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Abstract 

Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the 
underlying mechanisms remain unclear. High mobility group box protein 1 (HMGB1) is associated with both pyropto-
sis and autophagy. lipopolysaccharide (LPS) is an important pathogenic factor involved in sepsis. Lentivirus-mediated 
HMGB1 shRNA was used to inhibit the expression of HMGB1. Macrophages were treated with acetylation inhibitor 
(AA) to suppress the translocation of HMGB1 from the nucleus to the cytosol. Autophagy and pyroptosis-related 
protein expressions were detected by Western blot. The levels of caspase-1 activity were detected and the rate of 
pyroptotic cells was detected by flow cytometry. LPS induced autophagy and pyroptosis of macrophages at different 
stages, and HMGB1 downregulation decreased LPS-induced autophagy and pyroptosis. Treatment with acetylation 
inhibitor (anacardic acid) significantly suppressed LPS-induced autophagy, an effect that was not reversed by exog-
enous HMGB1, suggesting that cytoplasmic HMGB1 mediates LPS-induced autophagy of macrophages. Anacardic 
acid or an anti-HMGB1 antibody inhibited LPS-induced pyroptosis of macrophages. HMGB1 alone induced pyroptosis 
of macrophages and this effect was inhibited by anti-HMGB1 antibody, suggesting that extracellular HMGB1 induces 
macrophage pyroptosis and mediates LPS-induced pyroptosis. In summary, HMGB1 plays different roles in mediating 
LPS-induced autophagy and triggering pyroptosis according to subcellular localization.
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Introduction
The pathophysiology of sepsis involves dysregulation of 
the inflammatory response, and the imbalance between 
pro- and anti-inflammatory mediators contributes to the 
deterioration of sepsis [1, 2]. Monocytes/macrophages 
are non-specific immune cells that play important roles 
in monitoring and defense. In the early stage of sep-
sis, monocytes/macrophages are activated and release a 
large number of inflammatory cytokines, resulting in an 
uncontrolled inflammatory response and dysregulation 
of immune functions [3].

Pyroptosis is a programmed cell death process charac-
terized by the release of inflammatory cytokines. It can 
be overactivated in sepsis and result in septic shock, mul-
tiple organ dysfunction syndrome, or increased risk of 
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Fig. 1 LPS increases autophagy and pyroptosis-related proteins levels. Mouse mononuclear macrophage RAW264.7 were treated with LPS (1 μg/
ml) for 0-36 h. A, B. Western blot analysis of autophagy-related protein (LC3) expression. C, D. Western blot analysis of the pyroptosis-related protein 
expression in culture supernatants and cell lysates. **P < 0.01 versus the control group
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secondary infection [4, 5]. A recent study indicated that 
liver macrophages undergo pyroptosis in an inflammas-
ome-dependent manner during sepsis, contributing to 
organ dysfunction [6]. Macrophages can also undergo 
autophagy, another programmed cell death process, dur-
ing sepsis. Autophagy can play a protective role in sep-
sis by negatively regulating the abnormal activation of 
macrophages and suppressing the activation of inflam-
masomes and the release of inflammatory factors [7]. 
However, excessive autophagy can aggravate the inflam-
matory response by leading to autophagic death of mac-
rophages [7].

The specific pathway mediating the processing of mac-
rophages is important in sepsis, although the underlying 
mechanisms remain unclear. High mobility group box 
protein 1 (HMGB1), a critical proinflammatory media-
tor, is involved in both pyroptosis and autophagy [8]. 
HMGB1 interacts with receptor for advanced glycation 
end products (RAGE) to initiate HMGB1 endocytosis, 
which in turn triggers the release of cathepsin B from 
ruptured lysosomes, followed by pyroptosome formation 
and caspase-1 activation during macrophage pyroptosis 

[9]. HMGB1 induces autophagy through multiple path-
ways in cancer, and loss of HMGB1 in macrophages 
results in the suppression of autophagy [10, 11]. How-
ever, the mechanisms underlying the seemingly contra-
dictory roles of HMGB1 are unknown.

In this study, we investigated the role of HMGB1 in 
lipopolysaccharide (LPS)-induced autophagy and pyrop-
tosis of macrophages. The results indicate that HMGB1 
plays different roles in mediating LPS-induced autophagy 
and triggering pyroptosis, according to subcellular 
localization.

Materials and Methods
Cell lines and cell culture
Mouse mononuclear RAW264.7 macrophages were pur-
chased from ATCC (Manassas, VA, USA) and cultured 
in Dulbecco’s Modified Eagle’s medium supplemented 
with 10% fetal bovine serum (Thermo Fisher Scien-
tific, Waltham, MA, USA) at 37  °C and 10%  CO2. LPS 
(Sigma-Aldrich, St. Louis, MO, USA) or recombinant 
mouse HMGB1 protein (Novus Biologicals, Centen-
nial, CO, USA) was added into the medium to stimulate 

Fig. 2 LPS induces macrophage autophagy and pyroptosis. Mouse mononuclear macrophage RAW264.7 were treated with LPS (1 μg/ml) for 
0-36 h. A. The levels of caspase-1 activity were detected. B, C. The rate of pyroptotic cell was detected by flow cytometry. *P < 0.05 versus the control 
group



Page 4 of 13Shang et al. BMC Molecular and Cell Biology            (2023) 24:2 

Fig. 3 Knockdown of HMGB1 mitigates the LPS-induced macrophage autophagy and pyroptosis. Macrophage RAW264.7 were transfected with 
Lentivirus-mediated HMGB1 shRNA or non-specific shRNA (Lv-NC) and then treated with LPS (1 μg/ml) for 12 h. HMGB1 expression levels were 
detected by Realtime PCR (A) and western blot (B, C). D. The levels of caspase-1 activity were detected after treatment with LPS for 36 h. E. The rate 
of pyroptotic cell was detected by flow cytometry after treatment with LPS for 36 h. *P < 0.05, P < 0.01 versus the control + LPS group
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Fig. 4 Knockdown of HMGB1 decreases autophagy and pyroptosis-related proteins levels. Macrophage RAW264.7 were transfected with 
Lentivirus-mediated HMGB1 shRNA or non-specific shRNA (Lv-NC) and then treated with LPS (1 μg/ml) for 12 h. Autophagy-related protein 
(LC3) expression (A, B) and pyroptosis-related protein expression (C, D) were detected by western blot after treatment with LPS for 12 h or 36 h 
respectively. *P < 0.05, P < 0.01 versus the control + LPS group
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RAW264.7 cells at the indicated concentration. 5  mM 
ATP was added for 1 h before subsequent experiments.

Western blot analysis
Soluble protein in the culture supernatant was precipi-
tated with 7.2% trichloroacetic acid plus 0.15% sodium 
deoxycholate. Cells were lysed on ice in RIPA lysis buffer 
(Thermo Fisher Scientific) supplemented with a pro-
tease inhibitor cocktail (Thermo Fisher Scientific). Equal 
amounts of protein (30 μg) were then separated by 10% 
–15% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis and transferred onto polyvinylidene difluoride 
membranes. The membranes were blocked with 5% fat-
free dry milk in Tris Buffered Saline with Tween 20 for 
1  h and incubated with primary antibodies, including 
anti-IL-1β (Cell Signaling Technology, Danvers, MA, 
USA) and anti-caspase-1 (Santa Cruz Biotech, Dallas, 
TX, USA) for soluble proteins, and anti-IL-1β, anti-cas-
pase-1, anti-LC3, anti-HMGB1, anti-GAPDH (all from 
Santa Cruz Biotech) and anti-Gasdermin D (GSDMD) 
(Abcam, Cambridge, UK) for cytoplasmic proteins for 
14 h at 4 °C. The blots were washed and incubated with 
HRP-conjugated secondary antibodies (Santa Cruz Bio-
tech) for 1  h at room temperature. The blots were cut 
prior to hybridisation with antibodies during blotting. 
Protein signals were visualized using an ECL kit (Thermo 
Fisher Scientific), followed by imaging using the Bio-Rad 
imaging system (Bio-Rad, Hercules, CA, USA).

Caspase‑1 activity analyses
Caspase-1 activity was determined using the Caspase 
1 Activity Assay Kit (Beyotime, China) following the 
manufacturer’s instructions. Briefly, 50  μg of total cyto-
solic protein was incubated with 20 nmol Ac-YVAD-pNA 
overnight at 37  °C. Caspase-1 activity was evaluated by 
the production of pNA, which was determined by meas-
uring absorbance at 405  nm using a spectrophotometer 
(Thermo Fisher Scientific).

Flow cytometry analysis of cell pyroptosis
Cells were incubated with FAM-labeled caspase-1 FLICA 
(Bio-Rad, Hercules, CA, USA) at 37 °C for 1 h. Cells were 
fixed with 4% paraformaldehyde and then stained with 
TMR red-labeled In-Situ Cell Death Detection reagent 

(Roche Applied Science, Indianapolis, IN, USA) for 1 h. 
The cells were analyzed by flow cytometry using a FAC-
Scalibur flow cytometer (BD Biosciences, San Jose, CA, 
USA). Background and auto-fluorescence were deter-
mined using isotype controls. The double-stained cells 
were counted as pyroptotic cells, and the rate of pyropto-
sis was calculated.

Cell transfection
RAW264.7 cells were cultured in 12-well plates for 24 h 
before transfection. Cells were transfected with HMGB1 
shRNA lentiviral particles (Santa Cruz Biotechnology) 
using Polybrene. After 48 h of transfection, the efficiency 
of HMGB1 knockdown was confirmed by real-time PCR 
and western blotting.

Real‑time PCR
Total RNA was isolated using the Trizol reagent 
(Ambion, USA). cDNA was prepared using a Verso 
cDNA synthesis kit (Thermo Fisher Scientific) following 
the manufacturer’s protocol with a total reaction volume 
of 20  μl. Real-time PCR was performed using a SYBR 
green master mix qPCR kit (Thermo Fisher Scientific) 
on the ABI 7500 real-time PCR system. The primers for 
HMGB1 were 5′-GCT GAC AAG GCT CGT TAT GAA-3′ 
(forward) and 5′ -CCT TTG ATT TTG GGG CGG TA-3′ 
(reverse), and those for GAPDH were 5′ -AGG TCG GTG 
TGA ACG GAT TTG-3′(forward) and 5′ -GGG GTC GTT 
GAT GGC AAC A-3′ (reverse). Relative mRNA expression 
was normalized to GAPDH using the  2−ΔΔCt method.

Immunofluorescence confocal microscopy
RAW264.7 cells were cultured on glass coverslips in 
12-well plates and treated with anacardic acid (AA, 
Sigma-Aldrich) (25  mmol/l) or anti-HMGB1 antibody 
(10 μg/ml) for 12 h. Then, the coverslips were fixed with 
2% paraformaldehyde for 15  min at room temperature 
and permeabilized with 0.1% Triton X-100 for 10 min at 
room temperature. After incubation with anti-HMGB1 
antibody (1:500) overnight at 4  °C, cells were incubated 
with Alexa Fluor Plus 555 conjugated secondary antibody 
(Thermo Fisher Scientific) (1:200) for 1 h. 4’,6-diamidino-
2-phenylindole was used for nuclear staining. Images 
were acquired with a confocal microscope (Zeiss LSM 
510 Meta; Carl Zeiss).

Fig. 5 Cytoplasm HMGB1 mediates LPS-induced autophagy of macrophages. A. Macrophage RAW264.7 were pretreated with 25 mmol/l anacardic 
acid (AA) and then treated with LPS (1 μg/ml) or LPS combined anti-HMGB1 antibodies (10 μg/ml) for 12 h. HMGB1 expression and location were 
detected by immunofluorescence. B, C. Macrophage RAW264.7 were pretreated with AA and then treated with LPS or LPS combined HMGB1 
(500 ng/ml) or anti-HMGB1 antibodies for 12 h. LC3 expression were detected by western blot. **P < 0.01 versus the control group. ##P < 0.01 versus 
the LPS group. &&P < 0.01 versus the LPS + AA + HMGB1 group

(See figure on next page.)
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Fig. 5 (See legend on previous page.)



Page 8 of 13Shang et al. BMC Molecular and Cell Biology            (2023) 24:2 

Statistical analysis
The data from at least three experiments are presented as 
the mean ± SD. The significance of differences between 
multiple groups and between two groups was determined 
using one-way ANOVA followed by Tukey’s post-hoc test 
and the two-tailed Student’s t-test, respectively. P < 0.05 
was considered statistically significant.

Results
LPS induces autophagy and pyroptosis of macrophages 
at different stages
To evaluate the effects of LPS on macrophage autophagy 
and pyroptosis, mouse mononuclear RAW264.7 mac-
rophages were treated with LPS for different times and 
analyzed by western blotting. The results showed that 
the levels of endogenous LC3-II increased significantly at 
12 h after LPS treatment and began to decrease after 24 h 
(Fig. 1A, B). Next, we detected caspase-1 activity and the 
levels of cleaved caspase-1 and IL-1β. The results showed 
that mature IL-1β and caspase-1 p10 were released into 
the culture supernatant after LPS treatment for 24 h and 
continued to increase at 36 h (Fig. 1C, D). As a pyropto-
sis inducing protein, GSDMD was also cleaved to release 
GSDMD -N domain  (GSDMDNT) after LPS treatment 
for 24 h and 36 h (Fig. 1C, D). LPS significantly increased 
caspase-1 activity after 36 h (Fig. 2A). The rate of pyrop-
totic cells detected by flow cytometry also increased sig-
nificantly after 36 h of LPS treatment (Fig. 2B, C). These 
results indicate that LPS induced autophagy and pyrop-
tosis of macrophages at different stages.

HMGB1 downregulation blocks LPS‑induced autophagy 
and pyroptosis of macrophages
To explore the role of HMGB1 in LPS-induced autophagy 
and pyroptosis of macrophages, lentivirus-mediated 
HMGB1 shRNA was used to inhibit the expression of 
HMGB1 in mouse monocyte RAW264.7 macrophages. 
Real-time PCR and western blotting showed that 
HMGB1 expression was significantly downregulated by 
shRNA in macrophages treated with LPS (Fig.  3A-C). 
HMGB1 shRNA also inhibited caspase-1 activity and 
pyroptosis of macrophages (Fig. 3D, E). Besides, HMGB1 
downregulation significantly suppressed the LPS-induced 
increase of endogenous LC3-II levels (12 h) (Fig. 4A, B). 
Therefore, we can draw that LPS induced an increase of 

LC3-II level and HMGB1 knockdown decreases LC3-II 
levels in cells treated with LPS according to the experi-
mental results from Figs. 1A, B and Fig. 4A, B. The rela-
tive levels of mature IL-1β, caspase-1 p10 and cleavage of 
the GSDMD-N domain, caspase-1 activity, and the rate of 
pyroptosis were significantly decreased in macrophages 
transfected with HMGB1 shRNA compared with the 
controls after LPS treatment for 36 h (Fig. 4C, D). These 
results indicate that HMGB1 downregulation blocked 
LPS-induced autophagy and pyroptosis of macrophages.

Cytoplasmic HMGB1 mediates LPS‑induced autophagy 
of macrophages
HMGB1 is present in the nucleus and cytoplasm of cells, 
and is released from cells during infection and ster-
ile tissue injury [12]. It may function depending on its 
localization [13]. To determine whether HMGB1 with 
different subcellular localizations regulates LPS-induced 
autophagy of macrophages, we treated macrophages 
with acetylation inhibitor (AA) to suppress the translo-
cation of HMGB1 from the nucleus to the cytosol. As 
shown in Fig. 5A, LPS treatment promoted the transloca-
tion of HMGB1 from the nucleus to the cytosol, and AA 
inhibited this translocation, whereas anti-HMGB1 anti-
body had no significant effect. LPS induced an increase 
in LC3II protein level and AA significantly suppressed 
the LPS-induced increase of endogenous LC3-II levels, 
an effect that was not reversed by exogenous HMGB1 
(Fig. 5B-C). An anti-HMGB1 antibody was used to block 
extracellular HMGB1, which had no effect on LC3-II lev-
els (Fig.  5B-C). These results demonstrate that HMGB1 
regulates LPS-induced macrophage autophagy in the 
cytoplasm but not in the nucleus or the extracellular 
compartment.

Extracellular HMGB1 induces macrophage pyroptosis
Next, we investigated the relationship between HMGB1 
with different subcellular localizations and LPS-induced 
pyroptosis. As shown in Fig. 6A–D, treatment with AA or 
anti-HMGB1 antibody inhibited LPS-induced pyroptosis 
of macrophages. Treatment with HMGB1 alone induced 
pyroptosis of macrophages and was inhibited by anti-
HMGB1 antibody (Fig.  7A, B). The results indicate that 
extracellular HMGB1 can induce macrophage pyroptosis 
alone and also mediate LPS-induced pyroptosis.

(See figure on next page.)
Fig. 6 Extracellular HMGB1 up-regulates pyroptosis-related proteins levels in macrophage. Macrophage RAW264.7 were pretreated with AA and 
then treated with LPS or LPS combined HMGB1 or anti-HMGB1 antibodies for 36 h. A, B. The pyroptosis-related protein expressions were detected 
by western blot. C. The levels of caspase-1 activity were detected. D. The rate of pyroptotic cell was detected by flow cytometry. *P < 0.05, **P < 0.01 
versus the control group. #P < 0.05, ##P < 0.01 versus the LPS group. $P < 0.05, $$P < 0.01 versus the LPS + AA group. &P < 0.05, &&P < 0.01 versus the 
LPS + AA + HMGB1 group
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Fig. 6 (See legend on previous page.)
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Fig. 7 Extracellular HMGB1 induces macrophage pyrolysis. Macrophage RAW264.7 were treated with HMGB1 (500 ng/ml) or HMGB1 combined 
anti-HMGB1 antibodies (1 μg/ml). A, B. The pyroptosis-related protein expressions were detected by western blot. C. The levels of caspase-1 activity 
were detected. D. The rate of pyroptotic cell was detected by flow cytometry. *P < 0.05, **P < 0.01 versus the control group. #P < 0.05, ##P < 0.01 versus 
the HMGB1 group
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Discussion
LPS, an important pathogenic factor involved in sep-
sis, induces macrophage pyroptosis and autophagy [7, 
14]. In the current study, we demonstrated that LPS-
induced autophagy and pyroptosis of macrophages 
occur at different stages. HMGB1 played an important 
role in both LPS-induced programmed cell death pro-
cesses in a manner dependent on its subcellular locali-
zation (Fig. 8).

LPS can induce macrophage autophagy through 
toll-like receptor 4 (TLR4)-dependent pathways [15]. 
Evidence suggests that autophagy plays a protective 
role in sepsis by directly mediating pathogen clear-
ance [16] and by modulating the release of cytokines 
[17]. Autophagy inhibition is closely related to organ 
dysfunction in sepsis [18, 19]. However, LPS-induced 
autophagy does not abolish late immune dysfunction 
and tissue damage. Pyroptosis, another form of pro-
grammed cell death in macrophages, may help explain 
this phenomenon. LPS triggers caspase-11-dependent 
pyroptosis of macrophages, which in turn enhances 
inflammation [20].

The present results showed that LPS induced both 
autophagy and pyroptosis of macrophages, although 
autophagy occurred earlier than pyroptosis. This indi-
cates that macrophage autophagy may protect cells from 
the effects of short-term LPS stimulation, whereas, con-
tinuous exposure to LPS may cause damage by inducing 
pyroptosis of macrophages.

HMGB1, a downstream inflammatory mediator of 
LPS, is considered to be involved in both autophagy and 

pyroptosis. Previous studies suggesting that HMGB1 
affect autophagy by interaction with Beclin 1 [21, 22]. We 
performed some preliminary experiments and found that 
HMGB1 was not colocalized with autophagosomes. In this 
study, our results indicated that enhanced autophagy may 
promote the secretion of HMGB1 and promote pyroptosis. 
HMGB1 downregulation blocked LPS-induced autophagy 
and pyroptosis of macrophages, suggesting that the effects 
of LPS on autophagy and pyroptosis were mediated by 
HMGB1.

LPS promotes the migration of HMGB1 from the nucleus 
to the cytoplasm and its secretion to the extracellular com-
partment [23]. Studies in tumor cells show that HMGB1 
can induce autophagy in different compartments, including 
the nucleus, cytoplasm, and extracellular fluid [10]. Acetyla-
tion of lysine residues in HMGB1 is necessary for its trans-
location from the nucleus to the cytoplasm [24]. We used 
AA treatment to inhibit HMGB1 translocation, and found 
that LPS-induced autophagy was decreased, and exog-
enous HMGB1 did not increase autophagy. This suggests 
that, unlike its effect in tumors, cytoplasmic HMGB1 plays 
a major role in regulating LPS-induced autophagy in mac-
rophages. HMGB1 migration from the nucleus to the cyto-
plasm was observed after 4 h of LPS simulation [12], which 
was consistent with the results showing that macrophage 
autophagy increased at 6 h after LPS treatment (Fig. 1A).

HMGB1 induces macrophage pyroptosis through two 
pathways. On the one hand, HMGB1 directly interacts with 
RAGE in macrophages to trigger endocytosis, thereby ini-
tiating a cascade of cellular events, including the release 
of cathepsin B from ruptured lysosomes, the formation of 

Fig. 8 The flow of the LPS-HMGB1 axis. LPS-induced autophagy and pyroptosis of macrophages occur at different stages. HMGB1 played an 
important role in both LPS-induced programmed cell death processes in a manner dependent on its subcellular localization
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inflammasomes, and the activation of caspase-1 [9]. Fur-
thermore, HMGB1 binds to LPS and delivers extracellular 
LPS to the cytosol of macrophages, where LPS activates cas-
pase-11 and downstream caspase-1 [20]. The present results 
showed that either AA or anti-HMGB1 antibody inhibited 
LPS-induced pyroptosis of macrophages, suggesting that 
extracellular HMGB1 was involved in LPS-induced pyrop-
tosis. Moreover, treatment with HMGB1 alone induced 
pyroptosis of macrophages and was inhibited by an anti-
HMGB1 antibody, suggesting that HMGB1 triggers pyrop-
tosis via the first RAGE pathway. Secretion of HMGB1 by 
LPS-activated monocytes is a late event. HMGB1 secretion 
is still increasing at 18 and 30  h [25], which explains the 
finding that LPS induced pyroptosis later than autophagy.

HMGB1 is secreted from the cytoplasm to the outside 
of the cell by lysosome-mediated exocytosis [25]. Recent 
studies show that autophagy facilitates the active export 
of additional unconventionally secreted proteins, includ-
ing HMGB1, in a process called secretory autophagy [26]. 
This indicates that enhanced autophagy may promote the 
secretion of HMGB1 and promote pyroptosis, which may 
explain the paradoxical effects of autophagy activators in 
sepsis [27, 28] and deserves further study.

In summary, the present study demonstrated that 
HMGB1 promotes LPS-induced autophagy and pyrop-
tosis and plays different roles according to its subcellular 
localization.
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