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Abstract
Background Trypanosoma brucei is the causative agent for trypanosomiasis in humans and livestock, which presents 
a growing challenge due to drug resistance. While identifying novel drug targets is vital, the process is delayed 
due to a lack of functional information on many of the pathogen’s proteins. Accordingly, this paper presents a 
computational framework for prioritizing drug targets within the editosome, a vital molecular machinery responsible 
for mitochondrial RNA processing in T. brucei. Importantly, this framework may eliminate the need for prior gene or 
protein characterization, potentially accelerating drug discovery efforts.

Results By integrating protein-protein interaction (PPI) network analysis, PPI structural modeling, and residue 
interaction network (RIN) analysis, we quantitatively ranked and identified top hub editosome proteins, their key 
interaction interfaces, and hotspot residues. Our findings were cross-validated and further prioritized by incorporating 
them into gene set analysis and differential expression analysis of existing quantitative proteomics data across various 
life stages of T. brucei. In doing so, we highlighted PPIs such as KREL2-KREPA1, RESC2-RESC1, RESC12A-RESC13, and 
RESC10-RESC6 as top candidates for further investigation. This includes examining their interfaces and hotspot 
residues, which could guide drug candidate selection and functional studies.

Conclusion RNA editing offers promise for target-based drug discovery, particularly with proteins and interfaces that 
play central roles in the pathogen’s life cycle. This study introduces an integrative drug target identification workflow 
combining information from the PPI network, PPI 3D structure, and reside-level information of their interface which 
can be applicable to diverse pathogens. In the case of T. brucei, via this pipeline, the present study suggested potential 
drug targets with residue-resolution from RNA editing machinery. However, experimental validation is needed to fully 
realize its potential in advancing urgently needed antiparasitic drug development.
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Background
Trypanosoma brucei, a protozoan pathogen, is the caus-
ative agent of African trypanosomiasis, endangering mil-
lions of human lives and livestock in sub-Saharan Africa 
[1]. As a prominent member of kinetoplastids, T. brucei 
harbors a mitochondrial genome known as kinetoplast 
DNA (kDNA). Within this genome, most genes exist as 
cryptogenes whose transcripts require post-transcrip-
tional RNA editing to gain protein-coding capability [2]. 
RNA editing is thus an essential facet of gene expression 
in these organisms. Central to this process is the edito-
some, a multiprotein complex that orchestrates the Uri-
dylate (U) insertion/deletion editing process, ultimately 
generating translatable transcripts [3].

According to current knowledge, RNA editing in 
kinetoplastids involves a coordinated interplay of over 
70 catalytic and non-catalytic proteins. These include 
diverse enzymes, RNA-binding proteins, and other fac-
tors whose exact functions largely remain unknown 
[4]. The holo-editosome (editosome holoenzyme) com-
prises approximately 40 proteins, distributed across 
three distinct multiprotein complexes: the RNA Edit-
ing Catalytic Complex (RECC), RNA Editing Helicase 
2 Complex (REH2C) and the RNA Editing Substrate 
Binding Complex (RESC) [4, 5]. RECC and REH2C are 
mainly catalytic; RECC is responsible for the endonu-
cleolytic cleavage, U-indel (insertion/deletion) editing, 
and ligation of the edited segments. REH2C enhances 
the accessibility of the editing sites, allowing the other 
components of the editosome to perform their functions 
effectively. Meanwhile, the heterogeneous RESC provides 
the structural framework for the interaction between the 
guide RNAs (gRNAs) and the target mRNA sequences 
[4].

The intricate nature of the editosome has made under-
standing its interactions and underlying mechanism a 
challenging endeavor [6, 7]. Considering the potential 
for identifying drug targets by exploring editosome PPIs 
in T. brucei, integrating computational approaches has 
become increasingly important. Characterizing the PPI 
interfaces within the pathogen is a crucial for identify-
ing drug targets and designing potential drugs to disrupt 
these interactions, as seen with the editosome.

Apart from the expensive and time-consuming experi-
mental procedures to identify PPI interfaces, the recent 
introduction of AlphaFold-Multimer has been a great 
help in achieving accurate structural resolution of pro-
tein interactions [8]. However, pinpointing the most 
important PPI interfaces and finding the hotspots within 
those interfaces require further residue-level analysis. 
To address this, the residue interaction network (RIN) 
analysis provides a systems-level strategy [9, 10]. This 
approach identifies central nodes, or hub residues, within 
the network through centrality analysis of the RIN. 

Combined with AlphaFold-Multimer findings, this allows 
for the identification of interaction hotspots.

Moreover, functional annotation gaps are common in 
Trypanosoma proteins, particularly within the edito-
some, which is distinct across various life domains. An 
efficient computational framework could offer a way to 
prioritize drug targets, bypassing the necessity of gene 
or protein characterization. This could address a signifi-
cant challenge in drug discovery. Accordingly, this study 
proposes a systems-level approach implementing primar-
ily the experimental PPI data of T. brucei to reconstruct 
an editosome PPI network. This serves as the basis for 
identifying critical PPIs. Residue-level analysis through 
RINs of each PPI structure helps in recognizing interface 
hotspots and quantitatively assessing the most impor-
tant interfaces. Integrating these findings with existing 
proteomics data from T. brucei developmental differen-
tiation, enabled the final prioritization of predicted PPI 
interfaces within the editosome PPI network.

Methods
Editosome PPI network reconstruction
Throughout the study, a set of seventy-four proteins 
associated with mitochondrial RNA processing in 
Trypanosoma were employed, data of which can be 
found in [4]. Identifiers for these proteins were used to 
retrieve information on their respective interactions 
from TrypsNetDB for T. brucei TREU927. TrypsNetDB 
is a comprehensive database that houses experimentally 
substantiated interactome data specific to trypanosoma-
tid proteins [11]. To ensure comprehensive coverage, an 
extensive literature review was conducted to incorporate 
the most recent experimental interactions into the final 
dataset. We also considered the experimental techniques 
used to validate each interaction, such as affinity purifica-
tion, immunoprecipitation, and Y2H (yeast two-hybrid). 
Furthermore, we assigned an assay score on a scale from 
0 to 1 to each interaction, reflecting the level of support 
provided by the number of experimental techniques con-
firming its validity.

Final interaction data were visualized using Cytoscape 
3.9.1. CytoNCA plugin was implemented for the topo-
logical analysis of the network [12]. Calculated central-
ity measures include degree, betweenness and closeness. 
These three centralities are known to best represent the 
hub nodes in biological networks [13–15]. To consider 
the level of confidence for an interaction, assay scores 
were assigned as weights to the network edges during the 
centrality analysis.

Many existing studies focus solely on one specific cen-
trality measure, such as degree, which can lead to the 
loss of valuable information. This study employs a multi-
criteria approach, using three centrality measures to 
identify hub proteins within the editosome PPI network. 
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Multi-criteria decision analysis (MCDA) [16] was used to 
rank the identified proteins, with equal weightage given 
to the three centralities. The resulting MCDA score, 
ranging from 0 to 1 for each protein, signifies its per-
formance across multiple centralities. A higher MCDA 
score indicates a strong potential for a protein to be a 
hub, effectively consolidating multiple centrality infor-
mation into a unified ranking measure. Here, editosome 
proteins with MCDA score of more than 0.7 were consid-
ered as hubs.

Structure prediction of hub PPIs
All interactors connected to each selected hub protein, 
supported by at least one RNase positive experimental 
technique, were fetched from the editosome PPI net-
work. This filtration step aimed to eliminate interac-
tions that rely solely on the presence of RNA, thereby 
improving the accuracy of PPI modeling and subsequent 
analyses.

Each binary PPI involving the hub proteins was mod-
eled by AlphaFold_2.0_multimer.v3 as implemented in 
the Cosmic2 gateway [16]. AMBER molecular dynamics 
simulation was also configured to optimize the amino 
acid side chain position of the top-ranked model.

PPI structures were visualized and further analyzed 
using UCSF ChimeraX version: 1.5 [16]. Residues from 
the interacting proteins located within a proximity of ≤ 5 
Angstroms (Å) were selected and designated as primary 
interface residues. Predicted alignment errors (PAE) is a 
quantitative assessment metric from AlphaFold that pro-
vides a distance error for every pair of residues. It repre-
sents the tool’s position error estimate at residue x when 
the predicted and true structures are aligned on residue 
y, with value ranging from 0 to 35 Å. In PPI modeling, 
low PAE values for residue pairs (x, y) from each inter-
acting protein suggest that AlphaFold has accurately pre-
dicted their relative positions and orientations [16]. Thus, 
primary interface residues with PAEs of ≤ 10 Å were 
selected and considered as confirmed interface residues 
used for further analysis.

RIN analysis
While PAE provides residue-level evaluation of modeled 
interfaces, it does not inherently capture the biological 
characteristics of the hub protein. To achieve a holistic 
understanding of each hub protein’s interactions at the 
residue level, we reconstructed a residue interaction net-
work (RIN). RINs serve as graphical representation of 
protein structures, where residues act as nodes and their 
physicochemical interactions form the network edges.

Using RING 3.0 [10], we generated RINs based on the 
bound-state structure of the hub protein and its interac-
tion partners. We also incorporated the energy of inter-
action between residues as weights for the RIN edges.

We performed a centrality analysis on the recon-
structed, weighted RINs, following the conditions out-
lined in the previous section. This analysis identified 
central residues within the protein; if they coincided with 
the confirmed interface identified earlier, they were cat-
egorized as hotspot residues. We ranked the identified 
hotspot residues using a dual-criteria approach that con-
sidered their RIN-based MCDA score (cutoff = 0.5) and 
their PAE values.

Proteomics data analysis
We used quantitative proteomics data from different 
developmental stages (timepoints) of T. brucei TREU927, 
as generated by Dejung et al. [17]. Missing values in pro-
tein abundances were imputed using missForest R pack-
age [18, 19] based on the log2-transformed Label-Free 
Quantification (LFQ) intensities of each timepoint. We 
performed differential expression analysis (DEA) using 
DEqMS, a tool that extends the capabilities of the Limma 
R package [20]. This adaptation involved modifying Lim-
ma’s variance prior estimation to account for the rela-
tionship between variance and the number of detected 
peptides for each protein. This modification results in 
a more accurate, data-dependent estimation of protein 
variance [20]. We used the resulting fold changes and 
adjusted p-values from the DEA as input for gene/protein 
set analysis (GSA), facilitated by the “piano” package [20]. 
Protein sets were assembled based on a gene ontology 
(GO) term dataset derived from the detected proteome 
of T. brucei, using various sources including AmiGO [21], 
Blast2GO [22], TriTrypDB [23], Pannzer [24], and Uni-
Prot [25]. GSA and DEA were also applied to the edito-
some subset of the proteomics data where needed.

Results and discussion
Editosome PPI network of T. brucei
Reconstruction of the editosome PPI network
The reconstructed PPI network of editoproteome in T. 
brucei resulted in 90 nodes with 677 edges (Additional 
file 1). While nodes in the network represent proteins, 
the edges signify experimentally verified interactions. 
These interactions were identified using various tech-
niques, including but not limited to Y2H, immunoprecip-
itation, affinity purification, and fractionation [11]. It is 
important to note that a single protein interaction may be 
supported by multiple techniques and could, therefore, 
have multiple edges in the network. This concept was 
used as the basis for a scoring system to assign weights to 
the edges. Consequently, interactions verified by multiple 
studies received higher scores for subsequent network 
analyses.
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Hubs in the editosome PPI network
Hubs were identified and ranked based on Multi-Criteria 
Decision Analysis (MCDA) of betweenness, closeness 
and degree centralities (Additional file 2). The top 20 
hubs predominantly include RESC proteins, comprising 
85% of all known RESC proteins. The predominance of 
RESC proteins as hubs underscores their pivotal role in 
Trypanosoma’s RNA editing machinery. One reason is 
that these proteins often act as the scaffold for editing; 
thus identification of RESC complex proteins as hubs 
aligns with their fundamental roles in the RNA editing [3, 
26, 27].

For further analysis, 10 proteins were selected as top-
rank hub proteins with MCDA ≥ 0.6. As illustrated in 
Table 1, the majority of these top-ranked hub nodes are 
also RESC proteins. From all known RESC proteins in the 
editosome (n = ~ 20), six were identified as top hubs in the 
editosome PPI network. The remaining top-ranked hubs 
encompass two editosome ligases, KREL1 and KREL2, 
along with the REH2C complex helicase and zinc-finger 
proteins, KREH2 and KH2F1. The two ligases are para-
logs and KREL1 is reported to be essential ligase for 
parasite survival [28]. KH2F1 serves as an adaptor link-
ing the KREH2 helicase with the RESC [4]. A finding also 
supported by the study from Kumar et al., which demon-
strated the critical roles of KREH2 and H2F1 in forming 
stable mRNA-gRNA hybrid substrates within molecular 
scaffolds for the editing process [29]. Thus, the centrality 
of these proteins aligns well with their essential functions 
in RNA editing.

Structure-based analysis of central editosome PPIs
Modeling hub PPIs using AlphaFold-Multimer
As evident in Table  1, each top-rank hub interacts with 
multiple partners, denoted by a minimum weighted-
degree of 8. We restricted our modeling to PPIs that 
met with the following criteria: (a) supported by at least 
one experimental assay performed in the presence of 
RNase, and (b) highly ranked based on their edge scores, 

signifying that interactions supported by multiple tech-
niques are considered more reliable.

Twenty-two hub PPIs were ultimately identified, and 
their 3D interaction structures were modeled using 
AlphaFold-Multimer (Table  2). Well-known interaction 
such as KREL2-KREPA1 [3, 30], KREH2-KH2F1 [29, 
31], and RESC2-RESC1 [32] ranked among the top PPIs. 
Moreover, given that the editosome PPI network is highly 
interconnected, and according to Table  2, the fact that 
multiple target proteins serve as hubs themselves make 
these interactions particularly interesting for further 
analysis.

Table 1 List of top ten hub proteins of editosome PPI network in T. brucei and their centrality measures
Rank TriTryp ID Name Betweenness* Closeness* Degree* MCDA score
1 Tb927.1.3030 KREL2 1532.5881 0.1580 11 0.8261
2 Tb927.11.16860 RESC3 422.2286 0.1915 16.5 0.7530
3 Tb927.6.1680 KH2F1 1334.1823 0.1712 8 0.7449
4 Tb927.7.800 RESC10 464.2319 0.1903 14.125 0.7122
5 Tb927.9.4360 KREL1 733.3652 0.1733 11.375 0.6860
6 Tb927.5.3010 RESC6 243.2760 0.1891 15.25 0.6847
7 Tb927.10.10830 RESC13 275.5744 0.1881 14.875 0.6825
8 Tb927.2.3800 RESC2 347.8233 0.1947 13.375 0.6792
9 Tb927.8.8170 RESC12a 302.1332 0.1809 14.125 0.6608
10 Tb927.4.1500 KREH2 140.5734 0.1899 13 0.6183
* Degree: Number of direct interactions a protein has; Closeness: Measures how quickly a protein can interact with all others; Betweenness: Identifies proteins critical 
for connecting others in the network

Table 2 Central editosome PPIs in T. brucei
PPI No. Hub Target

Name TriTryp ID Name* TriTryp ID
1 KREL2 Tb927.1.3030 RESC3 Tb927.11.16860
2 KREPA1 Tb927.2.2470
3 RESC3 Tb927.11.16860 RESC2 Tb927.2.3800
4 RESC5 Tb927.10.11870
5 RESC6 Tb927.5.3010
6 KH2F1 Tb927.6.1680 RESC3 Tb927.11.16860
7 RESC2 Tb927.2.3800
8 RESC10 Tb927.7.800 RESC3 Tb927.11.16860
9 RESC13 Tb927.10.10830
10 RESC4 Tb11.02.5390b
11 RESC6 Tb927.5.3010
12 KREL1 Tb927.9.4360 KREPA2 Tb927.10.8210
13 KREH1 Tb927.11.8870
14 RESC6 Tb927.5.3010 RESC13 Tb927.10.10830
15 RESC12 Tb927.4.4160
16 KH2F1 Tb927.6.1680
17 RESC5 Tb927.10.11870
18 RESC13 Tb927.10.10830 RESC9 Tb927.2.1860
19 RESC2 Tb927.2.3800 RESC1 Tb927.7.2570
20 RESC12A Tb927.8.8170 RESC13 Tb927.10.10830
21 KREH2 Tb927.4.1500 RESC6 Tb927.5.3010
22 KH2F1 Tb927.6.1680
* The names of target proteins identified as hubs themselves are formatted in 
italics
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The structures of 20 central PPIs were successfully 
modeled. However, jobs involving PPIs that included the 
2167-aa KREH2 ran out of memory due to the current 
limitations on the total number of residues [8].

Subsequently, PPI models were filtered based on high 
average PAE (> 10 Å) at their interface, defined as < 5 Å 
between residues from the two interacting proteins. 
Models with high PAE values, which imply ambiguity in 
the interaction details, were discarded [33]. This led to 
a final set of six hub PPIs with very low average PAEs at 
their interfaces.

Most editosome proteins and interactions are evolu-
tionary unique and lack sufficient sequence homology 
for straightforward prediction using AlphaFold2, which 
relies on multiple sequence alignment (MSA). However, 
as efforts to improve AlphaFold2’s performance continue, 
the possibility of accurately studying all hub PPIs in the 
future remains viable.

Finally, the six accurately modeled interactions 
included KREL2-KREPA1, RESC2-RESC1, RESC10-
RESC6, KREL1-KREPA2, RESC12A-RESC13 and 
RESC3-RESC2.

Interface hotspots identified through RIN analysis
The analysis of complex biological systems in the form of 
networks can efficiently aid in characterizing the whole 
system and its individual components [34]. Protein 
structures serve as an excellent example of such com-
plex systems and can be represented as graphs, where 
amino acid residues act as the nodes and their interac-
tions as edges. Calculated topological parameters from 
RINs have shown to correlate with various aspects of 
protein structure and function. This approach has been 
successfully used to identify key residues involved in 
protein stability [35], folding [36], functional and regula-
tory roles (e.g., active site residues) [37] as well as finding 
cancer mutation hotspots [38]. More importantly, RINs 
provide a global perspective on PPI interfaces, mainly 
by finding hotspots useful for drug discovery and design 
[9]. Furthermore, since certain critical residues located 
within the PPI interfaces exert larger energetic impacts 
on the affinity and stability of the interactions, uncov-
ering these PPI hotspots holds immense potential for 

not only modulating the PPIs in drug discovery studies 
but also guiding the design of site-directed mutagenesis 
experiments aimed at characterizing protein function 
and interactions. Therefore, to study hub PPIs, we recon-
structed RIN of each hub protein in its bound state with 
its top interactor. Subsequently, centrality analysis was 
undertaken, focusing primarily on two objectives: (1) Pri-
oritizing the interfaces detected from previous steps; (2) 
Finding hotspot residues in each interface.

Through RIN topological network analysis, central-
ity measures were assigned to each residue in the form 
of a MCDA score. This score was based on betweenness, 
closeness and degree centrality for each hub. By merging 
these residue-level measures with PAE values, it became 
possible to both quantitatively rank, and filter identified 
interface residues and to detect hotspot residues. Com-
prehensive results are available in Additional file 3, and a 
summary of this approach’s general outcome is provided 
in Table 3.

Using quantitative measures and cutoffs, multi-step 
prioritization was performed on the editosome PPIs 
to find the most critical PPIs, interfaces, and hotspots, 
which could significantly help in future drug discovery 
efforts. These results can also inform functional under-
standing through experimental mutation assays.

According to our findings, hotspots are mostly 
enriched with tyrosine and arginine residues. Tyrosine, 
an aromatic amino acid, often engages in pi-pi stacking 
interactions with other aromatic residues, significantly 
contributing to the stability of protein-protein com-
plexes. Arginine, on the other hand, may form multiple 
hydrogen bonds both within the protein and with the 
interacting partner. These amino acids have been fre-
quently assigned as interface hotspots in different studies 
[39, 40].

PPI interfaces of central editosome ligases The edi-
tosome ligases, KREL1 and KREL2 share significant 
sequence homology. Similarly, their binding partners, 
KREPA2 and KREPA1, also display sequence conserva-
tion in specific regions, suggesting functional analogies 
between the two PPI. Despite these similarities, our find-
ings reveal distinct differences between the two interac-

Table 3 Prioritized hub editosome PPIs properties
Hub PPI Interface length* Average PAE Average RIN MCDA Rank † Top 3 interface hotspots
KREL1-KREPA2 7 4.12 0.70 3 N429, E433, L425
RESC3-RESC2 8 7.40 0.53 6 Y446, H407, L475
RESC10-RESC6 13 2.91 0.58 4 K303, V100, P99
KREL2-KREPA1 8 1.26 0.69 1 F393, Y390, R396
RESC2-RESC1 15 2.06 0.60 2 H345, Y250, R220
RESC12A-RESC13 8 2.56 0.54 4 E644, Y598, R641
* Each residue from the hub protein within the interface may interact with more than one residue from the target protein
† Using dual-criteria ranking approach based on the average PAE and average RIN MCDA
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tions, in which the KREL2-KREPA1 interaction ranking 
higher and featuring different types of hotspot residues in 
the identified interface.

Table  1 highlights that KREL2’s central position on 
the editosome interactome, having a notably higher 
betweenness centrality compared to its paralog, KREL1. 
This coupled with its enhanced interface importance 
ranking, suggests that KREL2 plays a more pivotal role 
in RNA editing than previously thought. Surprisingly, 
this contradicts prior studies using knockdown assays, 
which suggested that KREL1 is essential for RNA editing, 
while KREL2 appears to have little impact [28]. A widely-
accepted theory posits that KREL1 can compensate for 
KREL2 loss, but not vice versa [41]. Yet, the lack of stud-
ies on KREL2 null mutants leaves room for alternative 
explanation. Our results propose that even a minimal 
level of KREL2 may suffice for RNA editing, which could 
explain the lack of severe impact upon its knockdown. 
Furthermore, morphological changes observed in KREL2 
knockdown experiments [41] indicate its importance in 
the parasite’s biology, potentially during specific develop-
mental stages.

While the KREL2-KREPA1 PPI ranks highest in terms 
of the structural and network-based metrics used in this 
study, its potential as a drug target may be compromised 
by reports suggesting that KREL1 could compensate for 
the loss of KREL2. However, this compensation mecha-
nism is not yet fully experimentally verified and requires 
further investigation. If proven otherwise, the KREL2-
KREPA1 interaction could serve as a valuable drug target 
for combatting T. brucei.

Structural analysis of the interfaces of both ligases’ 
interactions shows a similar pattern in which the ligases 
primarily interact through their C-Terminal regions with 

a single alpha helix domain in their interacting partners, 
KREPA1 and KREPA2. The C-termini of KREL1 and 
KREL2 consists of four α-helices, with the highest-scor-
ing interface residues located within two corresponding 
specific helices: aa 392–409 and aa 421–454 in KREL1 
as well as aa 353–371 and 381–410, in KREL2 (Fig.  1). 
These findings are consistent with Moses et al.’s recent 
research on KREL1-KREPA2, which showed that dele-
tions and mutations in the mentioned helices adversely 
impact ligation processes [30]. As depicted in Fig. 1, the 
interface spans both KREL1 and KREL2’s C-termini, 
where the alpha helices interact most favorably, whereas 
the remaining interface residues are located within loop 
regions. Importantly, the interface residues between the 
helices exhibit higher average centrality and PAE scores, 
underlining their critical role in the interaction.

PPI interfaces of editosome RESC members RESC2-
RESC1 interaction
The interface between RESC2 and RESC1 is the most 
highly ranked among RESC interactions, based on its 
average network-based MCDA score. RNAi-mediated 
knockdown of both proteins confirm their essentiality for 
parasite growth and their critical role RNA editing [42, 
43]. Moreover, the RESC2-RESC1 interaction emerges 
as a central hub in the RESC PPI network and has been 
validated recently through cryo-EM structural analysis in 
T. brucei [32]. The AlphaFold model created in this study 
aligns closely with the cryo-EM structure, showing an 
RMSD of 0.9.

Despite only about 35% sequence similarity, the Alpha-
Fold Multimer model of RESC2-RESC1 reveals a remark-
able structural similarity between the two proteins 
(Fig.  2a). The high-scoring interface primarily involves 
interactions between a β-hairpin of one protein and a the 
β-barrel and C-terminal patch of the other. The interface 
involving RESC2’s hairpin exhibits higher average PAE 
and RIN centrality values, making it a prime candidate 
for drug discovery studies.
RESC10-RESC6 and RESC12A-RESC13 inter-
actions
The next highest scoring PPIs within the RESC complex 
are RESC10-RESC6 and RESC12A-RESC13. RESC10 
has already been experimentally validated as an essen-
tial, yet low abundance, RNA binding protein [44, 45]. 
RESC10-RESC6’s significance in RNA editing is not yet 
fully understood. Although in a very recent study Liu et 
al. which used cryo-electron microscopy and molecu-
lar approaches, shed light on this. Even though they 
did not discuss this interaction, it captured a state of 
the RESC referred to as the RESC-B particle (PDB ID: 
8FNI) [26]. This state showed an interaction between 
RESC10 and RESC6. A structural alignment of with the 

Fig. 1 The modeled structure of central editosome ligases interface. (a) 
KREL2-KREPA1 and (b) KREL1-A2. Blue lines are the interactions between 
interface residues of the two interactors (PAE max 5Å, distance max 5Å). 
Top 3 hotspots of each PPI are labeled and are shown in red with the side-
chains visible
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AlphaFold-Multimer model showed RMSD of 0.9, sug-
gesting a high degree of structural similarity.

Both RESC10 and RESC6 possess ARM/HEAT repeats 
in their structural framework. These repeats spiral to 
form a channel at the core of each protein—a site poten-
tially favorable for RNA binding. Due to inherent flexibil-
ity of ARM/HEAT repeats, these proteins can adapt their 
conformation to align with RNA structures or engage 
with other proteins. In the PPI model depicted in Fig. 2b, 
RESC10 engages both ends of RESC6’s spiral curve, effec-
tively obstructing its channel. This complementary inter-
action implies that in the presence of RESC10 stabilizes 
RESC6, potentially securing RNA molecule binding. The 
interface residues at both ends, as well as the predicted 
hotspots, are supported by good PAE and RIN central-
ity scores, indicating their importance in this interaction. 
These critical interface elements are visually represented 
as blue lines connecting the interacting components in 
Fig. 2b.

For the RESC12A-RESC13 PPI, existing reports sug-
gest a role in initiating the RNA editing process. These 
proteins are thought to assist in recruiting other RESC 

proteins and defining the active editing region. However, 
detailed studies focusing on this interaction are lacking. 
The study conducted by Liu et al., separated or excluded 
RESC12 and RESC12A from the cryo-electron micros-
copy (cryo-EM) material, thus not providing direct evi-
dence of their interaction with RESC13 [26].

In RESC12A-RESC13 PPI, the N-terminal RNA rec-
ognition motif (RRM) of RESC13 mediates its binding 
to RESC12A (Fig.  2c). While most of the interface resi-
dues from RESC12A interact with connecting loops of 
the RRM domain, the predicted interaction hotspots are 
primarily located in the defined secondary structures of 
the RRM, mainly beta-sheets. Interactions with residues 
in these beta sheets may be especially important for sev-
eral reasons [46]: (1) they often form strong hydrogen 
bonds and hydrophobic interactions, contributing to 
the stability of the PPI, (2) beta sheets tend to be more 
evolutionarily conserved than loop regions, suggesting 
the interactions involving these residues are likely essen-
tial for the protein’s function. Therefore, even among the 
predicted hotspots, some might be biologically more rel-
evant which helps in target-based drug design process.

Fig. 2 The modeled structures of central RESC PPIs from the editosome of T. brucei: (a) RESC2-RESC1 PPI, solid black arrows show the beta-barrels of each 
protein, and the dotted squares show the beta-hairpins; (b) RESC12A-RESC13 PPI; (c) RESC6-RESC 10 PPI. The upper figure for each PPI is the space filling 
mode of the PPI structure in which the dotted arrows pinpoint core holes potentially needed for RNA binding. Blue lines are the interactions between 
interface residues of the two interactors (PAE max 5Å, distance max 5Å). Top 3 hotspots of each PPI are labeled and are shown in red with the sidechains 
visible
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In general, considering the high centrality of RESC12A 
in the editosome PPI network and its prominent inter-
face ranking with RESC13, further investigation of this 
interaction could be of significant interest [47, 48]. Addi-
tionally, a separate study measuring the stoichiometry 
(relative abundance) of RESC10 in comparison to other 
RESC proteins in T. brucei has indicated that RESC10 
is relatively less abundant, accounting for only approxi-
mately 1–2% of the levels of RESC13 and RESC12A [45]. 
While the low relative abundance of RESC10 compared 
to other RESC proteins may be indicative of the protein 
to be present in only a subset of RESC complexes or that 
it interacts transiently and with RESC complexes [45], it 
also suggests that RESC10’s lower abundance and tran-
sient interactions are due to tight regulation mechanisms 
make it an interesting target for further studies.

Accordingly, due to the significance of proteomics data 
in further interpreting the central PPI findings of the edi-
tosome, the following section delves into the utilization 
of this data to enhance the analysis of the results from the 
previous sections.

Enhancing editosome PPI investigations with quantitative 
proteomics analysis
The inclusion of quantitative proteomics data in the cur-
rent research serves a multiple purpose. Firstly, it can 
serve as a means of cross-validation for the study’s find-
ings as well as serving as an independent method to find 
novel central editosome proteins via performing DEA 
analysis. Moreover, given that one of the primary objec-
tives of the study is to prioritize drug targets, the integra-
tion of this data reinforces the fact that the chosen targets 
are firmly rooted in the disease’s underlying biology. In 
general, as integrating proteomics data significantly 
enhances the likelihood of identifying viable and effica-
cious drug target candidates, it aids in identifying targets 
that are more likely to translate into effective therapies 
and ultimately improves the success rate of relevant stud-
ies. While acknowledging the benefits of such pipeline, 
to further enhance the robustness of our findings, we 
emphasize the necessity of experimental validation. Fur-
thermore, The feasibility of applying a similar pipeline to 
other pathogens hinges on the accessibility of comparable 
omics data.

Quantitative proteomics data from [17], is generated 
from samples of different life stages of T. brucei in which 
long slender bloodstream forms (LS) were differentiated 
to short stumpy forms (SS) followed by differentiation 
to insect form trypanosomes (PF) after multiple sam-
pled timepoints in between. Understanding the LS to SS 
transition is crucial for understanding the lifecycle of T. 
brucei, which has implications for disease progression 
in the host organism. Furthermore, the proteins that are 
differentially expressed or interact differently during this 

transition could be potential targets for therapeutic inter-
ventions. Given these factors, the choice to focus on the 
LS to SS transition offers a well-defined and biologically 
meaningful context within which to explore the hub pro-
teins and PPIs identified in this study. Therefore, to fur-
ther investigate the hub proteins and PPIs found in the 
present study, the LS to SS differentiation was chosen to 
study DEA as well as GSA.

To gain a pervasive view on the differential proteome 
composition and to put single protein alterations into a 
larger biological context, gene set analysis (GSA) was 
performed on all protein abundances from LS and SS 
samples. To accomplish this, each protein was annotated 
with Gene Ontology (GO) terms obtained from various 
databases. Using the created T. brucei GO dataset con-
sisting of 35,448 GO terms, GSA showed 35 GO terms 
to be significantly (adj-p-value < 0.05) downregulated in 
SS form., Most upregulation pattern was observed for 
members of RNA binding GO terms(Fig. 3a). Given that 
the transition to the stumpy form marks a change from 
proliferative to a non-proliferative state, it is reasonable 
to expect downregulation of different metabolic genes 
that were more active in the LS form. Importnatly, GSA 
also identified significant terms related to mitochondrial 
RNA editing. As illustrated in Fig. 3a, GO terms such as 
poly (A) binding, RNA helicase activity, mRNA binding 
and RNA binding include editosome proteins, thereby 
validating these proteins as promising drug targets due to 
their critical roles in the parasite’s infective stage.

In addition, DEA performed on the editosome frac-
tion of the proteomics data revealed that all detected 
hub proteins (see Table  1), except KREL1, showed dif-
ferential expression during the LS to SS differentiation 
(Fig. 3b). This suggests that the expression of these cen-
tral proteins’ expression is significantly upregulated in 
the proliferative LS, further supporting their potential as 
promising drug targets.

According to the DEA results, the most significant 
upregulated editosome proteins ((|log2 FC| > 1), are 
KREPB4 and KREX2. KREPB4 has been confirmed as an 
essential protein in both the bloodstream and procyclic 
forms of T. brucei, whereas KREX2 is not essential in any 
form of the parasite [49, 50]. These editosome proteins 
had MCDA scores of approximately 0.55, which did not 
meet the set threshold for classification as hub proteins 
in the editosome PPI network. Furthermore, its interac-
tions failed to meet the criteria of being supported with 
at least one RNase positive assay thus not included in 
interface analysis in this study.

Figure  3c visualizes the changes in abundance of the 
top hub editosome proteins in LS and SS forms. All hub 
RESC proteins, except for RESC10, display significantly 
reduced abundance in SS form. Previous report has 
shown that RESC10 interacts with RESC components 
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early in their assembly and then is released. More-
over, the effect of RESC10 on RESC assembly has been 
reported to be particularly important during transitions 
between insertion and deletion RECCs [45]. Therefore, 
its upregulation in the SS form likely reflects the para-
site’s adaptive strategy in preparation for its transition 
to the tsetse fly vector. This facilitates rapid switching 
between RECC insertion and deletion subcomplexes and 
thus establishes RESC10’s status as a pivotal member of 
the editosome complex.

In the next step, after investigating the top ranked hubs 
via proteomics data, this data was further leveraged to 
validate the investigated central PPIs (see Table 3) using 
co-expression analysis. This analysis involves assessing 
the correlation in expression patterns between the pairs 
of proteins (PPIs) across different developmental stages 
of T. brucei. Such analysis can help prioritizing hub PPIs 
based on experimental data; a positive correlation across 
different timepoints can verify that the PPI is both stable 
and crucial rather than transient.

As illustrated in Fig.  4, most hub PPIs exhibited a 
positive correlation between their respective binding 
interactors, suggesting a potential coordination in the 
expression or regulation of these protein pairs under 
various conditions. However, the PPI between KREL2 

and KREPA1 exhibited an overall negative correlation yet 
showed a significant positive correlation during the later 
developmental time points, specifically, from 6 to 48  h. 
This temporal correlation pattern is particularly intrigu-
ing as it coincides with the parasite’s transition towards 
fine-tuning its differentiation into the procyclic form.

In contrast, the paralogous PPI, KREL1-KREPA2, dem-
onstrated a very high correlation during the early phase, 
specifically at the SS-6 h timepoint. This early correlation 
suggests that KREL1 and KREPA2 may play crucial roles 
in the initial stages of parasite development. Given that 
KREL1-KREPA2 and KREL2-KREPA2 are known to be 
deletion and insertion RECC subcomplexes, respectively 
[41], our finding highlights the predominance of deletion 
processes in the SS form, while insertion processes are 
likely to be more dominant during the parasite’s differen-
tiation into the procyclic form which is the proliferative 
state of the parasite in the fly vector. As insertion edit-
ing is generally more prevalent, that could be indicative 
of a broader biological strategy for adaptability and com-
plexity, particularly useful during the life stage where the 
parasite is actively growing and dividing. Furthermore, 
RESC12A-RESC13 have shown to be significantly corre-
lated throughout the developmental stages of T. brucei, 

Fig. 3 Proteomics data analysis in SS compared to LS form. (a) GSA of protein expression Protein sets are defined by GO terms at biological process level. 
For each GO term showing significant enrichment (in this figure: adjusted p-value < 0.05), the direction of the relative changes in protein levels are shown. 
(b) volcano plot highlighting differentially expressed proteins in (|log2 FC| > 0.5, p-value < 0.05). The detected hubs in this study are labeled on the volcano 
plot. (c) box plots of hub proteins visualizing the protein abundance change
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making them an interesting case for further analysis spe-
cially for drug target discovery procedures.

Overall, these findings highlight the importance of 
context-dependent analysis when studying protein inter-
actions within the complex biological systems of para-
sitic organisms. Further investigation into the functional 
implications of these correlation patterns on the hub 
editosome PPIs may provide valuable insights into the 
regulatory mechanisms governing the parasite’s develop-
mental transitions.

Conclusion
The emergence of resistance to treatments for human 
African trypanocides emphasizes the pressing need for 
new therapeutics. Often, resistance emerges due to muta-
tions or alterations in parasite’s receptors or key proteins, 
making the need for novel drug targets against T. brucei 
more urgent. However, the lack of functional knowledge 
about many genes and proteins in the parasite has signifi-
cantly hindered this endeavor.

Unique to kinetoplastids, the RNA editing process 
orchestrated by the editosome protein supercomplex 
provides an excellent opportunity for target-oriented 
drug discovery. This mechanism is indispensable for the 
parasite’s survival and adaptability, making it a prime 
candidate for pharmacological intervention. PPIs lie at 
the core of biological processes, including RNA editing. 
Comprehensive structural analysis of these PPIs not only 

sheds light on our understanding of the underlying biol-
ogy but also guides the development of drugs capable 
of modulating these interactions, potentially leading to 
novel treatments.

Hence, this study employed a multi-layer approach, 
including structural, network, and omics-based meth-
ods, to focus on the most promising drug targets within 
the central editosome complex in T. brucei. By conduct-
ing comprehensive analyses and the implementation of 
state-of-the-art tools like AlphaFold-Multimer, we identi-
fied key editosome hub proteins and detailed their piv-
otal interactions. Our network-centric analysis allows for 
the prioritization of specific PPIs, with interactions like 
RESC2-RESC1, RESC12A-RESC13, RESC10-RESC6 and 
KREL2-KREPA1, standing out for further exploration. 
Calculating hotspot residues for each interface provides 
valuable insights for drug candidate selection and func-
tional studies, offering new ways for targeting that might 
mitigate the likelihood of resistance development.

In conclusion, this study highlights the potential of 
exploring editosome protein interactions to uncover vital 
pathways for therapeutic intervention against T. brucei. 
The findings not only underscore the importance of these 
interactions but also offer a streamlined workflow of inte-
grating multiple analytical approaches for drug target 
identification, applicable to a wide range of pathogens, 
pending further experimental validation.

Fig. 4 Correlation assessment of the top editosome PPIs using proteomics data from different time points of developmental stage in T. brucei starting 
from SS as starting point. Correlation coefficient is labeled above the temporal abundance of each graph

 



Page 11 of 12Poorinmohammad and Salavati BMC Molecular and Cell Biology            (2024) 25:3 

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12860-024-00499-4.

Additional File 1: Editosome PPI network table of T. brucei.

Additional File 2: Centrality analysis results of PPI network.

Additional File 3: RIN-based centrality analysis of hub PPIs integrated with 
PAE values for interface residue ranking.

Acknowledgements
Not applicable.

Author contributions
NP conceptualized and designed the research, conducted experiments, and 
wrote the paper. RS supervised the research and provided critical review and 
revisions for the paper. All authors read and approved the final manuscript.

Funding
This project has been supported by a research grant 252733 form CIHR to RS 
and Fonds de recherche du Québec– Santé (FRQS) foundation for providing 
financial support to NP.

Data availability
All data generated or analysed during this study are included in this published 
article [and its supplementary information files].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 26 September 2023 / Accepted: 19 January 2024

References
1. Matthews KR. The developmental cell biology of Trypanosoma Brucei. J Cell 

Sci. 2005;118:283–90.
2. Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK. Complex management: RNA 

editing in trypanosomes. Trends Biochem Sci. 2005;30:97–105.
3. Read LK, Lukeš J, Hashimi H. Trypanosome RNA editing: the complexity of 

getting U in and taking U out. Wiley Interdiscip Rev RNA. 2016;7:33–51.
4. Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, et 

al. Lexis and grammar of mitochondrial RNA processing in trypanosomes. 
Trends Parasitol. 2020;36:337–55.

5. Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. Dynamic RNA 
holo‐editosomes with subcomplex variants: insights into the control of 
trypanosome editing. Wiley Interdiscip Rev RNA. 2018;9:e1502.

6. Del Campo C, Leeder W-M, Reißig P, Göringer HU. Analyzing editosome func-
tion in high-throughput. Nucleic Acids Res. 2020;48:e99–9.

7. Mwangi KW, Macharia RW, Bargul JL. Gene co-expression network analysis of 
Trypanosoma Brucei in tsetse fly vector. Parasit Vectors. 2021;14:1–11.

8. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T et al. Protein 
complex prediction with AlphaFold-Multimer. Biorxiv. 2021;:2010–21.

9. Jiao X, Ranganathan S. Prediction of interface residue based on the features 
of residue interaction network. J Theor Biol. 2017;432:49–54.

10. Clementel D, Del Conte A, Monzon AM, Camagni GF, Minervini G, Piovesan D, 
et al. RING 3.0: fast generation of probabilistic residue interaction networks 
from structural ensembles. Nucleic Acids Res. 2022;50:W651–6.

11. Gazestani VH, Yip CW, Nikpour N, Berghuis N, Salavati R, TrypsNetDB. An 
integrated framework for the functional characterization of trypanosomatid 
proteins. PLoS Negl Trop Dis. 2017;11:e0005368.

12. Tang Y, Li M, Wang J, Pan Y, Wu F-X. CytoNCA: a cytoscape plugin for central-
ity analysis and evaluation of protein interaction networks. BioSystems. 
2015;127:67–72.

13. Wang M, Wang H, Zheng H. A mini review of node centrality metrics in 
biological networks. Int J Netw Dyn Intell. 2022;1:99–110.

14. Koschützki D, Schreiber F. Comparison of centralities for biological networks. 
In: German Conference on Bioinformatics 2004, GCB 2004. Gesellschaft für 
Informatik eV; 2004.

15. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts 
J, et al. Using graph theory to analyze biological networks. BioData Min. 
2011;4:1–27.

16. Mesgari I, Kermani MAMA, Hanneman R, Aliahmadi A. Identifying key nodes 
in social networks using multi-criteria decision-making tools. Mathemati-
cal Technology of networks: Bielefeld, December 2013. Springer; 2015. pp. 
137–50.

17. Dejung M, Subota I, Bucerius F, Dindar G, Freiwald A, Engstler M, et al. 
Quantitative proteomics uncovers novel factors involved in developmental 
differentiation of Trypanosoma Brucei. PLoS Pathog. 2016;12:e1005439.

18. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value impu-
tation for mixed-type data. Bioinformatics. 2012;28:112–8.

19. Jin L, Bi Y, Hu C, Qu J, Shen S, Wang X, et al. A comparative study of evaluat-
ing missing value imputation methods in label-free proteomics. Sci Rep. 
2021;11:1760.

20. Zhu Y, Orre LM, Tran YZ, Mermelekas G, Johansson HJ, Malyutina A, et al. 
DEqMS: a method for accurate variance estimation in differential protein 
expression analysis. Mol Cell Proteomics. 2020;19:1047–57.

21. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, et al. 
AmiGO: online access to ontology and annotation data. Bioinformatics. 
2009;25:288–9.

22. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a 
universal tool for annotation, visualization and analysis in functional genom-
ics research. Bioinformatics. 2005;21:3674–6.

23. Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, et 
al. TriTrypDB: an integrated functional genomics resource for kinetoplastida. 
PLoS Negl Trop Dis. 2023;17:e0011058.

24. Törönen P, Holm L. PANNZER—a practical tool for protein function prediction. 
Protein Sci. 2022;31:118–28.

25. UniProt. The universal protein knowledgebase in 2023. Nucleic Acids Res. 
2023;51:D523–31.

26. Liu S, Wang H, Li X, Zhang F, Lee JKJ, Li Z, et al. Structural basis of gRNA 
stabilization and mRNA recognition in trypanosomal RNA editing. Science. 
2023;381:80.

27. Salinas R, Cannistraci E, Schumacher MA. Structure of the T. brucei kinetoplas-
tid RNA editing substrate-binding complex core component, RESC5. PLoS 
ONE. 2023;18:e0282155.

28. Schnaufer A, Panigrahi AK, Panicucci B, Igo RP Jr, Salavati R, Stuart K. An RNA 
ligase essential for RNA editing and survival of the bloodstream form of 
Trypanosoma Brucei. Sci (80-). 2001;291:2159–62.

29. Kumar V, Madina BR, Gulati S, Vashisht AA, Kanyumbu C, Pieters B, et al. REH2C 
helicase and GRBC subcomplexes may base pair through mRNA and small 
guide RNA in kinetoplastid editosomes. J Biol Chem. 2016;291:5753–64.

30. Moses D, Mehta V, Salavati R. The discovery and characterization of two novel 
structural motifs on the carboxy-terminal domain of kinetoplastid RNA edit-
ing ligases. RNA. 2023;29:188–99.

31. Meehan J, McDermott SM, Ivens A, Goodall Z, Chen Z, Yu Z et al. Trypano-
some RNA helicase KREH2 differentially controls non-canonical editing and 
putative repressive structure via a novel proposed ‘bifunctional’gRNA in 
mRNA A6. Nucleic Acids Res. 2023;:gkad453.

32. Dolce LG, Nesterenko Y, Walther L, Weis F, Kowalinski E. Structural basis 
for guide RNA selection by the RESC1–RESC2 complex. Nucleic Acids Res. 
2023;51:4602–12.

33. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 
Highly accurate protein structure prediction with AlphaFold. Nature. 
2021;596:583–9.

34. Kitano H. Systems biology: a brief overview. Sci (80-). 2002;295:1662–4.
35. Brinda KV, Vishveshwara S. A network representation of protein structures: 

implications for protein stability. Biophys J. 2005;89:4159–70.

https://doi.org/10.1186/s12860-024-00499-4
https://doi.org/10.1186/s12860-024-00499-4


Page 12 of 12Poorinmohammad and Salavati BMC Molecular and Cell Biology            (2024) 25:3 

36. Vendruscolo M, Paci E, Dobson CM, Karplus M. Three key residues form 
a critical contact network in a protein folding transition state. Nature. 
2001;409:641–5.

37. Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, et al. Network 
analysis of protein structures identifies functional residues. J Mol Biol. 
2004;344:1135–46.

38. Verkhivker GM. Biophysical simulations and structure-based modeling of resi-
due interaction networks in the tumor suppressor proteins reveal functional 
role of cancer mutation hotspots in molecular communication. Biochim 
Biophys Acta (BBA)-General Subj. 2019;1863:210–25.

39. Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 
1998;280:1–9.

40. Moreira IS, Fernandes PA, Ramos MJ. Hot spots—A review of the protein–
protein interface determinant amino-acid residues. Proteins Struct Funct 
Bioinforma. 2007;68:803–12.

41. Panigrahi AK, Ernst NL, Domingo GJ, Fleck M, Salavati R, Stuart KD. Compo-
sitionally and functionally distinct editosomes in Trypanosoma Brucei. RNA. 
2006;12:1038–49.

42. Hashimi H, Čičová Z, Novotná L, Wen Y-Z, Lukeš J. Kinetoplastid guide RNA 
biogenesis is dependent on subunits of the mitochondrial RNA binding 
complex 1 and mitochondrial RNA polymerase. RNA. 2009;15:588–99.

43. Weng J, Aphasizheva I, Etheridge RD, Huang L, Wang X, Falick AM, et al. Guide 
RNA-binding complex from mitochondria of trypanosomatids. Mol Cell. 
2008;32:198–209.

44. Dubey AP, Tylec BL, Mishra A, Sortino K, Chen R, Sun Y, et al. KREH1 RNA heli-
case activity promotes utilization of initiator gRNAs across multiple mRNAs in 
trypanosome RNA editing. Nucleic Acids Res. 2023;51:5791–809.

45. Dubey AP, Tylec BL, McAdams NM, Sortino K, Read LK. Trypanosome RNAEdit-
ing substrate binding complex integrity and function depends on the 
upstream action of RESC10. Nucleic Acids Res. 2021;49:3557–72.

46. Siegert TR, Bird MJ, Makwana KM, Kritzer JA. Analysis of loops that mediate 
protein–protein interactions and translation into submicromolar inhibitors. J 
Am Chem Soc. 2016;138:12876–84.

47. Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, et al. Trypanosome 
RNA editing mediator complex proteins have distinct functions in gRNA 
utilization. Nucleic Acids Res. 2017;45:7965–83.

48. Dixit S, Müller-McNicoll M, David V, Zarnack K, Ule J, Hashimi H, et al. Dif-
ferential binding of mitochondrial transcripts by MRB8170 and MRB4160 
regulates distinct editing fates of mitochondrial mRNA in trypanosomes. 
MBio. 2017;8:10–128.

49. Carnes J, Lewis Ernst N, Wickham C, Panicucci B, Stuart K. KREX2 is not essen-
tial for either procyclic or bloodstream form Trypanosoma Brucei. PLoS ONE. 
2012;7:e33405.

50. McDermott SM, Stuart K. The essential functions of KREPB4 are developmen-
tally distinct and required for endonuclease association with editosomes. 
RNA. 2017;23:1672–84.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Prioritization of ﻿Trypanosoma brucei﻿ editosome protein interactions interfaces at residue resolution through proteome-scale network analysis
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Editosome PPI network reconstruction
	﻿Structure prediction of hub PPIs
	﻿RIN analysis
	﻿Proteomics data analysis

	﻿Results and discussion
	﻿Editosome PPI network of ﻿T. brucei﻿
	﻿Reconstruction of the editosome PPI network
	﻿Hubs in the editosome PPI network


	﻿Structure-based analysis of central editosome PPIs
	﻿Modeling hub PPIs using AlphaFold-Multimer
	﻿Interface hotspots identified through RIN analysis
	﻿PPI interfaces of central editosome ligases
	﻿PPI interfaces of editosome RESC members
	﻿RESC2-RESC1 interaction
	﻿RESC10-RESC6 and RESC12A-RESC13 interactions



	﻿Enhancing editosome PPI investigations with quantitative proteomics analysis
	﻿Conclusion
	﻿References


