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Correction to: BMC Mol Cell Biol 23, 5 (2022)
https://doi.org/10.1186/s12860-021-00402-5
Following publication of the original article [1], the fol-

lowing typesetting error was noticed:

1) The equal contribution note has been updated.
2) Table  1, column 4 (InterPro-Protein Family), row 3 

“ransferase” should be “transferase”
3) The footnote for Table  3 was mistakenly added 

to the body text (last para in pg 10 [1], continued 
as para 1 in pg.12 i.e. “Results are presented as the 
mean±SD………....to compare our results with other 
putative ligands” The correct Table  3 and footnote 
are supplied below.

4) The footnote for Table 5 was mistakenly added to the 
body text. The correct Table 5 and footnote are sup-
plied below.

5) In the section Molecular dynamics simulations with 
GROMACS “Eight compounds showing ΔG value 
of ≤ −1.0 kcal/mol predicted by AutoDock Vina”, 
should be “Eight compounds showing ΔG value of ≤ 
−0.1 kcal/mol predicted by AutoDock Vina”
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Table 3 Estimated binding free energy and dissociation constant between putative substrates and human UGT2B10

Results are presented as the mean ± SD of three different replicates. Kd dissociation constant, UDCA-G1 and UDCA-G2 ursodeoxycholic acid glucuronide conjugate 1 
and 2 [44], UDPGlcA UDP-glucuronic acid. Molecules with ΔG of < −0.1 and with an SD of ≤0.1 Kcal/mol were selected for further for MD simulations (methotrexate 
was not selected as it has an SD 0.5). SD is calculated from 8 docking poses or models (default option). The ligand binding pose was selected for further analyses is the 
pose with the lowest free binding energy (Kcal/mol). Bilirubin was selected for further molecular docking simulations as an endogenous negative control to compare 
our results with other putative ligands

Model Substrate Ligand ΔG[Kcal/mol ± SD] Kd[mM]

UGT2B10 with UDPGlcA Controls Amitriptyline −1.9 ± 0.2 39.0
Itraconazole 19.0 ± 0.5 1.1 ×  1017

Putative ligands 4-hydroxy voriconazole −1.0 ± 0.0 184.7
Acetaminophen −5.5 ± 0.0 0.1
Cyclosporine A 154.9 ± 2.9 1.8 ×  10118

Bilirubine 6.9 ± 0.0 1.2 ×  1015

Dihydroxy voriconazole −0.6 ± 0.0 363.0

Hydroxy voriconazole −1.2 ± 0.1 125.0
Lorazepam −2.6 ± 0.0 12.4
Methotrexate −0.5 ± 0.5 567.3

Methylprednisolone 5.2 ± 0.1 6.2 ×  106

Mycophenolic acid −5.1 ± 0.1 0.2
Posaconazole 17.6 ± 0.3 8.8 ×  1015

UDCA‑G1 2.2 ± 0.1 4.4 ×  104

UDCA‑G2 1.2 ± 0.1 8053.6

Ursodeoxycholic acid 2.2 ± 0.1 4.4 ×  104

Voriconazole −1.0 ± 0.1 197.8
Voriconazole N-oxide −2.3 ± 0.1 2.1 × 104

Voriconazole N-oxide intermediate 
UK-215,364 [35]

−6.4 ± 0.1 0.02
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Table 5 Average values of hydrogen bonds, RMSD, RMSF, RoG, SASA, trace of the covariance matrix values and MM/PBSA binding free 
energy values of the different UGT2B10 with putative substrates

Results are indicated as mean ± SD of the MD simulation’s analysis results. 4HVCZ 4-hydroxy voriconazole, AMT amitriptyline, APAP acetaminophen, BIL bilirubin, 
DHVCZ Di-hydroxy voriconazole, HVCZ Hydroxy voriconazole, ITZ itraconazole, LOR lorazepam, MPA mycophenolic acid, NC Not calculated, VCZ-N-O voriconazole 
N-oxide, RMSD root mean square deviation, RMSF root mean square fluctuation, RoG radius of gyration, UDPGlcA UDP-glucuronic acid

Complex Average 
number 
of intra-
molecular 
hydrogen 
bonds± SD

Average 
number 
of inter-
molecular 
hydrogen 
bonds± SD

Average 
RMSD[nm ± SD]

Average 
RoG[nm]

Average 
RMSF[nm ± SD]

Average 
 SASA[nm2 
± SD]

Trace of the 
covariance 
 matrix[nm2]

MMPBSAbinding 
free energy[kcal/
mol]

UGT2B10 
apo form

302.73 ± 
9.60

N/A 0.39 ± 0.05 2.26 ± 1.38*10− 2 0.20 ± 0.08 216.39 ± 
4.74

42.08 NA

UGT2B10‑
UDPGlcA

305.29 ± 
11.70

7.54 ± 2.01 0.43 ± 0.05 2.28 ± 9.57*10− 4 0.19 ± 0.09 221.01 ± 
5.74

38.82 NC

UGT2B10‑
UDPGlcA‑
AMT

290.12 ± 
10.25

0.21 ± 0.41 0.49 ± 0.05 2.29 ± 1.16*10− 2 0.21 ± 0.12 227.45 ± 
4.47

55.6 − 160.85 ± 10.99

UGT2B10‑
UDPGlcA‑
APAP

304.67 ± 
8.96

1.16 ± 0.68 0.47 ± 0.08 2.24 ± 2.84*10− 2 0.25 ± 0.11 224.61 ± 
4.02

76.97 − 174.24 ± 13.38

UGT2B10‑
UDPGlcA‑
BIL

292.97 ± 
11.69

0.00 ± 0.00 0.39 ± 0.07 2.31 ± 1.88*10− 2 0.21 ± 0.13 234.64 ± 
3.93

65.10 −104.00 ± 11.06

UGT2B10‑
UDPGlcA‑
ITZ

310.11 ± 
10.43

0.24 ± 0.44 0.51 ± 0.05 2.33 ± 1.29*10− 2 0.23 ± 0.14 244.84 ± 
6.86

60.70 − 127.79 ± 15.25

UGT2B10‑
UDPGlcA‑
LOR

300.25 ± 
8.69

0.65 ± 0.79 0.42 ± 0.06 2.28 ± 1.14*10− 2 0.20 ± 0.10 230.58 ± 
3.67

48.81 − 162.07 ± 19.30

UGT2B10‑ 
UDPGlcA‑
MPA

303.7 ± 9.09 2.48 ± 1.33 0.47 ± 0.05 2.33 ± 1.21*10− 2 0.22 ± 0.16 230.48 ± 
6.97

60.23 − 158.46 ± 11.95

UGT2B10‑
UDPGlcA‑
VCZ

301.51 ± 
9.69

0.76 ± 0.96 0.49 ± 0.07 2.31 ± 2.16*10− 2 0.24 ± 0.16 234.23 ± 
5.28

87.61 −59.56 ± 17.13

UGT2B10‑
UDPGlcA‑
HVCZ

311.18 ± 
9.89

0.87 ± 0.66 0.46 ± 0.05 2.27 ± 1.13*10− 2 0.19 ± 0.09 224.92 ± 
5.18

40.50 −85.43 ± 14.23

UGT2B10‑
UDPGlcA‑
DHVCZ

308.33 ± 
9.97

1.21 ± 0.83 0.43 ± 0.04 2.29 ± 1.13*10− 2 0.20 ± 0.10 227.99 ± 
4.71

43.27 −86.34 ± 25.35

UGT2B10‑
UDPGlcA‑
4HVCZ

309.36 ± 
11.59

0.00 ± 0.00 0.44 ± 0.03 2.26 ± 8.81*10− 3 0.18 ± 0.09 223.49 ± 
6.05

38.55 −95.43 ± 18.47

UGT2B10‑
UDPGlcA‑
VCZ‑N‑O

303.01 ± 
10.28

1.38 ± 0.78 0.43 ± 0.05 2.30 ± 1.28*10− 2 0.22 ± 0.11 233.91 ± 
5.20

58.16 − 12.41 ± 19.02

UGT2B10‑
UDPGlcA‑
VCZ‑N‑
O‑inter‑
mediate 
UK‑215,364 
[35]

305.54 ± 
12.28

0.72 ± 0.52 0.38 ± 0.03 2.3 ± 1.19*10− 2 0.18 ± 0.1 227.28 ± 
4.55

37.75 − 164.44 ± 13.38
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