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Abstract
Background: 2-Chloroethyl ethyl sulphide (CEES) is a sulphur vesicating agent and an analogue of
the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD). Both CEES
and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous
publication, we reported that lipopolysaccharide (LPS) enhances the cytotoxicity of CEES in murine
RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric
oxide (NO) production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation,
cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost
exclusively via inducible nitric oxide synthase (iNOS) activity. We suggest that the influence of
CEES or HD on the cellular production of NO could play an important role in the
pathophysiological responses of tissues to these toxicants. In particular, it is known that
macrophage generated NO synthesised by iNOS plays a critical role in wound healing.

Results: We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively
generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of
NO (after 24 hours) in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite
secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein
diacetate (DAF-2DA) or dichlorofluorescin diacetate (DCFH-DA). Western blots showed that
CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS
with CEES in vitro did not inhibit its enzymatic activity

Conclusion: CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS
protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in
the nuclear factor kappa B (NF-κB) signalling pathway. Since NO can act as an antioxidant, the CEES
induced down-regulation of iNOS in LPS-stimulated macrophages could elevate oxidative stress.
Since macrophage generated NO is known to play a key role in cutaneous wound healing, it is
possible that this work has physiological relevance with respect to the healing of HD induced skin
blisters.
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Background
HD is a chemical weapon that can produce casualties in
military situations and has been used with devastating
results against civilian populations [1]. Extensive and
slow healing lesions following exposure to HD can place
a heavy burden on the medical services of military and
public health organizations. The design of effective coun-
termeasures to HD depends upon a detailed understand-
ing of the molecular mechanisms for its toxicity.
Important mechanisms of HD induced skin injury are
alkylation of DNA and other macromolecules, accompa-
nied by enhanced reactive oxygen species (ROS) genera-
tion and depletion of intracellular glutathione (GSH) [2-
5]. Depletion of GSH by HD and its metabolites is known
to shift the intracellular redox milieu toward a more oxi-
dized state with a subsequent loss of protection against
oxidative free radicals and an activation of inflammatory
responses[6,7].

It has been shown that HD induces a vast "spectrum" of
inflammatory cytokines released from keratinocytes [8,9].
It is likely that CEES cause similar changes in macro-
phages and leukocytes. We previously found that LPS, as
well as inflammatory cytokines, such as tumor necrosis
factor-alpha (TNF-α) and interleukin one-beta (IL-1β),
significantly amplify the toxicity of CEES in RAW264.7
macrophages [10]. In macrophages, stimulation by LPS,
as well as by pro-inflammatory cytokines, leads to the acti-
vation and nuclear translocation of NF-κB [11]. One of
the major consequences of such activation in macro-
phages is an induction of iNOS expression with subse-
quent elevation of intracellular NO [12]. The effect of
CEES on NO generation and on the NF-κB pathway is
potentially significant since NO signalling plays an
important role in inflammation, the mechanisms of cell
death NF-κB [13,14], and wound healing [15,16]. The
present work describes the inhibition of NO production
and iNOS expression in LPS stimulated macrophages
treated with CEES.

Results
CEES transiently suppresses NO production and iNOS 
expression in LPS stimulated cells
In Figure 1a, we examined nitrite secretion into the cell
culture medium by RAW 264.7 murine macrophages after
24 hours of treatment with CEES and various levels of
LPS. Nitrite level in the cell culture medium, as measured
by the Griess reagent, is a reliable indicator of nitric oxide
secretion. These data show that CEES (100–500 μM)
inhibited the secretion of NO into the cell medium by LPS
stimulated macrophages in a dose-dependent manner.
Low levels of CEES (≤ 100 μM) only partially inhibited
NO production, whereas levels higher than 300 μM com-
pletely inhibited NO production. Although CEES does
decrease the viability of LPS stimulated macrophages [10],

the decreased generation of NO cannot be accounted sim-
ply for the loss of viable cells. Figure 1b shows that in case
nitrite levels in the culture medium (as measured by OD
at 532 nm) are normalized to the amount of viable cells
(OD at 580 nm, MTT assay, measured separately) there is
still a significant CEES dose dependent inhibition of NO
formation.

In order to determine if CEES influenced cellular levels of
iNOS, we performed Western blot analyses (Figure 1c) of
the cell lysates using highly selective anti-iNOS antibodies
with equal amounts of total protein applied to each lane.
Control RAW 264.7 macrophages had no detectable iNOS
protein, CEES treatment alone did not induce any iNOS
protein but LPS (10 ng/ml for 24 hours) produced a
marked induction of iNOS protein. When simultaneously
treated with LPS (10 ng/ml) and CEES (300 μM) there was
a marked reduction in the LPS induction of iNOS protein.

We then examined the influence of 300 μM CEES on the
time course of NO production in macrophage stimulated
with 10 ng/ml LPS. Figure 2a shows that CEES delays, but
does not prevent, the production of NO (as measured by
nitrite formation) in LPS-stimulated macrophages. In fact,
after 12 hours the rate of NO production is about the
same in cells treated with LPS alone compared with cells
treated with both LPS and CEES. Western blot data (Figure
2b) from the cells used in Figure 2a show a similar pat-
tern: LPS alone induces robust iNOS protein expression
which is completely inhibited by CEES for up to 6 hours.
After 12 hours, however, the cells incubated with both
CEES and LPS show a rebound in the expression of iNOS
and after 24 hours the iNOS protein level in cells treated
with both CEES and LPS is very similar to that observed in
cells treated with LPS alone. These data show that the
influence of CEES on both nitric oxide synthesis and
iNOS expression is transient.

CEES does not inhibit iNOS enzymatic activity in vitro
In order to evaluate the possible direct inhibitory effect of
CEES on iNOS activity in vitro, we measured the intracel-
lular rates of 4,5-diaminofluorescein (DAF-2) or dichlo-
rofluorescin (DCFH) oxidation in intact macrophages.
Dichlorofluorescin diacetate (DCFH-DA) is permeable to
the cell plasma membrane and intracellular esterases con-
vert it into a membrane impermeable (DCFH) form
which is can be oxidized to highly fluorescent dichloroflu-
orescein (DCF) by free radicals. In macrophages, the oxi-
dation of DCFH has been shown to be a sensitive and
relatively selective probe for monitoring intracellular NO
formation by iNOS [17].

Using DCFH-DA and DAF-2DA, we were able to continu-
ously monitor NO formation in intact macrophages
under a variety of conditions. Previously, we [18] and oth-
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CEES inhibits NO production and iNOS expression in LPS stimulated RAW264.7 macrophagesFigure 1
CEES inhibits NO production and iNOS expression in LPS stimulated RAW264.7 macrophages. Panel A: Macro-
phages were simultaneously treated with various levels of CEES (as indicated) and low doses of LPS (as indicated). NO produc-
tion was monitored as the concentration of nitrite in the culture medium after 24 h. Panel B: Cells were treated similarly as for 
Panel A; LPS, 10 ng/ml; CEES, 100, 200, or 300 μM (as indicated). Means not sharing a common letter are significantly different 
(p < 0.05). Nitrite levels in the culture medium (OD at 532 nm) were normalized to the amount of viable cells (OD of the MTT 
product at 580 nm). Panel C: Western blot analysis of iNOS protein from cells simultaneously incubated with 300 μM CEES 
and/or 10 ng/ml LPS for 24 h; cell lysates were prepared as described in Materials and Methods: Con, control cells; Pos, iNOS 
protein for positive control; Veh, vehicle; L, 10 ng/ml LPS stimulated cells; C, 300 μM CEES treated cells; L+C, LPS/CEES 
treated cells.
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Time course of NO production and iNOS expression in LPS stimulated RAW264.7 macrophages incubated with CEESFigure 2
Time course of NO production and iNOS expression in LPS stimulated RAW264.7 macrophages incubated 
with CEES. Panel A: Macrophages were incubated with 10 ng/ml LPS alone, 300 μM CEES alone or simultaneously with both 
300 μM CEES 10 ng/ml LPS for various time intervals (as indicated). NO production measured as concentration of nitrite in 
culture medium. Panel B: Western blot analysis of iNOS protein from the cells incubated with 300 μM CEES with or without 10 
ng/ml LPS; cell lysates were prepared after 3, 6, 12, or 24 hour incubation (as indicated) as described in Materials and Methods; 
L, LPS; C, CEES.
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ers [19] have shown that LPS exclusively induces the iNOS
form of nitric oxide synthase in murine macrophages. Fig-
ure 3a shows DCFH oxidation in RAW 264.7 cells stimu-
lated with different levels of LPS for 24 hours. In the
absence of LPS, the rate of DCFH oxidation was extremely
low but increased with increasing exposure to LPS; how-
ever, this effect was nearly saturated at LPS levels above 15
ng/ml.

We then measured the rates of DAF-2 oxidation in RAW
264.7 macrophages stimulated with 20 ng/ml LPS in the
presence or absence of 500 μM CEES during 24 hour incu-
bations (Figure 3b). In the absence of LPS or CEES, mini-
mal DAF-2 oxidation was observed. As expected, LPS
alone induced a marked increase in DAF-2 oxidation.
Next, macrophages incubated with LPS for 24 hours were
then exposed (post-treatment) to 500 μM CEES and the
rate of DAF-2 oxidation immediately measured. As shown
in Figure 3b, there was no change in rate of DAF-2 oxida-
tion compared to cells treated with LPS alone. These data
strongly support the notion that CEES does not directly
inhibit iNOS enzymatic activity. Similar results were
obtained with DCFH-DA staining (data not shown). As
expected, macrophages simultaneously treated with both
LPS and CEES for 24 hours show a marked decrease in
either DAF-2 or DCFH oxidation.

To further confirm that DCFH oxidation is overwhelm-
ingly due to iNOS, we incubated LPS-stimulated macro-
phages with ebselen (see Figure 3c). Ebselen is a
selenoorganic compound that can inhibit both the activ-
ity of iNOS [20] and its induction by LPS [21]. Ebselen
(25 μM) almost completely inhibited the DCFH oxida-
tion in RAW 264.7 cells treated with 10 ng/ml or 20 ng/
ml LPS. Ebselen was not cytotoxic at the levels used in Fig-
ure 3 (data not shown).

Discussion
Overall, the experiments detailed in this work show that
CEES treatment in LPS-stimulated RAW264.7 murine
macrophages transiently inhibits intracellular NO genera-
tion by interfering with iNOS expression rather than by
direct inhibition of iNOS enzymatic activity. CEES (as
well as HD) undergo rapid hydrolysis in aqueous solu-
tions and this may account, in part, for the transitory
nature of its inhibiting effect on iNOS induction [22]. LPS
is a major component of the cell wall of gram-negative
bacteria and is known to trigger a variety of inflammatory
reactions in macrophages and other cells expressing CD14
receptors [23,24]. LPS is ubiquitous and is present in
serum, tap water, and dust. Military and civilian personnel
would, indeed, always have some degree of exposure to
environmental LPS.

LPS stimulation of macrophages is known to involve the
activation of protein phosphorylation by kinases as well
as the activation of nuclear transcription factors such as
NF-κB [25-28]. An important consequence of NF-κB acti-
vation in macrophages is the induction of iNOS expres-
sion followed with highly elevated NO production [12].
Nitric oxide has been demonstrated to have an important
role in promoting cell death; however, the precise nature
of this role varies with cell type and the dose. Low levels
of nitric oxide protect RAW 264.7 macrophages from
hydrogen peroxide induced apoptosis [29], however,
nitric oxide has also been reported to induce apoptosis in
J774 macrophages [14]. Nitric oxide can induce cell death
through energy depletion-induced necrosis and oxidant-
induced apoptosis.

We are currently exploring the potential molecular mech-
anism(s) whereby CEES interferes with iNOS expression
in LPS stimulated macrophages. It is possible that GSH
depletion caused by CEES determines iNOS expression.
There are strong evidences suggesting that thiol depletion
and iNOS expression are interrelated [30-32]. For exam-
ple, LPS stimulated macrophages depleted of GSH exhibit
a decreased level of iNOS protein and nitrite production
[32]. Similarly, both in vitro [30] and in vivo [31] studies
show that hepatocytes depleted of GSH have a diminished
production of nitric oxide which is primarily due to a
decreased level of iNOS mRNA. Vos et al. [31] have also
presented evidence showing that GSH modulation of
iNOS expression in hepatocytes is correlated with NF-kB
activation, i.e., GSH depletion is associated with a lack of
NF-kB activation. The influence of GSH depletion is not,
however, consistent in all cell types. Glucose induced
reduction of GSH in intestinal epithelial cells is associated
with NF-kB activation and upregulation of iNOS gene
expression [33].

It is also possible that CEES decreases iNOS expression by
interfering with the LPS-induced activation of transcrip-
tion factor NF-κB and/or signal transducer and activator
of transcription-1α (STAT-1α). It is interesting, therefore,
that Gray [34] has found that both CEES and HD inhibit
the in vitro binding of transcription factor activating pro-
tein-2 (AP-2) via alkylating the AP-2 DNA consensus
binding sequence rather than by direct damage to the AP-
2 protein. Furthermore, it is significant that neither CESS
nor its hydrolysis products were found to damage the AP-
2 transcription factoring in a manner that prevented its
DNA binding [35]. Similar experiments have yet to be
done with NF-κB. Chen et al. [36] have also found that
nitrogen mustard (bis(2-chloroethul) methylamine) sim-
ilarly inhibits the binding of AP-2 to its consensus
sequence. Nitrogen mustard also was shown to inhibit the
binding of NF-κB to the GC-rich consensus sequence due
to the interactions with DNA [37]. It is possible, therefore,
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CEES reduces intracellular NO in LPS stimulated RAW264.7 macrophagesFigure 3
CEES reduces intracellular NO in LPS stimulated RAW264.7 macrophages. Panel A: Intracellular DCFH (20 μM) 
oxidation in LPS stimulated macrophages (as indicated) incubated for 2 h. Fluorescence (excitation 485 nm, emission 520 nm) 
was measured in Relative Fluorescence Units (RFU); the oxidation rate was expressed as RFU/min. Panel B: Macrophages stim-
ulated with 20 ng/ml LPS, were incubated in the presence or absence of 500 μM CEES (as indicated) for 24 h. Post, CEES was 
applied after the 24 hours of LPS stimulation; Sim, CEES was applied simultaneously with LPS. Panel C: LPS stimulated cells were 
incubated in the presence or absence of 25 μM ebselen, a selective iNOS inhibitor (as indicated). 10, 10 ng/ml LPS; 20, 20 ng/ml 
LPS. Mean values not sharing a common letter are significantly different (p < 0.05).



BMC Cell Biology 2006, 7:39 http://www.biomedcentral.com/1471-2121/7/39
that CEES also alkylates the NF-κB consensus sequence
thereby preventing the binding of the NF-κB to the iNOS
promoter. LPS and/or cytokine-inducible NF-κB binding
elements of the murine iNOS promoter have been identi-
fied [38], and they are rich of guanine, which is the major
alkylation site for HD or CEES. The possible effect of CEES
on iNOS promoter regulation is currently being explored.

Although the activation of NF-κB due to mustard or CEES
exposure have been shown in various cell lines [7,37,39],
the detailed mechanism of this event is still unclear.
Recent report [39] showed that NF-κB-driven gene expres-
sion has maximum at 9 hours in HD treated keratinocytes.
In contrast, in a guinea pig model, Chatterjee et al. [40]
have shown that NF-κB activation in lung tissues occurs
shortly after CEES expose (1 hour), then disappears
within 2 hours completely. However, in our experiments
we did not observe any short term stimulating effect of
CEES on NO production or iNOS expression (data not
shown). Notably, the electrophoretic mobility shift assays
used by Chatterjee et al. to measure NF-κB activation
show only the state of NF-κB protein complex and pro-
vide no information regarding its binding to the DNA
consensus sequences.

The physiological significance of potentially decreased
iNOS expression by exposure to CEES or HD is not
known. Considerable evidence, however, supports the
view that nitric oxide production via iNOS plays a key role
in wound healing [41-43]. Animal studies [16] have
shown that the iNOS knockout mice have impaired
wound healing that is reversed by iNOS gene transfer.
Soneja et al. [44] have suggested that wound healing
could be accelerated under circumstances where oxidative
stress is minimized and nitric oxide production enhanced.
We have initiated work to explore the role of antioxidants
in preventing HD induced pathology in skin.

Conclusion
Our results show that CEES transiently inhibits NO pro-
duction in LPS stimulated macrophages by inhibiting the
expression of iNOS protein and not by modulating the
enzymatic activity of iNOS. The decreased iNOS expres-
sion induced by CEES suggests that this alkylating agent
inhibits the LPS stimulated activation of NF-κB and/or
STAT-1α transcription factors, and this possibility is being
investigated. We cannot directly address the physiological
significance of our in vitro results, however, both
decreased expression of iNOS and decreased production
of nitric oxide are associated with impaired wound heal-
ing [16,41,43,44]. It is likely that the CEES or HD toxicity
is modulated by a complex balance between nitric oxide
production, thiol depletion and oxidative stress.

Methods
Materials
RPMI-1640 medium without phenol red and fetal bovine
serum with a low endotoxin level were purchased from
Life Technologies (Gaithersburg, MD). Rabbit anti-mouse
iNOS antibody was obtained from Transduction Labora-
tory (Lexington, KY). Horseradish peroxidase conjugated
anti-rabbit polyclonal antibodies, Escherichia coli
lipopolysaccharide serotype 0111:B4, 3-(4,5-dimethylthi-
azolyl-2)-2,5-diphenyltetrazolium bromide (MTT), and
2-chloroethyl ethyl sulphide were obtained from Sigma
Chemical Company (St. Louis, MO).

Cell culture and treatments
RAW264.7 murine macrophage-like cells (American Type
Culture Collection, Rockville, MD) were cultured at 37°C
in a humidified incubator with 5% CO2 in RPMI-1640
medium with 10% fetal bovine serum, 50 U/ml penicillin
and 50 mg/ml streptomycin (GiBcoBRL Grand Island,
NY). CEES was used as a fresh (2 week old or less) 50 mM
stock solution in dried ethanol. LPS was prepared as a 1
mg/ml stock solution in PBS and stored at -20°C for up to
3 months.

MTT assay
The MTT (3-(4,5-dimethylthiazool-2yl)-2,5-diphe-
nyltetrazolium bromide) assay was performed by a slight
modification of the method described by Wasserman et
al. [45,46]. Briefly, at the end of each experiment, cultured
cells in 96 well plates (with 200 μl of medium per well)
were incubated with MTT (20 μl of 5 μg/ml per well) at
37°C for 4 hours. The formazan product was solubilized
by addition of 100 μl of dimethyl sulfoxide (DMSO) and
100 μl of 10% SDS in 0.01 M HCl and the OD measured
at 575 nm (Molecular Devices SPECTRAmax Plus micro-
plate reader).

Western blot analysis
Cellular protein lysates were prepared as described in the
protocol from Transduction Laboratory (Lexington, KY).
Briefly, about 106 adherent cells were rinsed once with
cold PBS and solublized by boiling in 0.1 ml of SDS-PAGE
sample buffer for 5 min. Protein concentration was deter-
mined by the BCA protein assay (Pierce Chemical Co.,
Rockford, IL). A 30 μg aliquot of protein was separated via
8% SDS-PAGE and electrotransferred onto a nitrocellu-
lose membrane. Western blotting was performed with a
rabbit polyclonal antiserum against the C-terminal (961
to 1144 amino acids) sequence of mouse iNOS (Trans-
duction Lab, Lexington, KY). The protein was detected
using an enhanced chemiluminescence kit from Amer-
sham Life Science (Arlington Heights, IL). Murine iNOS
(Calbiochem, CA) was used as a positive control.
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Determination of NO production
The production of NO, reflecting cellular NO synthase
activity, was estimated from the accumulation of nitrite
(NO2

-), a stable breakdown product of NO, in the
medium. Nitrite was measured using the Griess reagent
according to the method of Green et al. [47]. Briefly, an
aliquot of cell culture medium was mixed with an equal
volume of Greiss reagent which reacts with nitrite to form
an azo-product. Absorbance of the reaction product was
determined at 532 nm using a microplate reader (Molec-
ular Devices Microplate Reader). Sodium nitrite was used
as a standard to calculate nitrite concentrations.

Intracellular NO measurement
Assays were performed using 96-well tissue culture plates
as described by Imrich and Kobzik [17]. The cell density
was adjusted to 2 × 105/ml, and a 100 μl aliquot of the cell
suspension in media was placed put in each well. CEES
and LPS solutions to achieve desired concentrations were
added and the plate incubated for 24 h at 37°C in 5%
CO2. Following the removal of media, serum free 1640
RPMI supplemented with 10 mM HEPES containing 20
μM DCFH-DA or 10 μM DAF-2DA (final concentration)
was added, and the plates incubated for 2 h at 37°C. Flu-
orescence intensity (relative fluorescence unit, RFU) was
continuously monitored using 485 nm for excitation and
520 nm emission in a florescence microplate reader (Flu-
oStar Microplate Reader, BMG).

Statistical analyses
Data were analyzed by followed with the Scheffe test for
significance with p < 0.05. Results were expressed as the
mean ± SD. In all the Figures, mean values not sharing a
common letter are significantly different (p < 0.05). Mean
values sharing a common letter are not significantly differ-
ent. The mean values and standard deviations of at least
three independent experiments are provided in all the Fig-
ures.
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