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Abstract

Background: Type 2 diabetes mellitus (T2DM) is a worldwide disease that have an impact on individuals of all ages
causing micro and macro vascular impairments due to hyperglycemic internal environment. For ultimate treatment
to cure T2DM, association of diabetes with immune components provides a strong basis for immunotherapies and
vaccines developments that could stimulate the immune cells to minimize the insulin resistance and initiate
gluconeogenesis through an insulin independent route.

Methodology: Immunoinformatics based approach was used to design a polyvalent vaccine for T2DM that
involved data accession, antigenicity analysis, T-cell epitopes prediction, conservation and proteasomal evaluation,
functional annotation, interactomic and in silico binding affinity analysis.

Results: We found the binding affinity of antigenic peptides with major histocompatibility complex (MHC) Class-I
molecules for immune activation to control T2DM. We found 13-epitopes of 9 amino acid residues for multiple
alleles of MHC class-I bears significant binding affinity. The downstream signaling resulted by T-cell activation is
directly regulated by the molecular weight, amino acid properties and affinity of these epitopes. Each epitope has
important percentile rank with significant ANN ICsq values. These high score potential epitopes were linked using
AAY, EAAAK linkers and HBHA adjuvant to generate T-cell polyvalent vaccine with a molecular weight of 35.6 kDa
containing 322 amino acids residues. In silico analysis of polyvalent construct showed the significant binding affinity
(= 15.34 Kcal/mol) with MHC Class-I. This interaction would help to understand our hypothesis, potential activation
of T-cells and stimulatory factor of cytokines and GLUT1 receptors.

Conclusion: Our system-level immunoinformatics approach is suitable for designing potential polyvalent
therapeutic vaccine candidates for T2DM by reducing hyperglycemia and enhancing metabolic activities through
the immune system.
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Background

Type 2 diabetes mellitus (T2DM), a non-insulin
dependent metabolic disorder, is a pandemic disease af-
fecting large set population of the world [1]. It is respon-
sible for 90% of total diabetic population and sixth
prime cause of disability. T2DM is characterized by the
inability of pancreatic B-cells to produce enough insulin
resulting hyperglycemia and the inability of insulin to
bind with its receptors restrict the absorption of glucose
(insulin resistance) into the cells [2, 3]. Disease preva-
lence is increasing for sure due to unknown causes and
the lack of therapeutic strategies [4, 5].

Normally, insulin regulates the absorption of glu-
cose through glucose transporter type 4 (GLUT-4)
protein channels [6] present in cell membranes. In
case of insulin impairment, the absorption of glucose
by GLUT-4 doesn’t occur, causing T2DM [7]. The
glucose transporters (GLUT1 and GLUT4) facilitate
glucose transport into cells. GLUT1 is insulin-
independent and is widely distributed in different tis-
sues [8, 9]. Cells need growth factors to facilitate glu-
cose absorption for subsistence and development. T-
cell stimulation leads to fast proliferation and differ-
entiation into effector cells that release cytokines and
mediate the immunity [10-12].
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The non-insulin growth factors such as cytokines in-
cluding interleukin IL3 and IL7 may absorb the glucose
through glucose transporter type 1 (GLUT-1) proteins.
These cytokines can trigger the cascade of important sig-
nals to promote glucose uptake via different pathways.
GLUT1 proteins in response to cytokines released by ac-
tive immune components facilitate the constitutive,
insulin-independent glucose uptake in most of the cells
including hematopoietic and muscle cells [13-15].

The progression of T2DM is also associated to abnor-
mal immune responses [16], and therefore the cytokine-
mediated regulation of GLUT-1 can be thought of play-
ing some significant role in this respect. The metabolic
reprogramming is shaped to help definite cell functions
[17] and glucose uptake delivers a key metabolic control
point through the GLUT family of facilitative glucose
transporters.

In this study, we hypothesize the development of po-
tential immunotherapeutic vaccine candidates for the ac-
tivation and secretion of cytokines (IL-1, IL-3, and IL-7)
to facilitate glucose absorption and cure T2DM. The is-
sues related to insulin resistance could be minimized
through alternative non-insulin dependent GLUT1 path-
way. We predicted the T-cell epitopes and analyzed the
in-silico binding affinity with MHC class-I molecules.

Our Hypothesis: Therapeutic Vaccine for T2DM:
Cytokines induced activation of glucose absorption
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Our vaccine would target the T-cells resulting the secre-
tion of interleukins. Instead of insulin dependent GLUT-
4 channels, these interleukins open up the GLUT-1 pro-
teins and regulate the glucose absorption. Our hypoth-
esis has been illustrated in Fig. 1. This study would
modulate the therapeutic strategies to manage type 2
diabetes mellitus.

Method

Retrieval of protein data

The tissue specific (bearing GLUT-1 receptors) protein
sequences were retrieved from NCBI and Uniprot data-
bases (Supplementary Table 1). The data covered all in-
formation including protein names, gene symbols,
Uniprot accession numbers, protein description and se-
quences. The currently available proteins sequences

Page 3 of 17

associated to type 2 diabetes mellitus (Supplementary
Table 2) were accessed from diabetic databases. We car-
ried out this study using integrated framework (Fig. 2)
by computational tools, databases, online servers and
software (Table 1).

Screening of antigenic proteins

We mapped the non-tissue specific list of diabetic pro-
teins with the entire list of tissue specific proteins using
“Compare Two Lists” tool [23] to shortlist the T2DM as-
sociated proteins in the relevant tissues. The antigenicity
of these shortlisted proteins were determined (based on
the significant threshold level > 0.5) using “VaxiJen v2.0”
server [47]. To select the robust and effective antigenic
proteins, these proteins were further screened and fil-
tered based on the molecular weight (threshold of > 85
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Table 1 Tools, Databases and Software used in this study
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Database/Tools Web Link Purpose References
NCBI https://www.ncbi.nlm.nih.gov/ Accession of Data -
T2D@ZJU http://pharminfo.zju.edu.cn/t2d Diabetes associated genes retrieval [18]
DAPD http://mkarthikeyan.bioinfoau.org/dapd/ Retrieval of proteins [19]
ToxinPred & PredSTP https://webs.iiitd.edu.in/raghava/toxinpred/index.html Prediction of toxic peptides [20, 21]
UniProt http://www.uniprot.org Screening of Diabetic proteins [22]
Compare Two Lists http://jura.wimitedu/bioc/tools/compare.php Comparison [23].
SPpred http://crdd.osdd.net:8081/sppred/submitjsp Solubility/hydrophilicity determination -
PROTPARAM http://web.expasy.org/protparam/ Amino Acid composition [24]
CELLO http://cello life.nctu.edu.tw/ Subcellular Localization Prediction [25]
PROPRED | http://crdd.osdd.net/raghava/propred1/ Prediction of T-Cell epitopes [24]
HADDOCK 2.2 https://haddock science.uu.nl/ Docking of epitopes [26]
IEDB (NetChop) http://tools.iedb.org/netchop/result/ Proteasomal cleavage prediction [27].
IEDB http://tools.iedb.org/conservancy/ Epitope Conservancy Analysis [28]
PEPFOLD http://bioserv.rpbs.univ-paris-diderotfr/services/PEP-FOLD/ 3D Modelling of Epitopes [29]
DAVID Tool https://david.ncifcrf.gov/home.jsp Functional Annotation [30]
HAPPI http://discovery.informatics.uab.edu/HAPPI/ Interactomic analysis [31]
STRING https:/string-db.org/ Interactomic analysis [32].
Cytoscape http://www.cytoscape.org/ Protein-protein interaction [33]
MOE https://www.chemcomp.com/ Epitopes binding energy -
[TASSER https://zhanglab.ccmb.med.umich.edu/I-TASSER/ 3D Model generation [34-36]
Chimera https://www.cgl.ucsf.edu/chimera/ Visualization of proteins [37]
FUNRICH http://www.funrich.org/ Gene enrichment analysis [38]
ERRAT http://servicesn.mbi.ucla.edu/ERRAT/ Error in model estimation [39]
QMean https://swissmodel.expasy.org/gmean/ Quality of model [40, 41]
Rampage Analysis http://mordred.bioc.cam.ac.uk/~rapper/rampage.php Protein Quality [42]
3D Refine http://sysbio.ret.missouri.edu/3Drefine/ Refinement of polyvalent model [43-45]
Antigen Pro http://scratch.proteomics.ics.uci.edu/ Antigenicity [46]
Vaxijen http//www.ddg-pharmfac.net/vaxijen/Vaxilen/ Antigenicity [47-49]
AlgPred http://crdd.osdd.net/raghava/algpred/submission.html Allergenicity -

Sol Pro http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro Solubility of proteins [46]
Expasy http://web.expasy.org/compute_pi/ Molecular Weight prediction [24]
kDa) using Expasy Compute pI/MW tool [24, 50], to target several alleles of MHC Class-I. The multi-
hydrophilicity using SPpred server, amino acid compos-  allelic epitopes-based vaccine has more worth and

ition using Expasy ProtParam tool [24] and subcellular
localization using CELLO v.2.5: Subcellular Localization
Predictor tool [25].

T-cell epitopes prediction and immunogenicity analysis

We predicted multi-allelic T-Cells epitopes of selected
proteins using ProPred-I online server [24]. This server
identified the MHC Class-I regions in the input se-
quences of selected proteins by applying matrices of all
47 alleles of this class. These epitopes have the potential

chance of success as compared to the vaccine that target
only one type of allele in the whole population. The pro-
teasomal cleavage sites of these antigenic proteins were
predicted using NetChop predictor of IEDB tool [27].
The proteasomal prediction is important to find out the
potential immunogenic regions in the selected proteins.
We verified the immunogenicity of MHC Class-I epi-
topes using IEDB server. This tool uses amino acid
properties and their position within the peptide to find
the immunogenicity of a peptide MHC (pMHC) com-
plex [27].
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Conservancy analysis and physicochemical properties
prediction

The conservational analysis of selected epitopes was ana-
lyzed using IEDB server [27] to observe the conservancy
between epitopes and the proteins. We predicted the
physicochemical properties of candidate peptides includ-
ing half-life, instability index, net charge, peptide tox-
icity, and hydropathicity using ToxinPred and PredSTP
servers [20, 21]. The half-life of peptide varies among
species and it is important to determine the half-life of
peptides in humans. The stability profile of peptide is in-
dicated by the value of the instability index. The charge
of a peptide is pH-dependent. At the isoelectric point,
the net charge on protein is zero. The solubility of pro-
tein is lowest at its isoelectric point. The hydropathicity
analysis provides detail information about individual
amino acid that enables us to predict the overall three-
dimensional structure of a protein from its amino acid
sequence. The Support Vector Machine (SVM) model of
amino acid composition was used to predict the toxicity
profile of peptides.

Modelling of epitopes

The three-dimensional (3D) structure of peptides is usu-
ally helpful to understand its topological description,
biological activity and function. The protein structure
prediction often offers a suitable alternative to facilitate
structure-based studies. 3D models of selected epitopes
were generated by using PEP-FOLD ([29], I-Tasser [34]
and Chimera [37] tools to observe epitopic regions and
underlying pattern of amino acids. These tools require
amino acid input sequences to build the peptide folds.

Gene enrichment and annotation analysis

Gene enrichment and annotation analysis of these pep-
tides were performed using FunRich [38] and David tool
[30]. The annotation profiles including functional and
cluster details were studied.

Protein-protein interaction (PPI) analysis

We studied PPI network of selected antigenic proteins
to carryout system level investigations. The target inter-
actions of selected source proteins were retrieved using
STRING database [32]. This database provides the com-
prehensive detail about the interactions, functions and
pathways of sample proteins. The PPI network was con-
structed by using Cytoscape v3.6.0 software [33].

Pathways analysis

To study the physiological role of these potential vaccin-
ating proteins, we designed and constructed the inte-
grated, interactive and metabolic network of T2DM-
related proteins and observed the correlation between
these pathways. Cellular and signaling pathways were

Page 5 of 17

reconstructed from the combined gene signatures using
PathVisio3 tool. These proteins were mapped and cu-
rated using KEGG (Kyoto Encyclopedia of Genes and
Genomes) and WIKI pathways on the basis of literature
and database evidence.

Polyvalent vaccine assembly

Polyvalent vaccine was designed and constructed by
linking selected epitopes of MHC Class-1 using poten-
tial linkers. We used AAY and EAAAK linkers to link
13-epitopes to minimize the undesirable attachment
of their ends that might cause change in amino acid
arrangement and even the functionality of proteins
[51]. To enhance the immunogenicity, the amino acid
sequence (159 residues) of the heparin-binding
hemagglutinin (HBHA) was used as adjuvant. On
both ends of HBHA, EAAAK linkers were used to
make it non-reactive [51]. Epitopes cannot be bluntly
linked with each other to design a polyvalent vaccine.
The arrangement of amino acid sequences is critical
and their order is based on their affinity and compati-
bility with each other. To design the best and com-
patible construct of selected epitopes, we used the
HADDOCK 2.2 server [26] to analyze the binding af-
finity of these epitopes. Initially, the binding affinity
of each epitope was evaluated followed by the com-
bined sequences to shortlist the best construct. The
refinement and residues determination were carried
out using HADDOCK: Refinement Interface and
Cport modules [26] respectively.

Modelling of polyvalent vaccine and quality estimation
The polyvalent vaccine construct was modelled using I-
Tasser server [34]. The input FASTA format of amino
acid sequence was used to generate 3D model. The
model was refined using 3D Refine tool. The quality of
the model was estimated by Ramachandran plot and
quality model energy analysis (QMEAN) score. Rama-
chandran plot accurately describes the protein conform-
ation and illustrates the favorable regions for backbone
dihedral angles against amino acid residues in protein
structure. Similarly, QMean score describes the protein
quality on the basis of different geometrical aspects of its
structure.

In-Silico binding affinity analysis

The binding affinity of polyvalent vaccine model with
MHC class-I molecule was analyzed using Molecular
Operating Environment (MOE) software. The MOE soft-
ware was set at default parameters and the interaction
between molecules was visualized. The active binding
sites of the MHC molecule was observed and the
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binding interaction between the amino acid residues was
assessed based on binding energy.

Results

Identifying antigenic proteins

From the list of 2601 diabetic proteins, we identified 13-
antigenic tissue specific proteins associated with T2DM
based on antigenicity, molecular weight, subcellular
localization, amino acid composition, length of protein se-
quence and solubility using successive screening tools
(Fig. 3a). These selected extracellular and membrane bound
proteins are associated to blood brain barrier, pancreas,
muscles, lymphocytes and intestines (Fig. 3b). These pro-
teins like interleukin-32 (IL-32), insulin like growth factor 1
(IGF1), transforming growth factor beta-1 (TGFB1), toll like
receptors-3 (TLR3) and ras-related C3 botulinum toxin
substrate 1 (RAC1), with their important biological func-
tions including immune modulation, insulin signaling, cell
survival, immune components activation and phosphoryl-
ation during glucose metabolism (Table 2).

MHC peptide binding and prediction of T-cell epitopes
T-cell epitopes (9-mers in length) of 13-selected proteins
were predicted. These MHC class-I specific epitopes are
multi-allelic in nature and could target several alleles of
MHC Class-I of human population. We determined 13-
immunogenic T-cell epitopes with significant percentile
rank (% rank: 0.1), MHC Class-I immunogenicity score
(> 0.5) and multiple alleles hit. These selected T-cell epi-
topes of 13-proteins as potential candidate antigens have
been listed in Table 3.

Proteasomal cleavage and epitope conservation analysis

We applied NetChop tool to predict proteasomal cleav-
age that depends upon a neural network. This method
identified the C-terminal at cleavage sites with the
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threshold value of 0.5 to categorize the cleavage and
non-cleavage sites. We observed the cleavage (positive
predictions) and non-cleavage (negative predictions)
sites of antigenic proteins by proteasomes indicating
their significant role in antigen presentation to MHC
class-I molecule (Fig. 4). The scores of combined predic-
tions of proteasomal cleavage, TAP translocations, and
MHC binding shows each peptide intrinsic capacity of
being a T-cell epitope.

Epitope conservation analysis of antigenic peptides
showed broad coverage and 100% protein sequence
matches. Conservation analysis was performed by
IEDB and epitopes were designed by ProPred-I identi-
fied the MHC Class-I regions in the input sequences
of selected proteins by applying matrices of all 47 al-
leles of this class. Those epitopes were selected that
are present in maximum alleles out of 47 reported al-
leles of MHC class 1. These epitopes have the poten-
tial to target several alleles of MHC Class-I. The
multi-allelic epitopes-based vaccine has more worth
and the chance of success as compared to the vaccine
that targets only one type of allele in the whole popu-
lation. The conserved epitopes have significant ability
to provide the effective immune response (Table 4).
Most of the predicted epitopes have instability index
<40 indicating their stability. A good epitope must be
stable and stay in the body to activate the immune
components. Most of our predicted peptide has a
half-life of more than 5h and all are non-toxic. SVM
score is used to classify either the epitope is toxic or
non-toxic based on the threshold value (non-toxic: <
5). Almost all predicted epitopes have an SVM score
of less than 5 indicating non-toxicity. Amino acid
chains are either hydrophobic or hydrophilic. The
lesser value of hydropathicity means the more hydro-
philic character of epitopes (Table 5).
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Table 2 List of 13-Potential Antigenic Proteins associated with Type 2 Diabetes Mellitus

Tissue Name Gene Uniprot_ID Protein Names Subcellular Localization
Symbol
Blood Brain Barrier  RAC1 RACT_HUMAN Ras-related C3 botulinum toxin substrate 1 (Rho family) Extracellular
Intestinal MMP2 MMP2_HUMAN Matrix metallopeptidase 2 (Gelatinase A, 72 kDa gelatinase) Extracellular
Pancreatic TLR3 TLR3_HUMAN Toll-like receptor 3 (CD antigen CD283) Extracellular
Pancreatic [TGB1 [TB1_HUMAN Integrin beta-1 (Fibronectin receptor subunit beta) (Glycoprotein lla)  Extracellular
Pancreatic LTF TRFL_HUMAN Lactotransferrin (Lactoferrin) (Growth-inhibiting protein 12) Extracellular
Pancreatic IL32 IL32_HUMAN Interleukin-32 (IL-32) (Natural killer cells protein 4) (Tumor necrosis Extracellular
factor alpha-inducing factor)

Muscles LRP6 LRP6_HUMAN Low-density lipoprotein receptor-related protein 6 (LRP-6) Plasma membrane
Muscles LEPR LEPR_HUMAN LEPR protein (Fragment) Extracellular
Muscles TGFB1 TGFB1_HUMAN Transforming growth factor, beta 1 (Camurati-Engelmann disease) Extracellular
Muscles IGF1 IGF1_HUMAN Insulin-like growth factor | (IGF-I) (Somatomedin-C) Extracellular
Muscles HLA-DRA DRA_HUMAN HLA-DRA (MHC class Il antigen) (major histocompatibility complex Plasma Membrane
Lymphocytic ABCB1 A1L471_HUMAN  ATP-binding cassette, (MDR/TAP), member 1 Plasma Membrane
Lymphocytic TRPM7 TRPM7_HUMAN  Transient receptor potential cation channel subfamily M member 7 Plasma Membrane

Molecular modeling of epitopes

We predicted the 3D models of 13-epitopes from input
9-mers amino acid sequences using PEP-FOLD server.
In local structure analysis, the probabilities of each
Structural Alphabet (SA) on vertical and horizontal axis
has been shown (Fig. 5). In heat map Figure, red color
codes indicate the helical form of the structure, green
presents extended and blue indicates coil conformations.
This server found lowest energy conformations with an
average RMSD of 2.1 A.

Functional annotation and gene enrichment analysis

The functional annotation and enrichment of the T2DM
associated proteins were analyzed using DAVID and Fun-
Rich tools. The functional annotation identifies protein

functional domains, disease associations, protein-protein in-
teractions and biological pathways. This cluster analysis
showed that these proteins are significantly associated with
cell-cell communication, glycosylation, cell surface re-
sponses and cell proliferation regulation (Fig. 6a). The bio-
logical role of these potential antigenic proteins has been
importantly seen in immune cell migration, wound healing,
cell mobility, cell communication, anti-apoptosis and lipid
metabolism. Their transcription factors involve NKX2-1,
ELF1. ZNF513, ZNF238, GLI1 and IRF1 with significant p-
values (p < 0.05) expressed in different tissues (Fig. 6b).

Protein-protein interaction analysis
To understand and analyze the topology and functional
annotation of protein-protein interaction (PPI) of

Table 3 Predicted T-Cell Epitopes (antigenic and immunogenic) of selected proteins

Gene Symbol Molecular Mass (KDa) T-Cell Epitopes Peptide Position No. of Alleles Antigenicity MHC Class-I Immunogenicity

UNIPROT_ID

RACI_HUMAN  RACI 23 FDEAIRAVL
MMP2_HUMAN ~ MMP2 74 LVATFWPEL
TLR3_HUMAN TLR3 104 GCFHAIGRL
[TB1_HUMAN ITGB1 88 TGPDIIPIV
TRFL_HUMAN LTF 78 GYTGAFRCL
IL32_HUMAN IL32 27 LQTWWHGVL
LRP6_HUMAN LRP6 180 LDQPRAIAL
LEPR_HUMAN LEPR 75 MWIRINHSL
TGFB1_HUMAN  TGFB1 44 LYIDFRKDL
IGF1_HUMAN IGF1 22 QKEGTEASL
DRA_HUMAN HLA-DRA 29 NVPPEVTVL
A1L471_HUMAN ABCBI1 141 LLERFYDPL
TRPM7_HUMAN  TRPM7 213 KQTEEGGNL

188 10 0.567 0.30733
508 10 06217 042341
215 14 0.528 0.29277
725 7 0.9421 0.342
546 7 1.2559 0.20718
165 10 1.0906 0.53436
137 10 16709 0.17365
511 10 0.6983 0.14943
298 10 0.6744 0.0592
161 2 1.1216 0.13501
109 11 0.5111 0.17848
1083 13 1.3167 0.20734
330 10 1.6003 0.26757
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Table 4 T-Cell Epitopes conservation analysis
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Epitope # Epitope Name Epitope Sequence Epitope Length Sequence Similarity Minimum Identity Maximum Identity
<= 100%
1 ws-separated-0 FDEAIRAVL 9 100.00% (1/1) 100.00% 100.00%
2 ws-separated-1 LVATFWPEL 9 100.00% (1/1) 100.00% 100.00%
3 ws-separated-2 GCFHAIGRL 9 100.00% (1/1) 100.00% 100.00%
4 ws-separated-3 TGPDIIPIV 9 100.00% (1/1) 100.00% 100.00%
5 ws-separated-4 GYTGAFRCL 9 100.00% (1/1) 100.00% 100.00%
6 ws-separated-5 LQTWWHGVL 9 100.00% (1/1) 100.00% 100.00%
7 ws-separated-6 LDQPRAIAL 9 100.00% (1/1) 100.00% 100.00%
8 ws-separated-7 MWIRINHSL 9 100.00% (1/1) 100.00% 100.00%
9 ws-separated-8 LYIDFRKDL 9 100.00% (1/1) 100.00% 100.00%
10 ws-separated-9 QKEGTEASL 9 100.00% (1/1) 100.00% 100.00%
n ws-separated-10 NVPPEVTVL 9 100.00% (1/1) 100.00% 100.00%
12 ws-separated-11 LLERFYDPL 9 100.00% (1/1) 100.00% 100.00%
13 ws-separated-12 KQTEEGGNL 9 100.00% (1/1) 100.00% 100.00%

T2DM-antigenic proteins, the PPI network was con-
structed. The entire network contained high scoring
interaction partners (confidence score: >0.9). The
main component of this network contained 448 nodes
and 484 edges (nodes represent proteins and edges
represent interaction). This interaction network was
largely segregated into three neighborhoods: orange
nodes indicate the potential vaccine candidate pro-
teins; turquoise nodes represent the proteins that are
directly involved in insulin resistance while the pink
nodes are other functional proteins. The topological
analysis revealed the direct interaction of these anti-
genic proteins with the target proteins involved in
apoptosis, aging, cell division, metabolism, glucose
transportation, transcriptional factors activation and

Table 5 Physicochemical properties of Predicted T-Cell epitopes

T-cell stimulation. Of these proteins, IGF1 (IGF1_
HUMAN) is principally interacting with INSR (facili-
tates the action of insulin), FOXO1 (metabolic regula-
tion under stress conditions), STAT3 (involved in
signal transduction and cellular reactions to interleu-
kins) PK3CA (initiates cascades of cell growth, motil-
ity, survival and proliferation pathways), AKT1
(regulates cell cycle, angiogenesis and metabolic pro-
cesses), TNFA (anti-tumor activities and cell differen-
tiation), SOCS3  (negatively regulates cytokine
signaling) and IL-6 (immune components differenti-
ation and critical immune responses). In the same
way, TLR3 (TLR3_HUMAN) is interrelating with
IKKB (controls the production of immune mediators
and provides security against apoptosis), NFKB1 (final

Uniprot ID Peptide Sequence SVM Score Prediction Hydropathicity Charge Half-Life (Hours) Instability Index
RAC1_HUMAN FDEAIRAVL -0.87 Non-Toxin 0.82 -1 1 226
MMP2_HUMAN LVATFWPEL -122 Non-Toxin 1.08 -1 55 4191
TLR3_HUMAN GCFHAIGRL -04 Non-Toxin 0.77 1.5 30 8.89
[TB1_HUMAN TGPDIIPIV -0.52 Non-Toxin 1.1 -1 72 -21.56
TRFL_HUMAN GYTGAFRCL -062 Non-Toxin 04 1 30 744
IL32_HUMAN LQTWWHGVL -1.31 Non-Toxin 0.24 0.5 55 432
LRP6_HUMAN LDQPRAIAL -132 Non-Toxin 0.29 0 55 2191
LEPR_HUMAN MWIRINHSL -0.55 Non-Toxin 02 15 30 8.89
TGFB1_HUMAN LYIDFRKDL -1.01 Non-Toxin -0.2 0 55 0.51
IGF1_HUMAN QKEGTEASL —0.81 Non-Toxin -1.19 -1 038 20.86
DRA_HUMAN NVPPEVTVL -1.14 Non-Toxin 061 -1 14 61.57
A1L471_HUMAN LLERFYDPL =117 Non-Toxin -0.02 -1 55 7142
TRPM7_HUMAN KQTEEGGNL —0.84 Non-Toxin -173 -1 13 97.1
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product of many signal transduction pathways stimu-
lated by inflammation, apoptosis and cell growth) and
LRP6 (LRP6_HUMAN) interacts with GSK3B (regula-
tor of glucose homeostasis) (Fig. 7). Such interaction
of antigenic proteins makes them effective to regulate
the immune responses and metabolic pathways.

Pathways analysis

The pathways modeling showed that several pathways
are involved in T2DM- pathophysiology and they are
connected with our core vaccinating proteins. This ana-
lysis indicated the association of antigenic protein with
immune system and cellular signaling mechanism. Be-
sides insulin-signaling and insulin-resistance pathways,
the others are AMPK signaling, JAK/STAT pathway,
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FOXO signaling, P13K-AKT signaling, and WNT path-
ways are associated to our potential antigenic proteins
and responsible for the activation of immune compo-
nents and GLUT-1 receptors to regulate T2DM. It was
found that some proteins like RAC1_Human, IGF1_Hu-
man, ITB1I_Human were associated with the activation
of P13K-AKT pathway which is the main regulator of
many cellular processes like cell growth, survival and
glucose metabolism. In insulin resistance, the FOXO sig-
naling pathway activates GLUT-1 and inhibition of
GLUT-4 by IKKB. The immune-regulatory mechanism
and increased production of cytokines is associated with
the activation of JAK/STAT pathway and GLUT-1 re-
ceptors to control glucose metabolism and T2DM
(Fig. 8).
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Polyvalent vaccine construct

For the construction of final vaccine construct, predicted
T-cell epitopes were linked to each other with help of
suitable and flexible AAY linkers. HBHA (1-159 resi-
dues) as adjuvant was added at N-terminals of final con-
structs with the help of EAAAK linker (Fig. 9a). After
adding linkers and adjuvant, the final construct contained
322 amino acid residues with the molecular weight of
35.6 kDa and 3D-model was generated (Fig. 9b). Our poly-
valent epitope model showed significant antigenicity (>
0.5) determined by Vaxijen server. Analysis of Ramachan-
dran plots indicated that 68.8% residues of polyvalent pro-
tein model (alpha-helices) were in the most favored
regions with the 98% expectation while 2% in the allowed

region. The Ramachandran plot is demonstrating low en-
ergy conformations for ¢ (phi) and (psi) angles of the
model. The graphical representation shows the local back-
bone conformation of each residue and more than 68%
residues are in favorable region (Fig. 9c). The model was
refined and the quality of the construct was estimated by
QMEAN score (- 15.9) and C-score (- 3.62) (Fig. 9d).

Molecular docking: MHC class-I and epitope binding
analysis

We analyzed the binding affinity of polyvalent vaccine
construct with MHC class-I molecule using MOE
software. The lowest binding energies confirmed the
optimum binding patterns between these molecules.
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The interaction of poly-epitopes (ligand) and MHC
class-I (target) have been shown in Fig. 10a. We
found the following binding energy of polyvalent con-
struct with MHC class-I molecule: - 15.34 Kcal/mole
(Ilustration Table of Fig. 10a). It has been observed
that polyvalent interacted with ARG, PRO, GLU,
TRP, ASP, GLY, THR, LYS, ALA, PHE, TYR, GLN,
MET, HIS and LEU amino acid residues of MHC
class-I molecule (Fig. 10b). This interaction would
prove that our polyvalent would be effective thera-
peutic vaccine candidate for T2DM.

Discussion

Type 2 diabetes mellitus is a metabolic complex disease
caused by several factors that is characterized by relative
lack of obesity, insulin, insulin resistance, and high blood
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sugar [52, 53]. Although new therapies and management
protocols to cure T2DM are being introduced, still the
exact causes and effective treatment is imprecise. Cur-
rently, we are using different drug molecules to maintain
blood glucose level and cure T2DM [54, 55]. These
medications only minimize the symptoms of hypergly-
cemia and provide short term control. As a result, the
drug resistance is developed in most of the diabetic pa-
tients and in the while, disease progress so fast that
drugs alone cannot encounter it [56].

The current study signifies the importance of im-
munotherapies and vaccine development to modify the
therapeutic strategies. Therapeutic vaccines could be ef-
fective to manage T2DM [57] as immune components
have been found interactive with glucose transporter
proteins [58].
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-
Microbial and Pathogen associated molecular
patterns that are recognized by cells and Toll Like
Receptors (TLRs) of the innate immune system.
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It has been observed that the blood serum cytokines
level elevates in diabetic conditions and in turn cyto-
kines opens up the insulin independent glucose trans-
porter channels and cells absorb the glucose [59]. The
significant association of interleukin-1f (IL-1p) with
T2DM is reported [53] and the role of antibodies has
been studied in diabetic conditions [60].

The evidences about the association of GLUT-1 with
immune components are available. It has been revealed
that macrophages critically require GLUT-1 for their in-
flammatory response [61]. Also, the lymphocytes func-
tioning demands high levels of energy that is assisted by
GLUT-1 and in turn the expression of GLUT-1 remark-
ably increases with the increase of immune cells activa-
tion [17]. CD4 T-cells and T-effector cells also depends
on GLUT-1 for their survival and programming regard-
ing glucose metabolism and the GLUT-1 deficiency
causes impairment of both glycolysis and T cells survival
[15]. IL3 has reported to be involved in the trafficking
and recycling of GLUT-1 intracellularly and controlling
its expression on the cell surface, thus, maintaining the
glucose uptake [62]. Cytokines like IL-1p enhances the
expression of GLUT-1 and increase the glucose uptake
in human articular chondrocytes [63].

Cytokines have also been known to affect and upregu-
late the GLUT-1 expression significantly by increasing
the nitric oxide production levels [64]. Cytokines inhibit
the tyrosine kinase activity which downregulates the in-
sulin dependent GLUT-4 and upregulates the expression
of insulin independent GLUT-1 [65]. CD28 alone as well

as by secreting other immune mediators increases the
GLUT-1 induction considerably [66]. TNFA (Tumor
Necrosis Factor Alpha) has a cause and effect bond with
GLUT-1 and plays a key role in the stabilization of
GLUT-1 [67]. Similarly, stimulation of CD46 in CD4 T
cells of humans causes the elevated expression of
GLUT-1 on cells surfaces [68]. Numerous methods and
databases for developing vaccines or immunotherapy
against various pathogenic diseases have been developed
over the last 20 years. T-cell epitope prediction methods
that include indirect techniques such as Major Histo-
compatibility Complex prediction and transporter-
associated protein binders [69]. Endogenous proteins
may promote the hypercreativity and autoimmune reac-
tions, however few studies showed that predicted epi-
topes of endogenous proteins exhibited significant, safe
and effective results in animals. Recently, the vaccines
for metabolic diseases have made considerable progress,
particularly in the treatment of dyslipidemia, atheroscler-
osis, diabetes mellitus and hypertension, but comprehen-
sive studies are required before any clinical applications
[70]. Since T2DM is a multifactorial disorder, T2DM
therapeutic-vaccine has been designed to predict obesity
protein antigens [71]. Such vaccine targets include adi-
pose tissue antigens, somatostatin, glucose-dependent
insulinotropic polypeptide (GIP), and ghrelin [71]. In the
studies of Zhang et al., 2018 and Zha et al., 2016 re-
ported that cytokine L-1f3 is a key proinflammatory sub-
stance in T2DM pathogenesis and has shown a
reduction in weight gain, improved glucose tolerance
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Fig. 9 a Complete sequence of polyvalent vaccine showing the 13 epitopes joined by proper linkers AAY and the suitable adjuvant HBHA at the
start, bordered by EAAAK linkers b generated polyvalent 3-D model ¢ Ramchandaran Plot for quality estimation and configuration d Quality
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and insulin sensitivity, and a lower B-cell loss in their refined vaccine structure with different MHC molecules
vaccine with predicted peptide epitopes [55, 72]. Simi- and human immune TLR-2 receptor proved significant
larly, in phase I/II clinical trials vaccine HillbQb target- interaction [76]. In this case, the sequences of those pro-
ing IL-1p was found safe and well-tolerant [73]. teins would be required against which we have to design
Dipeptidyl peptidase 4 (DPP4) has been studied as an in-  a vaccine. This strategy could be effectively applied for
hibitor of the glucagon-like peptide-1 (GLP-1) glucose- the development of polyvalent vaccine candidates for
dependent insulinotropic peptide (GLP) [74], a thera- other diseases specifically cancer and autoimmune
peutic vaccine against DPP4 that has shown important,  diseases.

safe and successful results in the control of glucose

levels in the mouse using GLP-1 [75]. In-silico method  Conclusion

for the prediction of antigenic peptides and polyvalent This study focused to design potential T-cell poly-
construction could be used to develop vaccines for other  epitopes to simulate the immune components to pro-
human diseases. Molecular docking analysis of the voke glucose transporters to control hyperglycemia. Our
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integrated  immunoinformatic ~ framework  would
strengthen the therapeutic discoveries and improve the
treatment options to manage type 2 diabetes mellitus.
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