it classifies the dataset with small samples, and the pre-
dicted results are more accurate when the number of
positive and negative samples of dataset is equal. In this
paper, the number of samples used was not large, and
negative samples with the equal number of positive sam-
ples were randomly sampled. These characteristics
matched up the KNN classifier model. Therefore, we
used the KNN classifier to identify the four acid radical
ion ligand binding residues. Since the algorithm was very
mature, we adopted KNN classifier on the weka3.8 plat-
form. The distance formula chosen was Euclidean dis-
tance [32–34].

The validation and evaluation metrics
The proposed method was evaluated by the five-fold
cross-validation. The dataset was randomly divided into
five equal parts. Four parts were used for training, and
remaining one part was used for testing. This process was
repeated 5 times, and each part was used once for testing.
The average value of five experimental results was taken
as the final result. Because the number of negative samples
is much larger than that of positive samples, to ensure the
stability of the result, negative samples with equal num-
bers of positive samples were randomly sampled 10 times.
The final result was the average value of the 10 results ob-
tained by the five-fold cross-validation.
The following five measures were used to evaluate the

prediction performance of acid radical ion binding resi-
dues: sensitivity (Sn), specificity (Sp), accuracy (Acc),
Matthew’s correlation coefficient (MCC) and false posi-
tive rate (FPR). These measures were defined as:

Sn ¼ TP
TP þ FN

� 100% ð7Þ

Sp ¼ TN
TN þ FP

� 100% ð8Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

� 100% ð9Þ

MCC ¼ TP � TNð Þ− FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð10Þ

FPR ¼ FP
TN þ FP

ð11Þ

Where TP is the number of correctly predicted acid
radical ion binding residues, TN is the number of



Fig. 1 The relation between the values of k and MCC for SO4
2−

Table 3 Evaluation metrics of position combination features at
different L of PO4

3−

L Optimal k value Sn (%) Sp (%) Acc (%) FPR (%) MCC

5 77 76.6 69.6 73.1 30.4 0.463

7 23 76.9 71.8 74.4 28.2 0.488

9 33 76.1 73.8 75.0 26.2 0.500

11 17 76.2 74.5 75.3 25.5 0.507

13 15 76.0 75.4 75.7 24.6 0.514

15 21 76.7 74.4 75.5 25.6 0.510

17 21 78.0 72.8 75.4 27.2 0.508
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correctly predicted non-binding residues, FP is the num-
ber of non-binding residues predicted as binding resi-
dues, and FN is the number of binding residues
predicted as non-binding residues.

Results and discussion
The selection of the optimal k value
For each experiment, the best performance obtained
by the five-fold cross-validation is achieved with an
optimal k value. The average of optimal k values
given by 10 experiments is defined as the optimal k
value in the determined window length, and it will be
reused in 10 experiments to achieve prediction re-
sults. At the window length of 13, taking the selection
of optimal k value of position combination features of
SO4

2− ligand as an example, we elaborated on the se-
lection method of the optimal k value.
Since the negative samples were randomly sampled

10 times, we obtained 10 sample sets. When the win-
dow length of SO4

2− ligand was selected 13, we per-
formed the experiments for ten sample sets
respectively. Since different k values would obtain dif-
ferent predicted results, for each experiment, the pos-
ition combination features were input to the KNN
Fig. 2 The MCC values of different L
classifier to select optimal k value. For one of the ex-
periments, the obtained relation between k values and
the corresponding MCC values was shown in Fig. 1.
In Fig. 1, the x-axis represents k value and the y-axis
represents the MCC value. As seen, the highest MCC
value was 0.447 and the corresponding k value was
33. Therefore, the optimal k value corresponding to
the position combination features was 33 in this
experiment.
We performed the experiments for other nine sample

sets by the same method and the obtained nine optimal
k values were 27, 29, 31, 31, 33, 35, 35, 37, 39, respect-
ively. The obtained average value of ten optimal k values
was 33. Therefore, at the window length of 13, 33 was
the optimal k value which was selected for the position
combination features of SO4

2− ligand.
The selection of the optimal window length
In the five-fold cross-validation, position combination infor-
mation was input to the KNN classifier as a characteristic
parameter to select the optimal window length (L) of the
sequence segments for each acid radical ion. For each win-
dow length, based on the position combination features, we
selected the optimal k value for them and input them to
the KNN classifier to perform 10 experiments with the op-
timal k value. The average of results obtained by 10 experi-
ments was the final results at each window length.
Therefore, we obtained seven results at window length of 5,
7, 9, 11, 13, 15, 17. The window length corresponding to
the highest result of the seven results was the optimal win-
dow length. Taking the selection of optimal window length
Table 4 The performance of amino acid composition feature by
KNN classifier

Ligand Optimal k value Sn (%) Sp (%) Acc (%) FPR (%) MCC

NO2
− 23 54.1 72.4 63.3 27.6 0.270

CO3
2− 37 63.9 52.8 58.4 47.2 0.169

SO4
2− 91 59.3 61.1 60.2 38.9 0.204

PO4
3− 41 62.9 62.1 62.5 37.9 0.250



Table 5 The performance of composition combination features
by KNN classifier

Ligand Optimal k value Sn (%) Sp (%) Acc (%) FPR (%) MCC

NO2
− 77 57.1 76.5 66.8 23.5 0.343

CO3
2− 35 63.6 59.5 61.6 40.5 0.231

SO4
2− 25 66.0 61.7 63.9 38.3 0.277

PO4
3− 71 69.1 66.3 67.7 33.7 0.355

Table 7 Comparison of prediction results of three features

Ligand Feature Optimal k
value

Sn
(%)

Sp
(%)

Acc
(%)

FPR
(%)

MCC

NO2
− C 77 57.1 76.5 66.8 23.5 0.343

P 75 81.6 61.2 71.4 38.8 0.438

R 75 81.6 79.6 80.6 20.4 0.612

CO3
2− C 35 63.6 59.5 61.6 40.5 0.231

P 31 75.6 67.7 71.7 32.3 0.435

R 115 74.4 78.5 76.4 21.5 0.529

SO4
2− C 25 66.0 61.7 63.9 38.3 0.277

P 33 73.5 71.2 72.3 28.8 0.447

R 37 75.8 69.2 72.5 30.8 0.450

PO4
3− C 71 69.1 66.3 67.7 33.7 0.355

P 15 76.0 75.4 75.7 24.6 0.514

R 61 76.4 74.0 75.2 26.0 0.504

Table 8 The data of the training dataset and independent test
dataset
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of PO4
3− ligand as an example, we illustrated the method of

the selection of the optimal window length.
For PO4

3− ligand, based on the position combination
features, we selected the optimal k value for them at
each window length. For each window length, we per-
formed experiments using the optimal k value for ten
sample sets respectively, and obtained final predicted re-
sults. The obtained results by the five-fold cross-
validation were given in Fig. 2 and Table 3, respectively.
As shown in Fig. 2, the MCC value of PO4

3− ligand
was increased from window length of 5 to 13. It showed
a decreasing tendency from window length of 13 to 17.
At window length of 13, PO4

3− ligand obtained the high-
est MCC value. At the same time, the values of Sp, Acc
and FPR were the highest and the Sn value was approxi-
mately equal to that of others when the window length
was 13 (see Table 3). Therefore, the optimal window
length of PO4

3− ligand was 13.
The optimal window lengths of the other three acid

radical ion ligands were selected by the same way. The
selected optimal window lengths of NO2

−, CO3
2− and

SO4
2− were 13, 15 and 13, respectively.

Predicted results of composition features
The amino acid composition information was input to
the KNN classifier as a feature parameter to predict
binding residues of the four acid radical ion ligands. The
predicted results of the five-fold cross-validation were
shown in Table 4.
As shown in Table 4, the Acc values were lower than

65%, and the MCC values were lower than 0.3 for four
acid radical ion ligands. Especially for CO3

2− ligand, the
result was the lowest, with the MCC value of 0.169 and
the FPR value of 47.2%. The reason may be that the ex-
tracted information was incomplete, so we added the
composition information of polarization charge,
Table 6 The performance of position combination features by
KNN classifier

Ligand Optimal k value Sn (%) Sp (%) Acc (%) FPR (%) MCC

NO2
− 75 81.6 61.2 71.4 38.8 0.438

CO3
2− 31 75.6 67.7 71.7 32.3 0.435

SO4
2− 33 73.5 71.2 72.3 28.8 0.447

PO4
3− 15 76.0 75.4 75.7 24.6 0.514
hydrophilic-hydrophobic, secondary structure and rela-
tive solvent accessibility for further prediction. The pre-
diction results of the five-fold cross-validation were
shown in Table 5. As seen, the performance was im-
proved after adding other composition features. For ex-
ample, the MCC value was significantly improved from
0.250 to 0.355, the Sn value was increased from 62.9 to
69.1%, and the Acc value was increased by 5.2% for
PO4

3− ligand. It indicates that the newly added features
contained valid information, which has great significance
for identifying acid radical ion binding residues.

Predicted results of position combination features
Since the predicted results of the composition features
were not good enough, position combination informa-
tion of amino acid, polarization charge, hydrophilic-
hydrophobic, secondary structure and relative solvent
accessibility were used as characteristic parameters to
recognize four acid radical ion binding residues by KNN
classifier. Obtained results of the five-fold cross-
validation were shown in Table 6.
As seen, the result of PO4

3− ligand was the highest,
the MCC value was 0.514, and the values of Acc, Sn and
Sp were all higher than 75%. PO4

3− ligand was sensitive
Ligand Training dataset Independent test dataset

Chains Pa Nb Chains Pa Nb

NO2
− 17 76 6218 5 22 1926

CO3
2− 49 252 18,066 13 64 4700

SO4
2− 242 1751 79,164 61 374 20,565

PO4
3− 271 1730 90,786 68 438 21,493

aThe number of positive (binding) samples
bThe number of negative (non-binding) samples



Table 10 Benchmark dataset of six metal ion ligands

Metal ions Chains Binding residues Non-binding residues

Zn2+ 1428 6408 405,113

Fe2+ 92 382 29,345

Fe3+ 217 1057 68,829

Cu2+ 117 485 33,948

Mn2+ 459 2124 156,625

Co2+ 194 875 55,050
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to the position combination features and could be well
identified by position features. However, the predicted
results of NO2

−, CO3
2− and SO4

2− were less accurate, in
which the MCC values were lower than 0.5 and the Acc
values were lower than 73%. Probably because these acid
radical ion binding residues were less sensitive to pos-
ition information.

Predicted results of reduced dimension and refined
features
Since predicted results of binding residues of NO2

−,
CO3

2− and SO4
2− were still lower, the 20-dimensional

combination feature was input to the KNN classifier to
predict binding residues of acid radical ion ligands. The
predicted results of the five-fold cross-validation were
given in Table 7.
As seen, the 20-dimensional combination feature ob-

tained the better results. The values of Acc and Sn were
higher than 70%, and the MCC values were higher than
0.45 for four acid radical ions. There are two possible
reasons for it. One is that there is complementarity be-
tween the composition information and the position in-
formation. The other is that the 20-dimensional
combination feature does not have redundant
information.

The comparison of predicted results among three kinds
of features
To make the comparison of predicted results among
composition combination features (C), position combin-
ation features (P) and 20-dimensional combination
Table 9 Comparison of our independent test with IonSeq

Ligand Method L Optimal k value Sn

NO2
− IonSeq 11 – 18

OUR’S 13 75 40

CO3
2− IonSeq 13 – 10

OUR’S 15 115 48

SO4
2− IonSeq 11 – 13

OUR’S 13 37 43

PO4
3− IonSeq 11 – 24

OUR’S 13 61 63
feature (R) more obvious, their results of the five-fold
cross-validation obtained by KNN classifier were listed
in Table 7.
Compared with the results obtained by composition

combination features, the values of MCC, Acc and Sp
were increased by using position combination features
for all acid radical ions. For example, the MCC value of
CO3

2− ligand was apparently increased from 0.231 to
0.435, the Sn value of NO2

− ligand was obviously in-
creased from 57.1 to 81.6%. It shows that position com-
bination features contain more valid information.
Compared with the results obtained by position com-

bination features, the predicted results of the 20-
dimensional combination feature were better. The pre-
dicted results of NO2

− and CO3
2− ligands were signifi-

cantly improved. In terms of NO2
− ligand, the MCC

value was obviously improved from 0.438 to 0.612, the
Acc value was increased from 71.4 to 80.6%, and the
values of Sn and Sp were balanced between 81.6 and
79.6%, respectively. For CO3

2− ligand, the FPR value was
decreased from 32.3 to 21.5%, the values of Acc and
MCC were increased by 4.7 and 9.4%, respectively. As
for the SO4

2− ligand, the MCC value was improved from
0.447 to 0.450 with almost no change. For PO4

3− ligand,
although the values of Acc, MCC and Sp were slightly
declined, the Sn value was slightly increased. It may be
that 20-dimensional combination feature lost some valid
information, resulting in decrease of negative sample
identification results.
In the above predicted results, the identification results

corresponding to the 20-dimensional combination fea-
ture were the best. Therefore, we should select the fea-
ture parameters which contain more valid information
and input them to the KNN classifier to accurately
recognize binding residues of acid radical ion ligands.
Predicted results of independent test
To evaluate the practicability of KNN classifier, we have
made the independent test for four acid radical ion lig-
and binding residues.
(%) Sp (%) Acc (%) FPR(%) MCC

.00 99.78 98.79 – 0.2847

.90 98.60 97.90 1.40 0.3100

.62 99.82 98.58 – 0.2127

.40 95.00 94.40 5.00 0.2170

.65 99.32 97.53 – 0.1906

.90 86.80 85.80 13.20 0.1160

.15 99.38 97.95 – 0.3121

.20 84.60 84.20 15.40 0.1810



Table 11 Comparison of results between KNN classifier with SVM

Ligand Method L Optimal k value Sn (%) Sp (%) Acc (%) FPR (%) MCC

Zn2+ OUR’S 7 103 94.3 83.8 89.1 16.2 0.786

SVM – 99.8 99.5 99.7 – 0.993

Fe2+ OUR’S 9 41 92.1 80.4 86.3 19.6 0.730

SVM – 91.9 90.7 91.3 – 0.826

Fe3+ OUR’S 9 15 84.6 84.9 84.7 15.1 0.694

SVM – 86.9 88.7 87.8 – 0.756

Cu2+ OUR’S 13 49 92.4 86.6 89.5 13.4 0.791

SVM – 95.5 97.1 96.3 – 0.926

Mn2+ OUR’S 7 23 79.1 80.9 80.0 19.1 0.600

SVM – 82.1 84.4 83.2 – 0.664

Co2+ OUR’S 11 99 77.6 83.1 80.3 16.9 0.608

SVM – 80.8 85.1 83.0 – 0.660

Liu et al. BMC Molecular and Cell Biology 2019, 20(Suppl 3):52 Page 8 of 10
The dataset of four acid radical ion binding residues
was divided into two parts, including training dataset
that was used to train model and the independent test
dataset that was used to test model. The protein chains
in training dataset accounted for 80% of the total data.
The data of the two datasets was shown in Table 8.
In the independent test, we used the optimal window

length of each acid radical ion was taken from Section 3.2.
Since acid radical ion ligands were sensitive to the 20-
dimensional combination feature, we extracted it as fea-
ture parameter of independent testing and input it to the
KNN classifier to identify binding residues of acid radical
ion ligands, in which selected optimal k values were same
as Section 3.5. The obtained results were given in Table 9.
Besides, the obtained results were compared with that by
IonSeq. The results of IonSeq method were taken from lit-
erature [17] in which it was obtained by cross-validation.
As seen from Table 9, the Sn values obtained by KNN

classifier were all higher than those obtained by IonSeq
for all acid radical ions. The MCC values of NO2

− and
CO3

2− ligands by KNN classifier were slightly higher
than that by IonSeq, while the MCC values of SO4

2− and
PO4

3− ligands were lower than that by IonSeq. There are
three possible reasons for it. First, the datasets used are
different for two models. IonSeq model is aimed at im-
balanced dataset, while model constructed in this paper
is aimed at dataset with equal number of positive and
negative samples. Second, the model in this paper is
tested by independent test, but the IonSeq model is
tested by cross-validation. Third, the feature parameters
used are different. Both methods have their own advan-
tages and can only be roughly compared.

Predicted results of metal ion ligand binding residues
In order to test the reliability of proposed method, we
used the KNN classifier to predict binding residues of
the six kinds of metal ion (Zn2+, Fe2+, Fe3+, Cu2+, Mn2+,
Co2+) with more binding proteins, and compared the re-
sults with that obtained by SVM used in literature [35].
Dataset of six kinds of metal ion binding residues used
in this paper was taken directly from literature [35]
(Table 10). Since the predicted results of acid radical ion
binding residues were higher at the 20-dimensional
combination feature, it was also extracted as feature par-
ameter and input to the KNN classifier to predict bind-
ing residues of six metal ions. The obtained results of
the five-fold cross-validation were given in Table 11.
Table 11 shows the prediction results of 6 kinds of

metal ion ligand binding residues obtained by KNN clas-
sifier. The MCC values were higher than 0.6, the values
of Acc and Sp were higher than 80%, and FPR percent-
ages were lower than 20%. Predicted results of Zn2+ and
Cu2+ by KNN classifier were relatively better.
Although the predicted results of six metal ions obtained

by KNN classifier were lower than that by SVM, their pre-
dicted trends were consistent [35]. To achieve better re-
sults, the KNN classifier only need to select an optimal k
value, while the SVM need to select a group (c, g) optimal
values. KNN classifier can achieve similar prediction results
with SVM by simpler calculation. The training time com-
plexity of KNN classifier is lower than that of SVM algo-
rithm. The KNN classifier mainly relies on the surrounding
limited adjacent samples rather than the method of dis-
criminating class domain to determine the category, and
new data can be added directly to the dataset without
retraining. KNN classifier theory is simple and easy to im-
plement. Therefore, KNN classifier can be used as auxiliary
tool for predicting acid radical ion ligand binding residues.

Conclusion
To perform the normal biological functions, many pro-
teins require bind to the specific acid radical ions [11–
13]. In order to illustrate the proteins function, it is a
valuable work to predict the binding residues of acid
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radical ion ligands in recent years. In this work, we pro-
posed K-nearest Neighbors classifier to predict four acid
radical ion ligands binding residues. Firstly, the dataset
of acid radical ion ligands was constructed. Then we se-
lected the optimal window length for each acid radical
ion ligand. Next, we extracted the composition features,
position features and reduced dimension and refined
features at the optimal window length, and selected the
optimal k value for three feature parameters. The prom-
ising results were obtained by K-nearest Neighbors clas-
sifier when feature parameters that contained more
comprehensive information were used to predict acid
radical ion binding residues. In the predicted results,
NO2

−, CO3
2− and PO4

3− ligands obtained better results
by K-nearest Neighbors classifier. For SO4

2− ligand,
other valid information needed to be added in our fur-
ther work to improve the recognition result.

Abbreviations
Acc: Accuracy; FPR: False positive rate; ID: Increment of diversity; KNN: K-
nearest Neighbors; LPC: Ligand Protein Contact; MCC: Matthew’s correlation
coefficient; PWSF: Position weight scoring matrix; RSA: Relative solvent
accessibility; Sn: Sensitivity; Sp: Specificity; SVM: Support vector machine

Acknowledgements
We are grateful to Deshuang Huang for her guidance on research work and
Qiwen Dong’s guidance on translation of the paper.

About this supplement
This article has been published as part of BMC Molecular and Cell Biology
Volume 20 Supplement 3, 2019: Proceedings of the 2018 International
Conference on Intelligent Computing (ICIC 2018) and Intelligent Computing and
Biomedical Informatics (ICBI) 2018 conference: molecular and cell biology. The
full contents of the supplement are available online at https://
bmcmolcellbiol.biomedcentral.com/articles/supplements/volume-20-
supplement-3.

Authors’ contributions
LL performed the experiments and wrote the paper. XH designed the
experiments and analyzed the results. ZF, XZ, SW, SX and KS gave guidance on
the writing of the paper. All authors read and approved the final manuscript.

Funding
Publication costs are funded by National Natural Science Foundation of
China (61961032) and Natural Science Foundation of the Inner Mongolia of
China (2019BS03025).

Availability of data and materials
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 11 December 2019

References
1. Zhu L, Deng SP, et al. Identifying spurious interactions in the protein-

protein interaction networks using local similarity preserving embedding [J].
IEEE/ACM Trans Comput Biol Bioinform. 2017;14(2):345–52.
2. Deng SP, Huang DS. SFAPS: an R package for structure/function analysis of
protein sequences based on informational spectrum method [J]. Methods.
2014;69(3):207–12.

3. Huang DS, Zhang L, et al. Prediction of protein-protein interactions based
on protein-protein correlation using least squares regression. Curr Protein
Pept Sci. 2014;15(6):553–60.

4. Huang DS, Yu HJ. Normalized feature vectors: a novel alignment-free
sequence comparison method based on the numbers of adjacent amino
acids [J]. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(2):457–67.

5. You ZH, Lei YK, Gui J, et al. Using manifold embedding for assessing and
predicting protein interactions from high-throughput experimental data [J].
Bioinformatics. 2010;26(21):2744–51.

6. Xia JF, Zhao XM, Song J, et al. APIS: accurate prediction of hot spots in
protein interfaces by combining protrusion index with solvent accessibility
[J]. Bmc Bioinformatics. 2010;11(1):174.

7. Xia JF, Zhao XM, et al. Predicting protein-protein interactions from protein
sequences using meta predictor [J]. Amino Acids. 2010;39(5):1595–9.

8. Xia JF. Kyungsook Han, et al. sequence-based prediction of protein-protein
interactions by means of rotation forest and autocorrelation descriptor [J].
Protein Pept Lett. 2010;17(1):137–45.

9. Shi MG, Xia JF, et al. Predicting protein-protein interactions from sequence
using correlation coefficient and high-quality interaction dataset [J]. Amino
Acids. 2010;38(3):891–9.

10. Wang B. Hau san Wong, et al. inferring protein-protein interacting sites
using residue conservation and evolutionary information [J]. Protein Pept
Lett. 2006;13(10):999–1005.

11. Burnett G. Kennedy E P, the enzymatic phosphorylation of proteins [J]. Biol
Chem. 1954;211:969–80.

12. Thomas L, Michael M. Cloning of a cDNA encoding ATP sulfurylase form
Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae
[J]. Plant Physiol. 1994;105:897–902.

13. Monigatti F, Gasteiger E, Bairoch A, et al. The sulfinator: predicting tyrosine
sulfation sites in protein sequences [J]. Bioinformatics. 2002;18:769–70.

14. Pardee B. Purification and properties of a sulfate-bindind protein form Salmonella
typhimurium [J]. Received for publication. J Biol Chem. 1966;24:5886–92.

15. Richard G. Christoph Hundt, Stefan Weiss, et al. Turnbull. Identification of
the Heparan sulfate binding sites in the cellular prion protein [J]. J Biol
Chem. 2002;277:18421–30.

16. Tamada Y. Sulfation of silk fibroin by sulfuric acid and anticoagulant activity
[J]. Appl Polym Sci. 2003;87:2377–82.

17. Hu X, Dong Q, Yang J, et al. Recognizing metal and acid radical ion-binding
sites by integrating ab initio modeling with template-based transferals [J].
Bioinformatics. 2016;32(23):btw396.

18. Hu X, Wang K, Dong Q. Protein ligand-specific binding residue predictions
by an ensemble classifier [J]. BMC Bioinformatics. 2016;17(1):470.

19. Li S, Hu X, et al. Identifying the sulfate ion binding residues in proteins [J].
International Conference on Biomedical and Biological Engineering, 2017.

20. Zhang C, Freddolino P L, Zhang Y. COFACTOR: improved protein function
prediction by combining structure, sequence and protein-protein
interaction information[J]. Nucleic Acids Res. 2017;45:W295.

21. Greenside P, Hillenmeyer M, Kundaje A. Prediction of protein-ligand
interactions from paired protein sequence motifs and ligand substructures
[C]. Pacific Symposium, 2018.

22. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences [M]. Bioinformatics. 2006;22:1658–9.

23. Taylor WR. The classification of amino acid conservation [J]. J Theor Biol.
1986;119(2):205–18.

24. Pánek J, Eidhammer I, Aasland R. A new method for identification of protein
(sub) families in a set of proteins based on hydropathy distribution in
proteins [J]. Proteins Struct Funct Bioinformatics. 2005;58(4):923–34.

25. Feng Z, Hu X. Recognition of 27-class protein folds by adding the
interaction of segments and motif information. Biomed Res Int. 2014;
2014(4):871–82.

26. Chen YL, Li QZ. Prediction of the subcellular location of apoptosis proteins.
J Theor Biol. 2007;245(4):775–83.

27. Gao S, Hu X. Prediction of four kinds of super secondary structure in
enzymes by using ensemble classifier based on scoring SVM [J]. Hans J
Comput Biol. 2014;04(1):1–11.

28. Kel AE, GoBling E, Reuter I, el al. MATCHTM: a tool for searching
transcription factor binding sites in DNA sequences[J]. Nucleic Acids Res.
2003;13:3576–9.

https://bmcmolcellbiol.biomedcentral.com/articles/supplements/volume-20-supplement-3
https://bmcmolcellbiol.biomedcentral.com/articles/supplements/volume-20-supplement-3
https://bmcmolcellbiol.biomedcentral.com/articles/supplements/volume-20-supplement-3


Liu et al. BMC Molecular and Cell Biology 2019, 20(Suppl 3):52 Page 10 of 10
29. Thomas Cover PH. Nearest nei^Bor pattern classification [J]. IEEE T Inform
Theory. 1967;13:21.

30. Qian S, Yan B, Li J. Ensemble learning for protein multiplex subcellular
localization prediction based on weighted KNN with different features [J].
Applined Intell. 2017;1:1–12.

31. Zhang T, Ding Y, Chou K. Prediction protein structural classes with pseudo-
amino acid composition: approximate entropy and hydrophobicity pattern
[J]. J Theor Biol. 2008;250(1):186–93.

32. Feng ZX, Li QZ. Recognition of long-range enhancer-promoter interactions
by adding genomic signatures of segmented regulatory regions [J].
Genomics. 2017;109(5–6):341.

33. Hall M, Frank E, Holmers G, Pfahringer B, Reotemann P, Witten IH. The WEKA
software an update. ACM SIGKDD Explor Newsl. 2019;11:10–8.

34. AHa D, Kibler D. Instance-based learning algorithms. Mach Learn. 1991;6:37–66.
35. Cao X, Hu X, Zhang X, et al. Identification of metal ion binding sites based

on amino acid sequences [J]. PLoS One. 2017;12(8):13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Results
	Conclusions

	Introduction
	Materials and methods
	Dataset
	The selection of feature parameters
	Extraction methods of feature parameters
	Increment of diversity algorithm

	Position weight scoring matrix
	Etraction of feature parameters
	The composition features
	The position features
	The reduced dimension and refined features

	K-nearest neighbors classifier
	The validation and evaluation metrics

	Results and discussion
	The selection of the optimal k value
	The selection of the optimal window length
	Predicted results of composition features
	Predicted results of position combination features
	Predicted results of reduced dimension and refined features
	The comparison of predicted results among three kinds of features
	Predicted results of independent test
	Predicted results of metal ion ligand binding residues

	Conclusion
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

