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Abstract 

Background Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting 
not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underly-
ing mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining 
alterations in paternally imprinted genes within sperm.

Methods A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-
positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inherit-
ance in Man database (OMIM, https:// www. omim. org/), targeted promoter methylation sequencing was employed 
to investigate 28 paternally imprinted genes associated with various diseases.

Results Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes 
and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation 
of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype 
analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes.

Conclusions This is the first study to explore the effects of HBV infection on sperm DNA methylation and the poten-
tial underlying mechanisms of intergenerational influence of paternal HBV infection.
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Background
Hepatitis B virus (HBV) infection represents a substan-
tial global health concern, with an estimated 30% of the 
world’s population having encountered the virus at some 
point in their lives, notwithstanding the implementation 
of preventive vaccines over several decades. Recognized 
as a significant threat to human health and a prominent 
cause of mortality, HBV infection remains a top health 
priority [1, 2].

While the primary mode of HBV transmission is ver-
tical, occurring from mother to neonate. HBV infection 
in pregnant females have been clearly related to miscar-
riage. Infection with HBV has been linked to a higher 
risk of miscarriage and preterm birth in natural pregnan-
cies [3–5]. Both horizontal and vertical father-to-child 
transmission are also acknowledged as pivotal contribu-
tors [6–9]. The potential for sperm-mediated intrauter-
ine HBV infection has stirred considerable controversy. 
Some evidence suggests the integration of HBV-DNA 
into the chromatin of human sperm, and a small-scale 
study employing direct sequencing has indicated paternal 
HBV transmission to the fetus via sperm [10–12]. How-
ever, a larger body of evidence contradicts this, reveal-
ing that a father’s carrier state is unlikely to result in fetal 
HBV infection, as evidenced by the absence of HBV DNA 
in 164 fetuses from the same study born to HBV-positive 
fathers and HBV-negative mothers [13].

Beyond the controversies surrounding vertical trans-
mission, the adverse impact of paternal HBV infection 
on sperm quality, chromosomal stability, and pregnancy 
outcomes in assisted reproductive technology (ART) 
has been extensively documented [10, 14, 15]. Notably, 
Lorusso et  al. reported significant decreases in sperm 
count, motility, viability, and normal morphology in 
HBV seropositive patients, while Huang et  al. identified 
higher chromosomal aberrations in sperm from hepatitis 
B patients, suggesting potential adverse effects on chro-
mosomal stability [10, 15]. Furthermore, a meta-analysis 
conducted by Xiong et al. revealed reduced clinical preg-
nancy and live birth rates per cycle in couples undergo-
ing ART where the male partner was exclusively infected 
with HBV [14]. Moreover, the influence of paternally 
transmitted HBV infection extends to postnatal health, as 
evidenced by a cohort study in Taiwan, indicating a sig-
nificantly increased incidence of hepatoblastoma in chil-
dren born to fathers with HBV infection [16].

The repercussions on sperm quality and ART preg-
nancy outcomes attributable to HBV infection may be 
linked, in part, to sperm chromosomal aberrations and 
altered CpG methylation both before and after sperm 
maturation and fertilization [10, 14, 17]. Moreover, HBV 
infection in pregnant females, can also influence the 
methylation patterns of the offspring [18]. In a study by 

Qijun Cheng et al., it was found that prenatal HBV expo-
sure, even in the absence of malformations or prematu-
rity, may alter the epigenomic profile of newborns [19]. 
Yet, there exists a limited understanding of how paternal 
HBV infections lead to adverse fetal health outcomes, 
including the rarely attributed occurrence of hepato-
blastoma. The present study seeks to elucidate potential 
underlying mechanisms through a novel exploration of 
the perspective of paternally imprinted genes, shedding 
light on how paternal HBV infection may modulate off-
spring health.

Materials and methods
Participants and study design
A total of 35 subjects from the Reproductive Center of 
the First Affiliated Hospital of Anhui Medical University 
(Hefei, China) were enrolled in this study. All participants 
underwent in  vitro fertilization due to female causes of 
infertility at this center. Of the 35 patients (Supplemen-
tary Dataset 1), 17 were positive for hepatitis B surface 
antigen (HBsAg) and constituted the case group, while 
the remaining 18 individuals, negative for HBsAg, were 
recruited as controls (Fig.  1 illustrates the study work-
flow) [1].

The inclusion criteria of the study entailed: (I) patient 
age between 22–40  years; (II) normal results of routine 
semen analysis and sperm morphology according to the 
sixth edition of the World Health Organization Labo-
ratory Manual for the Examination and Processing of 
Human Semen [20]; (III) no history of any mental disease 
or somatic severe disorder; (IV) and no history of smok-
ing, excessive alcohol use, drug consumption, etc.

Semen sample processing
All individuals were required to provide a semen sample 
by masturbation that was collected after a previous ejac-
ulation that occurred 3–7 days ago. Subsequently, semen 
samples were frozen at -80℃. Semen samples underwent 
washing with 10 mL of 1X phosphate-buffered saline, fol-
lowed by centrifugation and resuspension of the pellet in 
10 mL of somatic cell lysis buffer (0.1% SDS, 0.5% Triton 
X-100 in DEPC H2O; Sigma-Aldrich). Overnight incuba-
tion at 4℃ was followed by multiple centrifugations and 
resuspension of the pellet in 10  mL phosphate-buffered 
saline.

Selection of genes
According to Tucci’s article, there are more than 200 
imprinted genes [21], and in order to further evaluate 
the correlation between paternally inherited genes and 
human genetic diseases, we searched for genes among 
these 200 genes that may be associated with the occur-
rence of human genetic diseases. A detailed list of these 
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genes and their related functional information is pro-
vided in Supplementary Dataset 2.

DNA methylation sequencing and bioinformatics 
analyses
Given the crucial role of CpG island methylation in influ-
encing gene expression and functionality, we analyzed 
methylation differences at different levels from CpG sites, 
CpG island regions and individual genes. Therefore our 
investigation focused on CpG islands within potential 
promoter regions spanning + 2000 bp to -1000 bp of the 
transcriptional start site. Putative CpG islands were pre-
dicted using EMBOSS Explore, with regions having an 
observed/expected ratio exceeding 0.6, a length surpass-
ing 200 bp, and a GC content exceeding 50% defined as 
CpG islands. These islands underwent targeted methyla-
tion sequencing.

Sperm DNA underwent treatment using the sodium 
bisulfite-based EZ DNA Methylation-Gold™ Kit, effect-
ing the conversion of unmethylated cytosine (C) to uri-
dine (U) while preserving the methylated cytosine state. 
Specific primers targeting CpG island sequences were 
generated using Primer3. High-throughput sequencing 
was performed on an Illumina Hiseq with a 2 × 150  bp 
paired-end configuration.

To ensure sequencing quality, FastQC was employed, 
facilitating the exclusion of low-quality reads. FLASH 
executed joint paired-end sequencing, establishing a 
minimum acceptable length of 15  bp and an error rate 
below 10%. BLAST + facilitated mapping to the human 

reference genome, defining a helpful sequence with a 
joint coverage fraction exceeding 90%. Principal compo-
nent analysis (PCA) using the R prompt function enabled 
sample clustering based on sperm methylation patterns.

Real‑time quantitative PCR (RT‑qPCR)
We meticulously selected five sets of semen samples for 
the analysis of four genes, and used TRIzol reagent (Inv-
itrogen, Carlsbad, CA92008 USA) to extract total RNA 
from semen samples of control and experimental groups. 
Subsequently, cDNA synthesis was performed using 
the PrimeScript RT reagent Kit (Takara, Shiga, Japan), 
followed by amplification with gene-specific primers 
and RT-qPCR analysis using the LightCycler 480 SYBR 
Green I Master (Roche). Primer details can be found in 
the Table S1. β-actin served as the internal reference for 
normalization. Data analysis was conducted using the 
2 − ΔΔCt method in GraphPad Prism to determine the 
mRNA expression levels of the four genes.

Statistical analyses
Continuous variables were expressed as means ± stand-
ard deviations, counting data were expressed as frequen-
cies (percentages) and analyzed using the chi-square test. 
Continuous data with a normal distribution were ana-
lyzed using t-test assessments to ascertain differences in 
methylation at specific sites, regions, genes, and methyla-
tion haplotypes between cases and unaffected controls. 
Significance in DNA methylation differences was deter-
mined at a p-value < 0.05 (two-tailed).

Fig. 1 Workflow of this different methylation study. Hbs Ag: hepatitis B surface antigen; Hbs Ag ( +): hepatitis B surface antigen positive; Hbs Ag (-): 
hepatitis B surface antigen negative
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Results
Clinical features
A comprehensive overview of demographic character-
istics is provided in Table  1. The absence of significant 
differences observed in critical variables such as age, 
BMI, educational status, and residence between the two 
groups is noteworthy. Furthermore, an in-depth analy-
sis of semen parameters, encompassing semen volume, 
sperm counts,  progressive sperm malformation rate, 
DNA fragmentation index, and abstinence time, revealed 
no significant disparities between the studied cohorts.

DNA methylation profiles of paternally imprinted 
genes in sperm of HBsAg‑positive and controls
The curated set of 28 paternally imprinted genes under 
scrutiny encompassed 84 CpG islands and 1501 CpG 
sequences, as detailed in Supplementary Dataset 3. Nota-
bly, GNAS featured the highest count of CpG islands 
[15], while CACNA1A, CUL7, DNMT1, and MOCS1 
each bore a single CpG island. All identified CpG islands 
harbored more than 10 CpG sequences, with the CAC-
NA1C_5 island exhibiting the highest count at 36.

Evaluation of sulfite conversion efficiency indicated 
comparable outcomes between the experimental and 
control groups, suggesting the absence of systemic errors 
(Figure S1). Furthermore, the quality of DNA methyla-
tion was deemed satisfactory based on quality value and 
coverage, as outlined in Supplementary Dataset 4. Com-
prehensive methylation values for CpG sites targeted 
CpG island regions and individual genes are documented 
in Supplementary Dataset 5.

Principal component analysis (PCA) grounded in DNA 
methylation values of the CpG sites did not reveal sig-
nificant distinctions between the two groups (Figure S2). 
This suggests a degree of homogeneity in DNA meth-
ylation patterns across the majority of promoter regions 
associated with the paternally imprinted genes.

Bioinformatic analyses of differential sperm DNA 
methylation between HBsAg positive and controls
A meticulous evaluation of methylation values at spe-
cific sites targeted CpG island regions and genes were 
conducted to delineate differential DNA methylation 
patterns.

In each site’s initial DNA methylation analysis, 42 sig-
nificantly different methylation sites were identified 
across 29 CpG islands within 19 genes (Supplementary 
Dataset 6). Notably, eight genes displayed only one sig-
nificantly different CpG site, while three genes harbored 
two such sites. Furthermore, four genes contained three 
significantly different CpG sites, and four more exhib-
ited four significantly different CpG sites. The analysis 
of DNA methylation at each CpG island revealed sig-
nificant differences in four islands, including CUL7_10, 
PRKAG2_56, DNMT1_11, and TP53_83 (Fig.  2, Sup-
plementary Dataset 7). Among these, CUL7_10, 
PRKAG2_56, and TP53_83 exhibited significantly lower 
DNA methylation, while DNMT1_11 demonstrated sig-
nificantly higher DNA methylation in HBsAg-positive 
patients compared to controls. These differences trans-
lated into substantial variations within the CpG meth-
ylation islands, indicating region-specific methylation 
alterations (Fig. 2).

Table 1 Comparison of demographic characteristics between HBsAg positive and negative subjects

Chi-squared, or t -tests was used as appropriate. DFI DNA fragmentation index

Controls
(N = 18)

Cases
(N = 17)

t/χ2 P

Age 31.72 ± 4.24 33.65 ± 2.91 1.556 0.129

BMI 25.20 ± 2.36 24.46 ± 2.90 0.829 0.413

Educational Status 0.238 0.625

Middle School 8 7

University 9 11

Residence 0..02 0.877

Rural 8 8

Urban 9 10

Semen volume(ml) 3.16 ± 0.79 2.92 ± 0.86 0.854 0.399

Sperm concentration(× 10^6/ml) 77.63 ± 33.20 78.70 ± 57.88 0.068 0.946

Progressive rate(PR%) 49.58 ± 12.80 44.10 ± 11.28 1.341 0.189

Sperm malformation rate(%) 94.72 ± 1.02 95.92 ± 0.85 1.799 0.081

DFI(%) 13.10 ± 5.85 16.87 ± 9.07 1.467 0.152

Abstinence time(days) 2.50 ± 0.51 2.41 ± 0.62 0.460 0.649
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Fig. 2 Different methylation of targeted regions. Panels A, C, E, and G illustrated significant methylation in four targeted regions (CUL7_10, 
PRKAG2_56, DNMT1_11, TP53_83). Panels B, D, F, and H provided detailed methylation information for CpG sites in these regions
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At the gene level, significant differences were observed 
in CUL7, PRKAG2, DNMT1, and TP53, corroborating 
findings from the targeted CpG island regions (Fig.  3, 
Supplementary Dataset 8). In order to explore the impact 
of methylation on the genes, we further conducted Real-
time quantitative PCR (RT-qPCR) and found that the 
methylation can regulate the expression of gene. DNMT1 
case group exhibited significantly decreased expres-
sion (increased methylation), and PRKAG2 and TP53 

exhibited significantly increased expression relative to 
the control group (decreased methylation) (Fig. 3). These 
results suggest a potential modulation of paternal gene 
expression in offspring born to HBsAg-positive patients.

Conducting a DNA methylation haplotype analysis 
on the 28 imprinted genes (Supplementary Dataset 9) 
unveiled 51 significantly different DNA methylation hap-
lotypes within 36 CpG islands across 22 genes (Fig.  4). 
Notably, PRKAG2 and GNAS harbored six and four 

Fig. 3 Differential methylation and gene expression in genes. The results revealed statistically significant differences in methylation (P < 0.05) in four 
genes

Fig. 4 Differential methylation haplotypes. The line in the figure indicated P = 0.05, and the dots above denoted significant methylation haplotypes 
with P < 0.05



Page 7 of 9Wu et al. BMC Molecular and Cell Biology           (2024) 25:19  

significantly different DNA methylation haplotypes, 
respectively, while CACNA1C, CACNA1E, and IRF7 con-
tained four such haplotypes.

These findings illuminate the complex landscape of 
differential DNA methylation within imprinted genes 
associated with HBsAg-positive individuals, suggesting 
potential implications for offspring health.

Discussion
This is the first study to explore the uncharted territory 
of understanding how Hepatitis B Virus (HBV) infection 
influences DNA methylation in sperm. The comprehen-
sive analysis unveiled 42 differentially methylated sites 
spread across 29 CpG islands within 19 genes. At the 
gene level, distinct patterns emerged, revealing an aug-
mentation in methylation of DNMT1 and a concomitant 
reduction in CUL7, PRKAG2, and TP53 methylation. 
The exploration also extended to a DNA methylation 
haplotype analysis, uncovering 51 differentially methyl-
ated haplotypes within 36 CpG islands across 22 genes. 
These intricate findings offer a glimpse into the potential 
mechanisms underpinning the intergenerational impact 
of paternal HBV infection. Identifying specific meth-
ylation alterations within essential genes adds a layer of 
understanding to the complex interplay between HBV 
infection and epigenetic modifications, shedding light on 
the intricate processes influencing paternal transmission 
effects across generations.

Epigenetics, the heritable regulation of gene expres-
sion through non-DNA encoded mechanisms, is a pivotal 
factor influencing cellular behavior [22, 23]. While pre-
vious studies have unequivocally demonstrated the cor-
relation between Hepatitis B Virus (HBV) infection and 
adverse effects on sperm, including decreased motility 
and heightened rates of apoptosis and necrosis leading 
to diminished fertility [24, 25], the influence of HBV on 
sperm epigenetic information has remained unexplored 
until now. Our focus on DNA methylation, a funda-
mental mechanism of epigenetic inheritance, unravels 
intriguing insights into the potential impact of HBV on 
the epigenetic landscape of paternally imprinted genes in 
sperm.

DNA methylation of cytosine residues has been sug-
gested to mediate parental effects in mammals [26]. 
Genomic imprinting, wherein gene expression depends 
on parental inheritance, is linked to differences in DNA 
methylation states that can be transmitted across gen-
erations in mammals [27]. Despite parental HBV infec-
tion being identified as a risk factor for hepatoblastoma 
in children [16], the underlying mechanisms have 
remained elusive. Our study suggests that HBV infec-
tion induces alterations in DNA methylation patterns, 
specifically within disease-causing paternally imprinted 

genes in sperm [28]. This intriguing discovery implies 
that such changes may be transmitted to offspring, 
potentially influencing their health and development. 
Notably, among the differentially methylated genes, 
TP53, encoding a well-known tumor suppressor, 
emerges as a candidate influencing cancer incidence 
in the offspring [29], paving the way for further inves-
tigations into tumorigenesis in children born to HBV-
infected male patients.

While methylation is predominantly erased upon 
fertilization in mammals [30], the impact of altera-
tions in this process on gene expression in progeny 
remains unclear. Evidence supporting the possibil-
ity of imprinted genes escaping erasure processes and 
passing on their DNA methylation status to progeny 
is known [31]. Our study systematically screened for 
paternally imprinted genes represented in disease-
causing genes listed in the OMIM database, targeting 
their promoter regions for DNA methylation detec-
tion. Accurate quantification of methylation levels in 
target genes, such as CUL7, PRKAG2, DNMT1, and 
TP53, offers insight into potential cascading effects 
stemming from alterations in the expression patterns 
of these proteins. This has significant implications for 
the health of future generations. Notably, CUL7, rec-
ognized as a modifier in ubiquitination processes [32], 
and PRKAG2, involved in phosphorylation modifica-
tions, may additionally govern the function of multiple 
proteins during post-translational modifications [33]. 
Furthermore, DNMT1, a DNA methyltransferase, has 
the capacity to regulate DNA methylation in embryos 
and offspring [34].

Acknowledging the limitations of a small sample size 
that may have influenced result accuracy due to random 
factors, our study focuses solely on promoter DNA meth-
ylation without analyzing other epigenetic alterations 
associated with HBV infection. Future endeavors within 
our group aim to address these limitations by investigat-
ing larger sample groups to gain a more comprehensive 
understanding of the additional effects exerted by HBV 
infection in sperm.

Conclusion
In conclusion, our study identifies significant differ-
ences in promoter DNA methylation levels within sev-
eral paternally imprinted genes between HBV-positive 
patients and control individuals. As the first to shed light 
on the effects of HBV infection on sperm DNA methyla-
tion, our findings provide valuable clues to the transmis-
sion mechanisms responsible for the intergenerational 
effects of HBV, opening avenues for further research into 
potential health-related consequences in offspring.
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