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Abstract 

Background Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Dysfunction of E74-
like ETS transcription factor 4 (ELF4) leads to inflammation. This research intended to look into the function and mech-
anisms of ELF4 in I/R and oxygen–glucose deprivation/reperfusion (OGD/R) model.

Results In I/R and OGD/R model, ELF4 expression was downregulated. ELF4 knockout aggravated I/R-induced kidney 
injury, oxidative stress (OS), endoplasmic reticulum stress (ERS), apoptosis, inflammation, and pyroptosis in mice. In 
HK-2 cells treated with OGD/R, suppression of ELF4 expression inhibited cell proliferation and promoted cell apopto-
sis, OS, ERS, inflammation, and pyroptosis. Moreover, ELF4 overexpression led to the opposite results.

Conclusion ELF4 deficiency aggravated I/R induced AKI, which was involved in apoptosis, OS, ERS, inflammation, 
and pyroptosis. Targeting ELF4 may be a promising new therapeutic strategy for preventing inflammation after IR-AKI.
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Background
As a major kidney disease, acute kidney injury (AKI) is a 
clinical syndrome characterized by sudden loss of renal 
function with sublethal renal tubular injury [1]. Clini-
cally, renal ischemia/reperfusion (I/R) injury is a major 
cause of AKI, usually occurring in hypovolemic shock, 
surgery, sepsis, trauma, and kidney transplantation [2–4]. 

Although AKI is paid close attention for the higher mor-
bidity and mortality rates, AKI is still a difficult problem 
in diagnosis and treatment in clinic [5]. AKI pathogen-
esis is complicated, which is related to abnormal apop-
tosis, oxidative stress (OS), endoplasmic reticulum stress 
(ERS), inflammatory responses, and pyroptosis [6–10]. 
However, the exact mechanisms of AKI remains poorly 
understood. Therefore, exploring the potential mecha-
nism of AKI is of great significance for treatment of AKI.

The E-Twenty-Six (ETS) transcription factor family is 
composed of 29 members in human and 28 members in 
mouse, which participates in various signaling pathways 
[11–13]. E74 like ETS transcription factor 4 (ELF4), origi-
nally called "myeloid Elf1-like factor", has a hand in tum-
origenesis, regulating immune responses, DNA damage 
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response, and cell cycle regulation [14–17]. Lee et  al. 
have indicated that ELF4 knockout (KO) in mice contrib-
utes to the increased disease severity after experimental 
autoimmune encephalomyelitis induction [18]. Du et al. 
have shown that ELF4 KO mice are sensitive to dextran 
sulfate sodium-induced salt colitis [19]. Moreover, ELF4 
is reported to restrain inflammation and protecte against 
mucosal disease [20]. However, the influence of ELF4 is 
unclear in AKI. Therefore, studying the influence of defi-
ciency of ELF4 on renal injury is necessary.

At the present study, in vivo model induced by I/R and 
in  vitro model induced by oxygen–glucose deprivation/
reperfusion (OGD/R) were used for determining the 
influences and mechanisms of ELF4 in AKI. Mice lack-
ing ELF4 showed worsened kidney structure and func-
tion after I/R. Subsequent studies revealed a direct effect 
of ELF4 in protecting HK-2 cells from apoptosis, OS, 
ERS, inflammation, and pyroptosis. A new target for AKI 
treatment may obtain from our findings.

Results
In kidney tissues of I/R mice and cells of OGD/R, ELF4 
expression is decreased
To explore whether ELF4 involved in kidney injury, we 
detected the levels of ELF4. Figure 1A showed that ELF4 
mRNA expression was markedly decreased in kidney tis-
sues of I/R mice. Furthermore, ELF4 protein expression 
was significantly reduced, which was indicated by west-
ern blot and immunohistochemical analysis (Fig. 1B and 
C).  ELF4−/− mice were applied to investigate the func-
tion of ELF4 in I/R mice (Fig.  1D). In  vitro, HK-2 cells 
were simulated with OGD/R to mimic I/R. To look into 
the influence of ELF4 in cell model of renal injury, ELF4 
siRNA and overexpression plasmid were transfected into 
HK-2 cells. OGD/R significantly reduced ELF4 expres-
sion, transfection of ELF4 siRNA further markedly 
reduced ELF4 expression, and transfection of ELF4 over-
expression plasmid significantly induced ELF4 expression 
(Fig. 1E-H).

In mice, ELF4 knockout aggravates I/R‑induced kidney 
injury
Figure 2A and B suggested that serum Cr and BUN levels 
were low in both  ELF4−/− and WT mice of sham group, 
while serum Cr and BUN levels were markedly increased 
in both  ELF4−/− and WT mice of I/R group. Moreover, in 

I/R group,  ELF4−/− further obviously increased serum Cr 
and BUN levels. H&E staining showed that both  ELF4−/− 
and WT mice of sham group had normal kidney struc-
ture, after renal I/R, both  ELF4−/− and WT mice showed 
swollen, extensive expansion and deformation of renal 
tubules. In I/R group,  ELF4−/− further aggravated tubular 
injury (Fig. 2C). It has shown in rats of I/R injury model 
that KIM-1 expression in the proximal tubule is induced 
by ischemia [21]. I/R significantly enhanced KIM-1 
expression, and  ELF4−/− further enhanced KIM-1 expres-
sion in I/R group (Fig. 2D).

ELF4 deficiency aggravates apoptosis
TUNEL staining was used to evaluate apoptosis in I/R 
mouse model. TUNEL staining showed that cell apopto-
sis was markedly increased by I/R, and  ELF4−/− further 
increased cell apoptosis (Fig.  3A). Bax, a proapoptotic 
member of the Bcl-2 family. Bcl-2 exerts a death-spar-
ing activity against apoptosis induced by I/R [22]. I/R 
obviously promoted Bax expression and significantly 
inhibited Bcl-2 expression in renal tissues, and  ELF4−/− 
exacerbated these changes (Fig.  3B). As indicated in 
Fig. 3C and D, OGD/R significantly inhibited cell viabil-
ity and markedly promoted cell apoptosis, suppression of 
ELF4 expression further aggravated these effects induced 
by OGD/R. Overexpression of ELF4 markedly eliminated 
the influence of OGD/R on cell viability, apoptosis.

ELF4 deficiency aggravates OS and ERS
In I/R induced kidney injury, to understand the involve-
ment of ELF4 and whether this influences were related to 
OS and ERS, we assessed the change of OS index (SOD, 
CAT, and GSH-PX), OS related proteins (Nrf2, HO-1, 
and NQO-1), and ERS related proteins (GRP78, CHOP, 
and caspase-12). Figure  4A-C presented that I/R mark-
edly reduced serum SOD, CAT, and GSH-PX levels. In 
I/R group,  ELF4−/− further reduced serum SOD, CAT, 
and GSH-PX levels. A obvious reduction of protein levels 
of Nrf2, HO-1, and NQO-1 was showed in renal tissues 
of I/R group, after renal I/R,  ELF4−/− further aggravated 
these protein change (Fig. 4D). In addition, I/R caused an 
obvious increase of GRP78, CHOP, and caspase-12 pro-
tein in renal tissue, and  ELF4−/− further increased these 
changes of proteins (Fig. 4E). Figure 4F showed that ROS 
level was obviously increased by OGD/R, suppression of 
ELF4 further enhanced ROS level, and overexpression 

Fig. 1 In kidney tissues of I/R mice and cells of OGD/R, ELF4 expression was decreased. A ELF4 mRNA expression was detected by way of qRT-PCR 
in kidney tissues of sham and I/R mice. ELF4 protein expression in kidney tissues of sham and I/R mice was surveyed using western blot (B) 
and immunohistochemistry (C). D In kidney tissues of WT and  ELF4−/− mice, ELF4 protein change was ascertained using western blot. E ELF4 mRNA 
expression was surveyed by way of qRT-PCR in HK-2 cells. F In HK-2 cells, western blot was applied to survey ELF4 protein expression. G ELF4 mRNA 
expression was surveyed by way of qRT-PCR in HK-2 cells. H In HK-2 cells, ELF4 protein expression was checked by way of western blot. Mouse n = 5. 
Cell n = 3. * p < 0.05 vs sham, WT, or control group; # p < 0.05 vs OGD/R group

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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of ELF4 significantly decreased ROS level. Consistently, 
OGD/R markedly inhibited Nrf2, HO-1, and NQO-1 
protein levels, and suppression of ELF4 further aggra-
vated the inhibition role (Fig.  4G). In addition, OGD/R 
obviously increased the levels of GRP78, CHOP, cas-
pase-12, and suppression of ELF4 further aggravated the 
inhibition role (Fig. 4H). Moreover, western blot analysis 
(Fig. 4G-H) showed that overexpression of ELF4 signifi-
cantly increased Nrf2, HO-1, and NQO-1 protein levels, 
and markedly decreased GRP78, CHOP, caspase-12.

ELF4 deficiency aggravates inflammation and pyroptosis
Subsequently, the influence of ELF4 on inflammatory 
cytokines was investigated. Figure  5A showed that I/R 
markedly increased the levels of IL-6, TNF-α, IL-18, and 
IL-1β, and these inflammatory cytokines were further 
increased by ELF4 deficiency in I/R groups. Furthermore, 
in renal tissues, I/R significantly enhanced pyroptosis 
related proteins (GSDMD, N-GSDMD, and caspase-11) 

protein levels, and these proteins in renal tissues of I/R 
group was further increased following ELF4 deficiency 
(Fig. 5B). Moreover, in OGD/R-treated cells, western blot 
analysis showed that ELF4 knockdown or overexpression 
significantly increased or decreased IL-6, TNF-α, IL-18, 
IL-1β, GSDMD, N-GSDMD, and caspase-4 protein levels 
(Fig. 5C-D).

Discussion
In clinic, renal ischemia that occurs in kidney surgery, 
transplantation, hemorrhagic, cardiogenic, septic shock, 
and other clinical environments is the most common 
cause of AKI [4, 23]. Renal I/R is generally acknowledge 
as an important cause of AKI mortality, especially among 
patients in ICU [24–26]. At present, there is still no avail-
able treatment to prevent ischemic injury, and there is no 
therapy or drug that can completely reduce I/R induced 
mortality [27–29]. Thus, searching for effective thera-
peutic approaches for renal I/R injury is an urgent need. 

Fig. 2 In I/R mice, ELF4 deficiency aggravated kidney injury. Serum Cr (A) and BUN levels (B) in WT and  ELF4−/− mice. C In WT and  ELF4−/− mice, 
the renal histological injury was estimated by way of H&E staining. D KIM-1 protein change was ascertained in kidney tissues of WT and  ELF4−/− 
mice using western blot. Mouse n = 5. * p < 0.05 WT sham group, # p < 0.05  ELF4−/− sham or WT I/R group
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In this study, I/R and OGD/R induced AKI model were 
established. We found that ELF4 expression was mark-
edly downregulated in I/R and OGD/R induced model, 
which indicated that ELF4 might take part in the patho-
logical process of AKI.

In I/R and OGD/R model, we restrained ELF4 expres-
sion to explore the effects of ELF4 in AKI. The most 
commonly used markers for renal function assessment 

including Cr and BUN [30]. The levels of serum Cr and 
BUN were found to be increased in I/R mice [31–33]. As 
a transmembrane glycoprotein, KIM-1 can be split into 
soluble fragments and eventually excreted into urine 
[34, 35]. Therefore, KIM-1 is often used as a biomarker 
of renal injury [36]. Our data demonstrated that inhibi-
tion of ELF4 exacerbated kidney damage, as evidenced 
by the increase of serum Cr, serum BUN, KIM-1 protein 

Fig. 3 ELF4 deficiency aggravated apoptosis. A In WT and ELF4-/- mice, TUNEL staining was applied to survey renal cell apoptosis. B Bax and Bcl-2 
protein levels were detected by way of western blot in kidney tissues of WT and ELF4-/- mice. C HK-2 cell viability was ascertained by way of CCK-8 
assay. D Flow cytometry was carried out to assess cell apoptosis in HK-2 cells. Mouse n = 5. Cell n = 3. * p < 0.05 WT sham or control group, # p < 0.05 
 ELF4−/− sham, WT I/R, or OGD/R group
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Fig. 4 ELF4 deficiency aggravated OS and ERS. Serum SOD (A), CAT (B), and GSH-PX (C) levels in WT and  ELF4−/− mice. D In kidney tissues of WT 
and  ELF4−/− mice, Nrf2, HO-1, and NQO-1 protein levels were surveyed by way of western blot. E GRP78, CHOP, and caspase-12 protein levels were 
detected by way of western blot in kidney tissues of WT and  ELF4−/− mice. F Flow cytometry was carried out to assess ROS levels in HK-2 cells. The 
levels of OS related proteins (Nrf2, HO-1, and NQO-1; G), ER stress related proteins (GRP78, CHOP, and caspase-12; H) were surveyed using western 
blot in HK-2 cells. Mouse n = 5. Cell n = 3. * p < 0.05 WT sham or control group, # p < 0.05  ELF4−/− sham, WT I/R, or OGD/R group
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expression in renal tissue. In AKI, the main pathways 
of cell death are apoptosis and necrosis [37, 38]. In this 
study, in I/R mice and HK-2 cells treated with OGD/R, 
inhibition of ELF4 expression markedly increased cell 
apoptosis. Taken together, inhibition of ELF4 expression 
aggravated renal injury.

The pathogenesis of AKI associated with I/R is involved 
in tubular damage and inflammatory response [23]. More 
and more evidence showed that I/R promoted the release 
of inflammatory factors in renal tissue, which leads to 
severe renal cell apoptosis, thereby causing AKI [39–41]. 
For ameliorating AKI and facilitating recovery, inhibi-
tion of inflammatory response is a promising therapeu-
tic approach [42]. As an important inflammatory factor, 
IL-1β takes part in the process of hosts against pathogens 
[43]. IL-18 is mainly produced by activated mononuclear 
macrophages, which participates in ischemic AKI [44]. 

Moreover, other inflammatory cytokines, for instance, 
IL-6 and TNF-α can be elevated by IL-1β and IL-18 
[45]. At the present work, I/R and OGD/R markedly 
increased the levels of IL-6, TNF-α, IL-1β, and IL-18. 
Meanwhile, in I/R and OGD/R model, inhibition of ELF4 
further increased IL-6, TNF-α, IL-18, and IL-1β levels, 
but overexpression of ELF4 led to the opposite results. 
Doitsh et al. have reported that pyroptosis generated pro-
inflammatory mediators, thereby triggering inflamma-
tory reactions [46]. After that, we detected the changes 
of pyroptosis-related proteins, and found that inhibition 
of ELF4 further increased GSDMD, N-GSDMD, and cas-
pase-11 levels in I/R and OGD/R model. Furthermore, 
in OGD/R model, GSDMD, N-GSDMD, and caspase-11 
levels were markedly reduced by overexpression of ELF4. 
In short, in pathogenesis of AKI, inhibition of ELF4 pro-
moted inflammatory response and pyroptosis.

Fig. 5 ELF4 deficiency aggravated inflammation and pyroptosis. A In kidney tissues of WT and  ELF4−/− mice, IL-6, TNF-α, IL-18, and IL-1β protein 
levels were detected by way of western blot. B GSDMD, N-GSDMD, and caspase-11 protein levels were surveyed in kidney tissues of WT and  ELF4−/− 
mice using western blot. The levels of inflammatory cytokines (IL-6, TNF-α, IL-18, and IL-1β; C), and pyroptosis-related proteins (GSDMD, N-GSDMD, 
and caspase-11; D) were detected using western blot in HK-2 cells. Mouse n = 5. Cell n = 3. * p < 0.05 WT sham or control group, # p < 0.05  ELF4−/− 
sham, WT I/R, or OGD/R group
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The accumulation of ROS during I/R process is vital in 
the course of AKI [47]. After reperfusion, the first injury 
event is that mitochondria produce ROS, secondary tis-
sue damage and subsequent inflammation caused by non-
mitochondrial ROS [48]. Common biochemical markers 
of oxidative damage include SOD, CAT, and GSH-PX 
[49]. In OGD/R model, inhibition of ELF4 significantly 
increased ROS levels, but overexpression of ELF4 dra-
matically decreased ROS levels. In I/R model, inhibition 
of ELF4 markedly reduced SOD, CAT, and GSH-PX lev-
els. Moreover, in I/R and OGD/R model, inhibition of 
ELF4 significantly inhibited the expression of OS related 
proteins (Nrf2, HO-1, and NQO-1). Apart from regulat-
ing OS, it was indicated that Nrf2/HO-1 pathway had a 
hand in regulating apoptosis, ERS, and inflammation 
[50–52]. To further investigate the mechanism of ELF4 
in AKI, ERS related proteins (GRP78, CHOP, and Cas-
pase-12) were detected. Our findings indicated that ELF4 
inhibition significantly promoted ERS in I/R and OGD/R 
model, as evidenced by increasing GRP78, CHOP, and 
caspase-12 levels. Based on these findings, inhibition of 
ELF4 aggravated renal injury, which was associated with 
the OS and ERS.

In summary, inhibition of ELF4 aggravated renal injury 
in I/R treated mice by promoting OS, ERS, inflammation, 
and pyroptosis. In future studies, ELF4 supported the 
transcription of OS, ERS, inflammation, and pyroptosis-
related gene will be studied in I/R-induced AKI. Our 
findings may provide a novel mechanistic insight into 
I/R-induced AKI.

Methods
Mouse model of renal I/R injury
The male ELF4 knockout  (ELF4−/−) and wild-type (WT) 
C57BL/6 mice were provided by Beijing Vital River Lab-
oratory Animal Technology Co., Ltd. (China). In a 12  h 
light/12 h dark cycle, eating and drinking could be freely 
obtained by mice. The animal care and use committee of 
our hospital authorized all experiments.

ELF4−/− mice and WT mice were randomly assigned 
to sham and I/R group, respectively. AKI model was 
induced by I/R surgery [53]. In brief, after anesthesia with 
1% sodium pentobarbital solution, mice were underwent 
a midline laparotomy. Next, a microaneurysm clamp 
(Fine Science Tools, USA) was used to tighten both renal 
vessels for 30 min to induce ischemia. After removing the 
clamp for 6 h, the serum was collected from mice before 
sacrificing. In sham group, mice were exposed to the 
same procedure, except using the microaneurysm clamp.

Cell culture and treatments
Human proximal tubular epithelial cells (HK-2) were 
provided by Procell Life Science&Technology Co.,Ltd 

(CL-0109, Wuhan, China). Under condition of 37 °C and 
5%  CO2, cells were maintained in DMEM (11885084, 
Invitrogen, USA) with 1% penicillin/streptomycin and 
10% foetal bovine serum.

Small interference RNA targeting ELF4 (si-ELF4), 
overexpression plasmid of ELF4 (ov-ELF4), and nega-
tive control (si-NC and ov-NC) were transfected into 
HK-2 cells by way of Lipofectamine 2000 reagents 
(11668030, Invitrogen). After transfection for 48 h, cells 
in OGD/R + si-NC, OGD/R + si-ELF4, OGD/R + ov-NC, 
and OGD/R + ov-ELF4 group were treated with OGD/R. 
To establish OGD/R model, HK-2 cells were exposed 
to glucose-free medium supplemented with 1%  O2, 5% 
 CO2, and 94%  N2 for 4 h at 37 °C [10]. Next, the complete 
medium with 21%  O2 was used for maintaining cells for 
6 h. In control group, cells were maintained in complete 
medium with 21%  O2.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
In kidney tissues and HK-2 cells, total RNA was extracted 
by means of TRIzol reagent (15596026, Invitrogen, USA). 
The PrimeScript™ RT Reagent Kit (RR037Q, Takara, 
Japan) was made use of synthesizing complementary 
DNA. The SYBR Premix Ex Tag Kit (RR820A, Takara) 
was made use of performing qRT-PCR. The sequences of 
primers were listed in Supplementary table 1.

Western blot
In kidney tissues and HK-2 cells, RIPA lysis buffer (20–
188, Sigma-Aldrich) was used for extracting proteins. 
An equal quantity of protein was electrophoresed using 
SDS-PAGE and then transferred onto PVDF mem-
branes. At 4  °C, primary antibodies against ELF4, Nrf2, 
NQO-1, GRP78, KIM-1, and IL-6 (1:1000, ab96075, 
ab137550, ab34173, ab21685, ab302932, and ab259341, 
Abcam, USA); IL-1β (1:1000, sc-12742, Santa Cruz Bio-
technology); IL-18 and N-GSDMD (1:1000, A1115 and 
A22523, ABclonal, USA); Bax, Bcl-2, TNF-α, caspase-4, 
caspase-11, Caspase-12, CHOP, HO-1, and GSDMD 
(1:1000, 2772, 3498, 3707, 4450, 14340, 35965, 2895, 
43966, and 39754, Cell signaling Technology, USA), and 
GAPDH (1:5000, 5174, Cell signaling Technology, USA) 
were deal with membranes overnight. After that, second-
ary antibodies (1:50000, 7074, Cell signaling Technology) 
were handled with membranes for 1  h. At last, protein 
bands were visualized by way of an enhanced chemilumi-
nescence detection kit (Beyotime Biotechnology, China). 
Image J software (USA) was used to quantify protein 
expression.



Page 9 of 11Li et al. BMC Molecular and Cell Biology           (2023) 24:22  

Immunohistochemistry analysis
The kidney tissues of mice were fixed in 10% forma-
lin (HT501128, Sigma-Aldrich). After that, paraffin 
was taken to embed kidney samples. After dewaxing 
and rehydrating, Sects.  (4  μm-thick) were incubated 
with 3% hydrogen peroxide (H1009, Sigma-Aldrich) 
for 10  min. Next, sections were blocked with 5% 
bovine serum albumin (A1933, Sigma-Aldrich) for 1 h 
and incubated with antibody against ELF4 (1:200, bs-
14563R, Bioss) 4˚C. Nexy day, sections were incubated 
with secondary antibody (8114, Cell signaling Tech-
nology). At last, sections were developed color using 
3,3’-diaminobenzidine (P0202, Beyotime Biotechnol-
ogy). Under a microscopy (BX53, Olympus, Japan), 
ELF4 positive cells were quantified.

Haematoxylin and Eosin (H&E) staining
After dewaxing and rehydrating, the renal 
Sects. (4 μm-thick) were stained with haematoxylin (C0107-
100 ml, Beyotime Biotechnology) for 5 min and stained with 
eosin (C0109, Beyotime Biotechnology) for 1  min. Under 
an optical microscope (Olympus), renal tissue damage was 
assessed in a blinded manner.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) staining
In kidney tissues, cell apoptosis was ascertained by way 
of the TUNEL apoptosis detection kit (C1089, Beyotime 
Biotechnology). Briefly, after dewaxing and rehydrating, 
the renal sections were treated with proteinase K without 
DNase (20 µg/ml) for 20 min. Next, sections were stained 
with the TUNEL reaction mixture, followed by stain-
ing with DAPI. Eventually, under an optical microscope, 
apoptotic cells were observed and counted.

Biochemical assays
For the detection of serum creatinine (Cr, C011-2–1), 
blood urea nitrogen (BUN, C013-2–1), superoxide dis-
mutase (SOD, A001-1–2), catalase (CAT, A007-1–1), and 
glutathione peroxidase (GSH-PX, A005-1–2), the serum 
was collected from mice blood through centrifuging at 
3,000 rpm for 10 min. Nanjing jiancheng bioengineering 
institute (China) provided corresponding kits.

Detection of cell viability
After indicated treatment, cell counting kit 8 (CCK-8) 
reagents (C0037, Beyotime Biotechnology) were applied 
to handle HK-2 cells. After handling for 2 h, at 450 nm, a 
BioTek ELX-800 microplate reader (USA) was utilized to 
gauge the optical density (OD) value.

Detection of cell apoptosis
After indicated treatment, 200  µl Annexin V-FITC 
(C1062S-1, Beyotime Biotechnology) and 5  µl PI 
(C1062S-3, Beyotime Biotechnology) were handled with 
HK-2 cells for 15  min. Finally, the apoptotic cells were 
gauged using FACS Calibre flow cytometry (Accuri C6 
Plus, BD Biosciences, USA).

Detection of reactive oxygen species (ROS)
After indicated treatment, DCFH-DA (S0033S, Beyotime 
Biotechnology) was applied to handle with HK-2 cells 
for 20 min. Next, serum free medium was used to wash 
cells for three times, and then cells were analyzed by way 
of flow cytometry at 480  nm excitation wavelength and 
525 nm emission wavelength.

Statistical analysis
Data analyses were conducted by means of GraphPad 
Prism software (USA). P < 0.05 was supposed to statis-
tical significant. All data were statistically compared 
using t-test or one-way analysis of variance (ANOVA).
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