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Abstract

Background: Since S. cerevisiage undergoes closed mitosis, the nuclear envelope of the daughter
nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several
constitutents of the maternal nucleus are not present in the daughter nucleus. The present study
aims to identify proteins which impact the shape of the yeast nucleus and to learn whether
modifications of shape are passed on to the next mitotic generation. The Esclp protein of S.
cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been
implicated in targeted silencing both at telomeres and at HMR.

Results: Upon increased Esclp expression, cell division continues and dramatic elaborations of the
nuclear envelope extend into the cytoplasm. These "escapades” include nuclear pores and associate
with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This
exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover,
excess Esclp affects the levels of multiple transcripts, not all of which originate at telomere-
proximal loci. Unlike Esclp and the colocalizing protein, Mlplp, overexpression of selected
proteins of the inner nuclear membrane is toxic.

Conclusion: Esclp is the first non-membrane protein of the nuclear periphery which — like
proteins of the nuclear lamina of higher eukaryotes — can modify the shape of the yeast nucleus.
The elaborations of the nuclear envelope ("escapades") which appear upon induction of excess
Esclp are not inherited during mitotic growth. The lack of inheritance of such components could
help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.

Background cycle [1,2]. Related to these observations is the question of

The position, shape, size and orientation of organelles
varies among differentiated cells, thereby allowing dis-
tinct cell types to be recognized. The approximately spher-
ical nucleus itself generally is near the center of the cell
and in yeasts the spindle pole body (SPB) provides a land-
mark at one pole of the nucleus, thereby allowing one to
witness changes of nuclear orientation during the cell

whether all portions of the nuclear envelope (NE) are nec-
essarily inherited by the daughter nucleus at mitosis — an
issue which bears directly on the ability of cells to cope
with the impact of damage or change accrued during a sin-
gle generation. The present investigation shows that a
novel landmark of the perimeter of the yeast nucleus is
not inherited.
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The nuclear lamina in higher eukaryotic cells governs
nuclear morphology and serves as a scaffold for the organ-
ization of the nucleoplasm, where it anchors heterochro-
matin and can affect both DNA replication and
transcription. The best-characterized proteins of the lam-
ina are the intermediate filament lamins, which self-asso-
ciate via coiled-coil domains, generating a compact
meshwork at the nuclear periphery [3].

Alterations in the structure, organization, and composi-
tion of the nuclear lamina are likely to account for aber-
rant shapes of the nuclei of malignant cells, as well as the
distinct nuclear morphology of neutrophils. Moreover,
the increased titer of mutant lamins can have major con-
sequences for the shape and integrity of the nuclear sur-
face [3-6]. Lamin orthologs are absent from yeast, and it is
not known whether a structural or functional equivalent
of the lamina exists in S. cerevisiae. When higher eukaryo-
tic lamin B1 or its receptor is expressed in S. cerevisiae,
these proteins concentrate at the periphery of the nucleo-
plasm [7].

Several non-membrane proteins that normally localize to
the periphery of the nucleoplasm in yeast possess coiled-
coil domains (Esclp, Mlp1/2p, Sirdp, Smc5/6p) [8-11].
Esclp (Establishes Silent Chromatin), contains three
equally spaced coiled-coil domains, can function as an
anchor for chromatin, interacts with Raplp and Sir4p,
promotes targeted silencing at telomeres and HMR, is
needed for proper organization of the "nuclear baskets" of
nuclear pores, and promotes nuclear retention of
unspliced transcripts [8,12,13]. Esclp is larger than lam-
ins (187 vs 70 kDa) and lacks the C-terminal isopre-
nylated CAAX motif present in A and B-type lamins.

The present study demonstrates that accumulation of
Esclp at the nuclear periphery causes dramatic modifica-
tions of the nuclear envelope. These modifications are
structurally distinct from those which have been reported
in a screen of deletion strains [14] or upon deletion of an
ER/NE membrane phosphatase [15-17], mutation of
components of the nuclear pore complex [18], proteins
which function in the early secretory path [19,20], or
Acclp, which reduces very long-chain fatty acids [21].
Interestingly, the titer of Esclp affects levels of several
transcripts, only some of which originate from telomere-
proximal loci. The structural abnormalities of the NE
which are caused by Esclp are not passed on to daughter
cells, showing that inheritance of components of the
nuclear perimeter can be selective.

Results

To learn whether the composition of the nuclear periph-
ery influences nuclear shape, and to extend previous
observations on Esclp [8], we have induced synthesis of
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GFP-tagged Esclp in S. cerevisiae. After 3-5 hrs we observe
the progressive elaboration of fin- and ring-like "esca-
pades" that extend from the surface of > 80% of nuclei.
~6% of nuclei also have bright patches of GFP-Esclp at
the nuclear periphery. After overnight induction, rings
and patches predominate (Fig. 1A). Similar observations
have been made with both haploid and diploid strains.
Equivalent observations have also been made with
untagged Esclp, in which case we visualize a GFP-tagged
ER membrane protein to define the perimeter of the
nucleus (Fig. 1B). Judging from estimates of transcript lev-
els presented below, the titer of Esclp could increase as
much as 20-30x over controls upon overnight induction.

Images of cells which express Nup49p-GFP (Fig. 1C) show
that escapades include nuclear pores (Fig. 1C). Ultrastruc-
tural examination also detects nuclear pores in the esca-
pades and demonstrates that escapades are double-
membrane sheets (rather than tubules) of constant width
(Fig. 1D). Since escapades are limited by two layers of NE
it is reasonable that - in cells expressing GFP-Esc or ER
membrane proteins - their fluorescent intensity can
exceed that of the rest of the NE (Fig. 1A/B). Time-lapse
observations show that the position and contour of most
escapades remains essentially constant for tens of min-
utes; however the fin-like structures occasionally fuse back
to the nucleus and generate rings (Fig. 1E). Examination
of cells which express a tagged histone (Htb2p-mRFP) as
well as GFP-Ec1p shows that escapades include little or no
chromatin (Fig 1F).

To learn whether excess of other proteins of the nuclear
periphery causes similar changes, we have compared the
impact of excess Esc1p to that of the non-membrane pro-
tein, MIp1p [See Additional file 1] which colocalizes with
Esclp [9,22], the tail-anchored inner membrane protein,
Prm3p [23] [See Additional file 2], and the integral mem-
brane proteins of the inner membrane, Heh1p and Heh2p
[24] [See Additional files 3 and 4]. Excess MIp1p is known
to distribute throughout the nucleoplasm [9]. As shown,
Mlp1p has no obvious effect and Prm3p causes changes of
the NE roughly comparable to those caused by Esclp. By
contrast, the Heh proteins are much more perturbing,
with Heh1p not even leaving the quasi-spherical shape of
the chromatin mass intact. Induction of either Esclp or
Mlp1p allows continued growth, while induction of
Heh1p, Heh2p, or Prm3p is toxic (not shown). We there-
fore have not pursued these membrane proteins further.

Relation of Escapades to Intranuclear Structures

In cells which express the nucleolar marker, Sik1p-mRFP,
and can be induced to express GFP-Esclp, systematic
examination of through-focal series after 5 hr induction
shows that > 90% of escapades contact the perimeter of
the nucleus at or immediately adjacent to the nucleolus
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overnight

Time-2 min intervals

Figure |

Structure of Escapades. (A) (A') Haploid cells expressing GFP-Esclp from a galactose-inducible promoter (ATY3258)
were induced for 5 hrs (left) or overnight (right) with 2% galactose. Escapades are seen as "fins" (F), "rings" (R) or "patches"” (P).
Phase images are in blue. Induction with 10—100-fold lower concentrations of galactose reduced the number of cells which
were fluorescent but did not affect the appearance of their escapades. Note that fewer fins are seen upon overnight induction.
The scale bar in this and all figures designates | micron. (B) Strain ATY2957 expressing both untagged Esclp from a galactose-
inducible promoter and a GFP-tagged ER marker (a truncated form of HMG-CoA reductase |-GFP [59]), after overnight induc-
tion. Two cells are illustrated — one toward the upper right and one in the lower middle portion of the field. Note the ring-like
escapades (e) in both cells. Fin-like escapades are seen after shorter periods of induction and no such structures are seen in the
absence of galactose. The peripheral ER is indicated by the arrow. N: The nucleoplasmic volume. (C) Cells which express
mRFP-tagged Htb2p and Nup49p-GFP as well as galactose-inducible untagged Esclp (ATY3156) were induced overnight. Note
the presence of the Nup49p-GFP signal (arrow) outside the margin of the red chromatin mass. By contrast, controls in glucose
medium show a conventional circumferential distribution of GFP signal (not shown). (D) (D') GFP-Escl p-expressing cells
(ATY1483) were induced overnight, fixed and processed for transmission EM. Note the constant width of the double mem-
branes that extend from the surface of the nucleus, and the presence of nuclear pores in these extensions (arrows). (E) Time-
lapse sequence of a GFP-Escl| expressing strain (ATY2102) after overnight induction. Note the progressive conversion of the
fin to a ring-like escapade. Such conversions are seen only infrequently. N: The spherical portion of the nucleus. (F) (F')
Htb2p-mRFP-expressing cells induced for 5 hr to express GFP-Esclp (ATY3281). The square in the upper field is enlarged and
illustrated without the green signal below to clarify the distribution of Htb2p-mRFP. Note the absence of tagged chromatin
from the escapades.
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(Fig. 2A, and see Additional file 5). The nucleolus is not
however present within the escapades themselves. The
yeast spindle pole body (SPB) is embedded in the NE at a
position which is usually opposite the nucleolus [25,26].
Consistent with the observed nucleolar association, the
localization of escapades and karmellae does not coincide
with the tagged SPB protein, Spc42p (Fig. 2B and see
Additional file 6). Systematic counting of through-focal
series of cells which exhibit escapades shows that only
~10% of the tagged SPBs contact escapades. Another mod-
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ification of the NE, the "karmellae" which result from
overexpression of HMG-CoA reductase, also associates
with the nucleolus [27] and avoids the SPB (Fig. 2C). A
third instance of association with the nucleolus is that of
the "flares" which appear upon deletion of the ER/NE
membrane proteins, Nem1p or Spo7p. In this case, the
flares define a pocket which encloses the nucleolus [15].

Since centromeres are close to the SPB during most of the
cell cycle [2], we also studied their relation to escapades,

C Karmellae

D Centromere

Figure 2

Relation to Nuclear Structures. (A) GFP-Esclp was induced for 5 hr to compare the localization of GFP-tagged escapades
to the nucleolus, in a strain (ATY2101) which expresses Siklp-mRFP. Systematic examination of through-focal series shows
that > 90% of escapades contact the perimeter of the nucleus at or immediately adjacent to the mRFP-positive nucleolus. See
Fig. S5. (B) Comparison of the localization of GFP-tagged escapades with the spindle pole body, in a strain (ATY3276) which
expresses Spc42p-mRFP and has been induced for 5 hr. An overview is given in Fig S6. (C) Comparison of the localization of
GFP-tagged karmellae with the nucleolus and the spindle pole body, in a strain (ATY 1577) which expresses Sik|p-mRFP and
Spc42p-GFP and carries plasmid [pGAL-HMG-CoA Reductase I-GFP]. Karmellae are ER membrane stacks associated with the
outer nuclear membrane which result from overexpression of HMG-CoA reductase typel. (D) Comparison of the localization
of GFP-tagged escapades with a centromere, in a strain (ATY2098) which expresses a GFP-lac repressor fusion and an inser-
tion of lac operator arrays near CENIV and has been induced for 5 hr. An overeview is given in Fig. S7. (E) Comparison of the
localization of GFP-tagged escapades with a telomere, in a strain (ATY2097) which expresses a GFP-lac repressor fusion and
carries an insertion of lac operator arrays near telomere XIVL and has been induced for 5 hr. An overview is given in Fig. S8.
(F) Comparison of the localization of the GFP-tagged telomere-associated protein, Rap | p, and Htb2p-mRFP-tagged chromatin
in ATY3275. Induction was for 5 hr. An overview is given in Fig. S9.
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using cells which express lac operator arrays integrated
near a centromere and GFP-tagged lac repressor. No obvi-
ous association is seen between this centromere and esca-
pades (Fig. 2D and see Additional file 7). Equivalent
experiments to localize a telomere again show no obvious
association (Fig. 2E and see Additional file 8). In both
cases, systematic counting of through-focal series of cells
which exhibit escapades shows that only ~10-12% of the
tagged loci contact escapades. A functional GFP-tagged
form of the telomere-associated protein, Rap1p, which
binds Esclp [8], also is not detected outside the chroma-
tin mass, as would be expected if it were in escapades (Fig.
2F and see Additional file 9). This is also the case for Sirdp

8]

Formation of Escapades-Relation to Cytoplasmic
Structures

Following the separation of sister chromatids at the onset
of anaphase, the nucleus of the mother cell quickly
extends into the bud, generating a dumbbell-shaped struc-
ture with a narrow bridge of NE connecting the two nuclei
[28]. Fission of the bridge leaves protruding membrane
remnants that are normally resorbed by the two resulting
nuclei. Escapades superficially resemble these remnants
and therefore might be derived from them. Nevertheless,
time-lapse microscopy of cells which exit mitosis shows
that GFP-Esc1p-positive remnants are efficiently resorbed,
as in control cells (see below). Moreover, cells treated with
a-factor (3 hr, 1 pg/ml) [See Additional file 10] or hydrox-
yurea (3 hr, 0.1 M) [See Additional file 11] can generate
escapades when Esclp expression is induced in the
absence of cell cycle progression.

The formation of escapades does not appear to depend on
the integrity of the tubulin or actin cytoskeleton, judging
from experiments in which they are induced in the pres-
ence of doses of nocodazole or latrunculin A which effec-
tively depolymerize the corresponding cytoskeletal
structures [See Additional files 12 and 13].

Like the surface of the yeast nucleus [29], escapades are
intimately associated with vacuoles, as detected with the
membrane dye, FM4-64 (Fig. 3A). Live-cell imaging
reveals that escapades can originate at or near the nucleus-
vacuole junction (NVJ), prior to extending along the sur-
face of the vacuole (Fig. 3B). Nevertheless, small ring-like
escapades and patches of Esclp can be induced in pep3-4
cells which lack conventional vacuoles [30] (Fig. 3C).

Inheritance of Escapades

The distribution of escapades was examined as cells pass
through anaphase. Intriguingly, they are excluded from >
95% of daughter nuclei (Fig. 4/Table 1). The asymmetric
distribution is especially conspicuous in a mob1-77

http://www.biomedcentral.com/1471-2121/8/47

mutant which makes it possible to maintain cells in late
anaphase for hours (Table 1) [31].

Why are Escapades not Present in Daughter Nuclei ?
Escapades could be actively retained by the maternal
nucleus, excluded from the daughter nucleus, or could
simply not be able to diffuse in the plane of the mem-
brane. Since septin filaments at the bud neck can restrict
transfer of proteins between mother and bud [32-35], we
have examined inheritance in strains that carry mutations
in septin subunits and disorganize the septin collar at the
restrictive temperature (cdc3-3, c¢dc10-1). In these
mutants, escapade exclusion from daughter nuclei is again
seen (Table 1). Karmellae are also restricted to the mother
in wt and in septin mutants (not shown). Consistent with
the suggestion that there is no structural impasse at the
bud neck, most escapades which remain in the mother do
not accumulate at the neck. Moreover, electron micro-
scopic examination shows that a significant space sepa-
rates the outer nuclear membrane from the inner aspect of
the plasma membrane at the bud neck during anaphase
[36].

To evaluate the maternal retention model, we have stud-
ied the distribution of escapades in cells for which nuclear
division does not require traversal of the bud neck. For
this purpose, we have disrupted actin filament integrity
with latrunculin A, which allows the spindle to deviate
from the mother/bud axis, with the result that nuclear
division can occur entirely within the maternal cytoplasm.
Strikingly, escapades are restricted to a single nucleus in
such binucleates (Fig. 5). This finding led us to investigate
whether association with the vacuole could account for
maternal retention; however, escapades are overwhelm-
ingly retained in a pep34 strain (Table 1).

To inquire whether escapades and karmellae are intrinsi-
cally immobile, we have examined the constancy of their
position when the nucleus with which they associate fuses
with a conventional nucleus during karyogamy. As shown
in Fig. 6, they show no tendency to migrate into the trans
nucleus over a period of time greater than that required
for anaphase. Nevertheless, tagged nuclear pores are able
to access the trans nucleus [37,38]. Note the rapid transit
of GFP-Esclp to the trans nucleus. At least at this level of
expression, it has considerable mobility.

Functional Consequences

Despite dramatic changes in nuclear shape, cells that
express excess Esclp or GFP-Esclp are not seriously
growth impaired in liquid culture or on solid media. Fur-
thermore, they show a distribution of DNA content com-
parable to wt, and can mate (not shown and Figure 6).
The maternal restriction of escapades may direct most
physiological consequences of their presence to the
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Esclp
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2 min intervals

Figure 3

Escapades Associate with the Vacuole and Originate at the NV]J. (A) Association with the vacuole, as detected by
confocal examination of strain ATY2102 stained with FM4-64 (red) after galactose induction for 3 hrs. In each case, the chro-
matin-containing portion of the nucleus is designated (N) and the escapade is indicated by (*). (B) Time-lapse confocal
sequence of strain ATY2513 that expresses Siklp-mRFP (nucleolus: Nu) and Vac8p-YFP, which marks the vacuole membrane
(Vac) and concentrates at the nucleus-vacuole junction (NV]). GFP-Esc|p expression was induced with galactose 30 minutes
prior to and maintained throughout time-lapse imaging, to follow the progression of GFP-Esclp accumulation. Note the GFP-
Esclp at the periphery of the nucleus (N) and its progressive extension along the surface of the vacuole, generating an esca-
pade (*). The MET25p-VAC8-EYFP plasmid was from D. Goldfarb. (C)pep3A4 cells which allow induction of GFPEsc|p were

induced for 5 hr and examined (ATY2103).

mother and thereby contribute to the lack of a major
growth phenotype, as each cell division produces progeny
which initially lack escapades.

It is therefore of interest that a differential effect at the
level of cell cycle progression is evident. Normally, when
a mother cell gives rise to a daughter, the mother will
rebud quickly, while daughters must grow to a critical size

before budding [39]. By contrast, when pre-induced GFP-
Esclp-expressing cells are observed, the bud interval is
slowed in mothers (possibly due to interference by the
escapades themselves) and accelerated in daughters. As a
result, the difference in timing of budding between moth-
ers and daughters is reduced by more than 50% (Fig. 7).
The net impact of these events could account for the mod-
est reduction of relative growth rate which can best be
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Table I: Maternal Retention of Escapades

Strain % GFP-Esclp
MAT a 94.3 +/- 3.7
MAT o 97.1 +/-2.0
mob1-77 98.7 +/- 0.4
cdc3-3 94.3 +/- 1.8
cdcl0-1 94.6 +/-2.2
pep34 93.6 +/- 2.0

The percentage of tagged escapades that remain at the maternal
nucleus during mitosis was determined (1) in control strains MATa
(ATY2102) and MATa (ATY1550), (2) in the mitotic exit mutant,
mob[-77 (ATY2502), (3) in septin mutants, cdc3-3 (ATY2494) and
cdcl0-1 (ATY2087), and (4) in the absence of an organized vacuole,
due to deletion of PEP3 (ATY2103). All cells carry the integrated GAL-
GFP-ESCI cassette, except for the septin mutants, which were
transformed with a centromeric plasmid expressing GFP-Esclp under
control of a methionine-repressible, MET25, promoter. Typically, cells
were synchronized in G| (a-factor arrest) during induction for 3 hrs
at 23°C and were then allowed to reenter the cell cycle at 23°C
under repressing conditions. Ts strains were shifted to the restrictive
temperature one hour after a-factor release and examined after 2
hrs. The MATa control strain (ATY1550) was used without
synchronization. 100 mitotic cells were examined in at least three
replicate experiments for each condition and the distribution of
escapades between mother and daughter nuclei was scored. As
shown, ~95% of the escapades are always retained in the maternal
nucleus in all cases.

detected in mixed cultures in which isogenic wt and GFP-
Esc1p-expressing cells are both present. Pure cultures of
cells which can be induced to express GFP-Esclp remain
fluoresecent for days of culture in galactose medium,
while addition of an equal number of wild type cells prior
to culture is followed by a gradual and progressive reduc-
tion in the proportion of fluorescent cells.

To further investigate the consequences of excess Esclp,
we initiated microarray analysis of poly(A)+ mRNAs of a
pair of isogenic strains grown in galactose medium, only
one of which allows Esclp induction from a GAL1 pro-
moter (Table 2). Upon overnight growth in galactose
medium, there is a ~20-30x increase in the signal corre-
sponding to ESC1 mRNA and only 48 other changes
which exceed 1.8x fold. Both positive and negative
changes are seen. Considering that GFP-Esclp concen-
trates at the extreme periphery of the nucleoplasm along
with telomeres, it is of interest that both the increases and
decreases (> 1.8 fold) are enriched within 40 kb of telom-
eres, i.e. even though this region accounts for only ~4.1%
of the length of the average yeast chromosome, it accounts
for ~30% of these changes. Nevertheless, ~70% of the
changes are not in this region. No notable changes in
mRNA levels were seen for genes whose products associ-
ate with Esclp, such as RAP1 and SIR4. Since deletion of
ESC1 does not obviously affect nuclear morphology [See
Additional file 14], we have not investigated correspond-
ing transcriptional changes.

http://www.biomedcentral.com/1471-2121/8/47

Discussion

The morphology of organelles is intimately related to
their function and deviation from normal morphology
can have profound physiological consequences. It is thus
plausible that NE shape alterations contribute to events
which cause cellular malfunction in disease.

Nevertheless, radical changes of the composition of the
nuclear periphery can be compatible with cell survival, as
in a variety of yeast deletion strains lacking transmem-
brane proteins which localize to the NE and ER (Nem1p,
Spo7p, Sshlp), nucleoplasmic proteins (Thplp), or
nucleoporins (Seh1p) [14,17]. None of these proteins
normally are restricted to the periphery of the nucleo-
plasm itself.

Interestingly, the shape of the nucleus is not affected by
deletion of Esclp or deletion of two other proteins which
normally localize to the periphery of the nucleoplasm,
Mlplp and Mlp2p [9,22,40]. Moreover, the growth of
neml-A, seh1-A, spo7-A4, ssh1-A and thp1-4[14] is not obvi-
ously affected by overexpression of Esc1p (not shown).

Mutations in nuclear lamina constituents, most notably
lamin A and C, cause a diverse spectrum of diseases, the
laminopathies. Laminopathies caused by excess pre-lamin
A at the nuclear periphery are characterized by bleb-like
expansions of the nuclear surface [41-44]. The depend-
ence of the shape of the yeast nucleus on both nuclear
membrane proteins and proteins that concentrate at the
periphery of the nucleoplasm is reminiscent of a distinct
laminopathy (Emery-Dreyfuss Muscular Dystrophy),
which can result from either mutation of the inner nuclear
membrane protein, emerin, or mutation of lamin A
[45,46]. Moreover, overexpression of a GFP-tagged form
of the inner membrane protein, Prm3p, distorts the shape
of the NE in much the same fashion as Esclp, and excess
Heh1p and Heh2p [24] grossly distort the NE and chro-
matin mass, while MIlplp induction has no obvious
impact. These differential effects may signify that the Heh
proteins have a high affinity for chromatin, that Esc1p and
Prm3p are more closely linked to the inner nuclear mem-
brane per se than to chromatin, and that Mlp1p is rela-
tively independent.

The characteristic structure of escapades and distribution
of excess GFP-Esclp are compatible with the hypothesis
that excess Esc1p forces enlargement of the NE due to end-
to-end association of the protein, that chromatin has an
intrinsic coherence which tends to preserve a roughly
globular shape, and that the inner aspect of the NE (or
perhaps Esc1p itself) can also self-associate laterally (Fig.
8). Indeed, although there has never been an experimen-
tally accessible model for investigation of this latter issue,
the NE of malignant cells - like escapades - is frequently
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Figure 4
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iU min

Escapades are Asymmetrically Inherited. GAL-GFP-Escp strain ATY2102 was induced for 3 hours at 23°C prior to
imaging at 2 min intervals in glucose medium. Boxed regions indicate cells undergoing mitosis and the arrows indicate the
direction of elongation of the nucleus during anaphase. Mother (M) and daughter (D) nuclei are indicated in the last panel.
Note the retention of escapades by the mother. The color image at the bottom includes a phase image to illustrate the cell

outlines just prior to t = 0.

characterized by focal self-apposition of the lamina and/
or the nucleoplasmic surface of the inner nuclear mem-
brane [47,48].

There is no reason to expect that Esc1p is fully comparable
to higher eukaryotic lamins. For example, unlike lamins,
tagged Esc1p (or Mlp1p) expressed from its own promoter
does not completely encircle the nucleus, being absent
from beneath the nucleolus [13,40]. Moreover, the obser-

vation of rapid diffusion of GFP-Esc1p upon karyogamy
shows that at least the overexpressed protein is mobile.

The transcriptional consequences of overexpressing Esc1p
emphasize the importance of this protein (or escapades
themselves) for gene expression. Since both negative and
positive changes are seen, Esclp appears to be a complex
regulator, not only an enhancer of silencing. In this
regard, it resembles many transcriptional regulators
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Figure 5

Distribution of Escapades in Binucleates. Cells expressing GFP-Esclp and Htb2p-mRFP (ATY2509) were pre-induced,
washed and recultured for 8 hrs at 23°C in glucose medium supplemented with latrunculin A to produce binucleate cells,
resulting from occasional incorrect orientation of the spindle. A diploid strain was used to facilitate spatial resolution. (A)
Confocal z-sections of a binucleate cell show retention of escapades (arrow) in a single nucleus. (B, C) Epifluorescent imaging
of binucleate cells. Phase images indicate that the nuclei are contained within the maternal cytoplasm.

Figure 6

Distribution of Escapades and Karmellae upon Karyogamy. Escapades and karmellae remain with the nucleus of their
origin upon fusion with nuclei which express Htb2p-mRFP. Top: A strain which allows induction of GFP-Esclp (ATY1550) was
crossed with a strain expressing mRFP-tagged histone Htb2p (ATY2835). Bottom: ATY 1650, which carries a galactose-induci-
ble plasmid allowing induction of Hmg|p-Co A Reductase-GFP and expresses a mRFP-tagged form of the SPB-protein, Spc42p
(arrow), was crossed with ATY2835. Upon nuclear fusion, the red histone signal gradually invades the trans nucleus, but nei-
ther the escapades (e) nor karmellae (k) changes its location over at least 20 min. ATY 1550 and ATY 1650 were pre-grown
overnight in galactose medium. For both time series, note that mRFP-tagged chromatin is absent from the regions immediately
underlying the escapades or karmellae. These volumes are occupied by the nucleoli. Also, note the infusion of GFP-Esclp into
the trans nucleus upon karyogamy, indicative of facile diffusion.
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Figure 7

Kinetics of Bud Formation. GAL-GFP-Esc|p strain ATY2102 and an isogenic wild-type strain (ATY2500) were pre-induced
in galactose media for 3 hrs, washed and examined on agarose pads in glucose media over 5 hr, during which time escapades
remained visible (ATY2500). DIC images captured every 10 min allowed measurement of the timing of bud initiation for each
cell. Time measurements were all relative to the emergence of the first bud by each mother cell, MI. For example, the
mother's bud interval, M2-M| measures the delay prior to the appearance of the second bud on the mother. Correspondingly,
D-MI measures the interval prior to the appearance of the first bud on the daughter. (A) Histogram showing the bud intervals
for a single experiment for the wild type strain. Note that there is minimal overlap between mothers and daughters and that
mothers re-bud considerably faster than daughter cells. (B) Histogram showing the bud intervals for an isogenic escapade
strain. Note, in contrast to (A), that there is considerable overlap between mothers and daughters. The bud interval is slowed
in mothers and accelerated in daughters. (C) Histogram illustrating the mother-daughter bud differential calculated as: (D-M2
= bud differential) where D is the time at which a bud appears in the daughter cell and M2 is the time at which a second bud
appears in the mother cell. Note that the bud differential is decreased by 50% by the presence of escapades (average bud dif-
ferential is 65 min. in wild-type strain and 28 min. in escapade strain). Results are cumulative over four separate experiments

for each strain.

including Rap1p [49]. It is also notable that ~70% of the
changes which we detect occur at loci which are further
than 40 kb from telomeres (which concentrate at the
periphery). In addition to their intrinsic interest, these
microarray data provide a possible prototype against
which to evaluate the transcriptional characteristics of

laminopathies, which presumably account for their cell
type-specific effects.

Daughter cells differ from mothers in several regards
[50,51]. Escapades are not transferred to daughter cells,
apparently due to their immobility. These structures — and
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Table 2: Microarray Data
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Fold Change Gene Name kb from Telomere Chromosome
3.37 HMS2 42 X
3.20 NATS 408 Xlil
2.93 CDAI 333 Xl
2.89 SRTI 136 X
2.62 CIT3 392 XVI
2.57 SSPI 90 Vil
2.47 SEO| 7 |
2.47 IMD2 7 Vil
2.43 THII2 15 XV
2.35 UFOI 92 Xlil
2.26 TYI 357 X
2.24 TY2 133 Xl
2.21 KCC4 79 ]
2.19 IMD3 76 Xl
217 TYI 357 Xlil
2.12 TYS 3 1}
2.12 Putative ORF 10 I}
2.06 Putative ORF 214 Il
1.99 SPOI 175 XV
1.97 BNA2 150 X
1.97 TY2 129 Xl
1.94 DAK?2 23 \
1.94 TY2 29 1l
1.92 TY2 132 Xl
1.92 STE3 113 Xl
1.91 TY2 381 XV
1.91 TY2 129 Xl
1.90 SRDI 148 1}
1.85 TY2 129 Xl

-19.96 YGRO035C 560 Vi
-11.04 ZRTI 21 Vi
-8.21 FDH2 18 XVI
-3.89 PHO84 25 Xl
-3.35 PMA2 482 XVI
-3.25 CTRI 140 XVI
-2.77 SPA2 101 Xl
-2.27 HMSI 390 XV
-2.27 MET2 117 XV
2,17 SNF7 194 Xl
-2.09 ZRT2 401 Xl
-2.06 FRE7 41 XV
-1.95 STLI 9 v
-1.93 RIM4 51 Vil
-1.91 AQYI 10 XVI
-1.88 YORI 20 Vi
-1.87 FREI 568 Xl
-1.81 SPS100 170 Vil

Comparison of GFP-Esclp cells which were induced overnight and control cells grown in galactose medium. The list includes those genes whose
microarray signals change by at least 1.8x. Interestingly, only two of the entries in this Table are among the 100 loci identified as putative Esclp-

binding sites in a genome-wide screen [65].

karmellae - are thus part of a "lagging" domain of the
nuclear perimeter. The nucleolus may also be part of this
domain, judging from its association with escapades and
karmellae, as well as the observation that it is one of the
last nuclear components to reach the bud during ana-

phase [52,53]. Extra rDNA circles [54] and ARS plasmids
[55] are also retained.

Conclusion
This study demonstrates the extreme structural plasticity
of the yeast nucleus and shows that the unusual "esca-
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Figure 8

Model of Escapade Structure. Nuclear pore complexes
(NPC), outer nuclear membrane (Outer), inner nuclear
membrane (Inner), and Esclp are indicated. The small circles
at the surface of the membranes are ribosomes. The model
has been drawn to illustrate a tight apposition of Esclp layers
within the escapade, which may account for the constant
width that is observed with EM and the exclusion of chroma-
tin.

pades" which can be generated are essentially immobile
and therefore are not inherited. Their lack of inheritance
provides a striking example of the exclusion of epigenetic
change. Such mechanisms - coupled with equivalent nor-
malization of phenotype at the molecular level - are likely
to sustain cell identity through mitosis. Higher eukaryotic
cells may cope with such issues by extensive disassembly
and reassembly of the NE during mitosis, which could
provide an opportunity to avoid incorporation of struc-
turally aberrant components.

Methods

Yeast Strains and Plasmids

Yeast strains and plasmids used in this study are listed in
Table 3 and Table 4. The GFP-tagged form of Esc1p which
we employ is known to complement the plasmid parti-
tioning defect of esc14 [8]. Strains were constructed using
standard methods for transformation, mating, and sporu-
lation. To place ESC1 transcription under control of a
galactose-inducible promoter, we used the plasmid,
pFAGA-pGALI [56], as template to generate PCR products
which could be targeted upstream of ESCI. Plasmid
PMET25-GFP-ESC1 was constructed by PCR sub-cloning
of the full length Esclp coding sequence from plasmid
pEDA129 [8], into pGFP-N-FUS [57]. Restriction endonu-
clease sites, Spel and Xhol, present in the polylinker, were
utilized such that the ESC1 OREF is in-frame down-stream
of GFP and expression is driven by the methionine-
repressible MET25 promoter and terminated by the CYC1I
terminator. Recombinant clones were identified by
restriction endonuclease analysis and DNA sequencing of
the 5' cloning junction to verify orientation and reading
frame. The level of expression observed in transformed

http://www.biomedcentral.com/1471-2121/8/47

strains cultured under inducing conditions was sufficient
to generate NE alterations.

Media and Supplements

Cells were grown in complete synthetic medium or the
appropriate dropout medium supplemented with 2% D-
glucose, D-raffinose or D-galactose. Generally strains were
maintained in mid-log phase in raffinose medium and
were induced by addition of galactose. All incubations
were at room temperature except when ts conditional
strains needed to be shifted to 37°C. As required, media
were supplemented with: 200 pM latrunculin A (Sigma)
diluted from a 20 mM stock in DMSO, 5 ng/ml a-factor
(Sigma) diluted from a 5 mg/ml stock in sterile water, 0.1
M hydroxyurea (Sigma) diluted from a 1 M stock in sterile
water, 15 pg/ml nocodazole (Sigma) diluted from a 3 mg/
ml stock in DMSO, or 40 uM FM4-64 (Molecular Probes)
diluted from a 2 mM stock in DMSO.

Microarrays

GAL-GFP-Esclp strain ATY2102 and isogenic wild-type
ATY2501 were grown overnight to mid-log phase in galac-
tose-containing synthetic medium at room temperature.
Total RNA was purified from duplicate 1 ml samples by
mechanical disruption with 0.2 micron glass beads in an
equal volume of hot acid phenol and used for bioti-
nylated cRNA synthesis according to Affymetrix protocols
at the Case Cancer Center Gene Expression Array Facility.
Replicate samples were hybridized to Affymetrix Gene-
Chip yeast genome Y98 arrays. Scanned chip images were
analyzed with the Affymetrix GeneChip Operating Soft-
ware (GCOS) using the MAS 5.1 algorithm for fold-
change calculations. The results were tabulated with
Microsoft Access and annotated using NETAFFX (Affyme-
trix) and Genespring (Silicon Genetics) software pack-
ages. In the tabulation in Table 2, the average values for
GFP-Esclp-overexpressing cells are divided by the aver-
aged data for control cells.

Budding Kinetics

GAL-GFP-Esclp strain ATY2102 and isogenic wild-type
strain ATY2501 were pre-induced in galactose media for 3
hrs at 23°C, washed and examined on agarose pads in
glucose medium over 5 hr, during which time fluorescent
escapades remained visible. DIC images captured every 10
min allowed measurement of the timing of bud initiation
for each cell in four replicate experiments. Time measure-
ments were all relative to the emergence of the first bud by
each mother cell, M;. For example, the mother's bud inter-
val, M,-M; measures the delay prior to the appearance of
the second bud on the mother. Correspondingly, D-M,
measures the interval prior to the appearance of the first
bud on the daughter.
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Table 3: Strains Used in this Study
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Strain Number Description, Relevant Genotype Derived From Reference

ATY 1483 W303 ESC|/GALp-GFP-ESClI ::his5+ =YDZ49 [8]

ATY 1550 MATo GALp-GFP-ESCI:his5+ YDZ49 [8]

ATY1577 SIKI/SIKI-mRFP::kanMX6 SPC42-GFP/SPC42 [pGALp-HMGI-GFP] IAY |8 x SIK|-mRFP* [60-62]

ATY 1650 MATo SPC42-mRFP [pGALp-HMG-GFP] [61, 62]

ATY2087 MATa cdcl0-1 [pMET25-GFP-ESCI] E. Bi (#741)

ATY2096 MATo SPC42-mRFP::kanMX6/SPC42 GALp-GFP-ESC 1 ::his5+/ESCI ATY2102 x SPC42-mRFP* [62]

ATY2097 W303 ESCI/GALp-GFP-ESCI1:: HIS3 lacO TELXIVL his3-11-15:: HISp-GFP-lacl-HIS3  GA1985 x ATY 1550 [8, 63]
his3-11-15:: HISp-GFP-lacl-HIS3

ATY2098 W303 ESCI/GALp-GFP-ESCI::his5+ lacO CENIV his3-1 [-15::HISp-GFP-lacl-HIS3 GAI321 x ATY1550 [8, 63]

ATY2101 MATo GALp-GFP-ESCI::his5+ SIK1-mRFP::kanMX6 ATY2102 x SIK|-mRFP [8, 62]

ATY2102 MATa GALp-GFP-ESCI ::his5+ YDZ49 [8]

ATY2103 MATa pep34 :=:TRPI GALp-GFP-ESCI::his5+ ATY2101 x BJ1601 [30]

ATY2110 MATa W303R

ATY2163 MATa cdc3-3 [pGALp-HMGI-GFP] E. Bi (#739) [61

ATY2164 MATa cdcl0-1 [pGALp-HMGI-GFP] E. Bi (#741) [61]

ATY2289 MAT o HTB2-mRFP::kanMX6 W303R o

ATY2494 MATa cdc3-3 [pMET25-GFP-ESCI] E. Bi (#739)

ATY2500 W303a YDZ49 [8]

ATY2501 MATa W303 his3 YDZ49 [8]

ATY2502 MATa mob[-77 GALp-GFP-ESCI ::his5+/ESCI FLY30/198 x ATY 1550 [64]

ATY2509 GALp-GFP-ESCI ::his5+/ESC| HTB2-mRFP::kanMX6/HTB2 ATY2835, ATY 1550

ATY2513 ESCI/GALp-GFP-ESC I ::his5+ SIK1/SIK |-mRFP::kanMXé [pMET25p-VACS8-YFP] ATY2102 x SIK|-mRFP* [8, 62]

ATY2835 MATa HTB2-mRFP::kanMX6é W303Ra

ATY2957 MATa ura3-52::hmg|-GFP:URA3 GALp-ESCI::kanMX6 SFN1163 [59]

ATY3138 MATa RAP|-GFP HTB2-mRFP::kanMX6é YG84|

ATY3156 MAT o GAL-ESCI HTB2-mRFP::kanMX6 [pNUP49-GFP] ATY2957 x ATY2289

ATY3244 MATa HTB2-mRFP::kanMXé [pGAL-GFP-HEHI-YFP] HTB2-mRFP ATY2835

ATY3245 MATa HTB2-mRFP::kanMXé [pGAL-GFP-HEH2-YFP] HTB2-mRFP ATY2835

ATY3246 MATa HTB2-mRFP::kanMXé [pMET25-GFP-PRM3] ATY2835

ATY3255 SEC61-GFP [pGAL-MLPI] SFN 1056 [59]

ATY3256 MATa HTB2-mRFP::kanMX6é [pGAL-MLPI] ATY2835

ATY3258 MATa GALp-GFP-ESCI ::his5+ SIK|-mRFP::kanMX6 ATY2835, ATYI513

ATY3275 MATa GALp-ESCI RAPI-GFP HTB2-mRFP::kanMX6 ATY 1676, ATY3007

ATY3276 MATa HTB2-mRFP::kanMX6é SPC42-mRFP::kanMX6é ATY2102, SPC42-mRFP*

ATY3278 ESCI::HIS5 [pSEC63-GFP] YDZI13 [8]

ATY328I MATa GALp-GFP-ESCI ::his5+ HTB2-mRFP::kanMX6é ATY2835, ATY 1550

* Unnumbered MAT alpha reference strains expressing Sik|p-mRFP or Spc42p-mRFP were obtained from W-K. Huh and E. O'Shea.

The time difference of budding between mothers and
daughters is referred to as the budding differential and is
calculated as: (D-M, = bud differential) where D is the
time at which a bud appears in the daughter cell and M, is
the time at which a second bud appears in the mother cell.

Microscopy

Table 4: Plasmids Used in this Study

Epifluorescent, phase time-lapse, and DIC microscopy
were performed on a Leica DMLB microscope equipped
with a SPOT camera (Diagnostic Instruments Inc.) and
the SPOT Advanced software package. Confocal micros-

Plasmid Number Name Original Name Source/Reference
AT635 pNUP49-GFP pUN100-GFP-Nup49, LEU2/CEN V. Doye

AT969 pGAL-MLPI| pGAL-MLPI, CEN/URA3 M. Rout

AT970 pGAL-GFP-HMG CR425, CEN/URA3 R. Wright, D. Meyer
AT993 pMET25-VAC8-EYFP CEN/URA3 D. Goldfarb
ATI1038 pSEC63-GFP pJK59, CEN/URA3 T. Rapoport
ATI143 pMET25-PRM3 YCPyeGFP-PRM3, CEN/TRPI T. Lithgow

ATI183 pGAL-HEHI-YFP pMKPLI, 2L/TRPI P. Lusk, G. Blobel
ATI184 pGAL-HEH2-YFP p MKPL2, 2 W/TRPI P. Lusk, G. Blobel
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copy for live cell Z-stack and time-lapse imaging were per-
formed on either a Zeiss LSM510 or a Leica AOBS.
Volocity (Improvision) and Metamorph (Molecular
Devises) software packages were utilized for image analy-
sis and generation of time-lapse movie sequences. Other
z-stack images were collected with a DeltaVision micro-
scope and deconvolved before inspection. For quantita-
tion of association of escapades with various structures,
through-focal series were examined systematically and the
distribution of nucleoli, etc. was counted in greater than
100 cells.

Vacuole membrane staining with the vital dye FM4-64
was conducted according to [58] with the following mod-
ifications. Briefly, log phase galactose-induced cultures
were concentrated by centrifugation and resuspended at
ODgy = 1 in glucose-containing medium supplemented
with 40 uM FM4-64. The cells were then incubated at
30°C with shaking for 30-60 minutes, followed by exten-
sive washing to remove excess dye. Stained vacuoles were
imaged at 546 nm with a Zeiss LSM510 confocal micro-
scope.

For time-lapse microscopy, dilute cultures were briefly
centrifuged and 2 pl aliquots from the pellet were applied
to the middle of 1.5% Agarose pads prepared on micro-
scope slides in glucose- or galactose-containing culture
medium, as appropriate. Samples were overlayed with a
coverslip and sealed with vaseline before examination.

To learn whether escapades or karmellae are free to move
in the plane of the NE, we have crossed cells which express
these structures with cells of the opposite mating type and
then observed the structure of the nucleus during and after
nuclear fusion. For this purpose, pairs of cells grown over-
night in galactose-containing medium were mixed, sedi-
mented, and applied to an agarose pad in glucose-
containing complete synthetic medium (as above). After
approximately 2 hrs, they were observed.

Transmission electron microscopy was performed on
samples prepared from cultures grown to mid-log phase at
30°C. Samples were fixed in 2% glutaraldehyde followed
by secondary fixation/staining in 4% potassium perman-
ganate and uranyl acetate en bloc. Samples were dehy-
drated, embedded in Spurr resin, stained with lead citrate
and uranyl acetate and examined in a JEOL 1200CX EM.
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Additional material

Additional file 1

Impact of excess MIp1p. Cells expressing the ER/NE membrane protein,
Sec61p-GFP (ATY3255), or Htb2p-mRFP (ATY3256) were induced to
overexpress MIp1p for 5 hr by addition of galactose. Note the conventional
distribution of GFP signal at the NE and throughout the peripheral ER
(left panel) as well as the roughly spherical chromatin mass (right panel).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S1.tiff]

Additional file 2

Impact of excess Prm3p. Htb2p-mRFP-expressing cells were induced to
overexpress GFP-Prm3p for 5 hr by transfer to methionine-free medium
(ATY3244). Note the appearance of GEP-positive ring-like structures and
a fin at the margin of the nucleus.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S2.tiff]

Additional file 3

Impact of excess Heh1. Htb2p-mRFP-expressing cells were induced galac-
tose to overexpress Heh1p-GFP for 5 hr by addition of 2% (ATY3245).
The red and green images have been separated for clarity. Note the mas-
sive change of organization of both chromatin and the GFP signal, which
often encircles the chromatin.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S3.tiff]

Additional file 4

Impact of excess Heh2p. Htb2p-mRFP-expressing cells were induced to
overexpress Heh2p-GFP for 5 hr by addition of 2% galactose (ATY3246).
The red and green images have been separated for clarity. Note the mas-
sive change of organization of both chromatin and the GFP signal, which
generally encircles the chromatin.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S4 tiff]

Additional file 5

Spatial relation of escapades to the nucleolus. Cells expressing the nucleo-
lar marker, Sik1p-mRFP, were induced to express GFP-Esc1p for 5 hr by
addition of 2% galactose (ATY3258). Systematic examination of
through-focal series detects association of escapades and Sik1p-mRFP in >
90% of cells which have escapades. Nevertheless, in a given section the
extent of association often appears only modest.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2121-8-47-S5.tiff]
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Additional file 6

Spatial relation of escapades to the spindle pole body. Overview compari-
son of the localization of GFP-tagged Esc1p and the spindle pole body, in
a strain (ATY3276) which expresses Spc42p-mRFP and has been induced
by addition of 2% galactose for 5 hr. Systematic examination of through-
focal series detects association in ~10% of cells which have escapades.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S6.tiff]

Additional file 7

Spatial relation of escapades to a centromere. Overview comparison of the
localization of GFP-tagged Esc1p and a centromere, in a strain
(ATY2098) which expresses a GFP-lac repressor fusion, an insertion of lac
operator arrays near CENIV and Nup49p-GFP. It has been induced by
addition of 2% galactose for 5 hr. Systematic examination of through-
focal series detects association in ~10% of cells which have escapades.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S7 tiff]

Additional file 8

Spatial relation of escapades to a telomere. Overview comparison of the
localization of GFP-tagged escapades and a telomere, in a strain
(ATY2097) which expresses a GEP-lac repressor fusion, an insertion of lac
operator arrays near telomere XIVL and Nup49p-GFP. It has been
induced by addition of 2% galactose for 5 hr. Systematic examination of
through-focal series detects association in ~10% of cells which have esca-
pades.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S8.tiff]

Additional file 9

Spatial relation of escapades to Rap1p. Overview localization of Rap 1-
GFP in a strain (ATY3275) which expresses Htb2p-mRFP and allows
galactose induction of untagged Esc1p. It was induced by addition of 2%
galactose for 5 hr. Note that the labeled foci often are at the periphery of
the chromatin mass, but — unlike escapades — do not extend centrifugally
toward the cytoplasm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S9.tiff]

Additional file 10

Induction of escapades in cells treated with mating factor. GFP-Esc1p was
induced by addition of 2% galactose for 5 hr in cells which had already
been treated with 5 ug/ml a-factor for 2 hr (ATY2101). Note that the
appearance of escapades is comparable to that illustrated in Figure 1A.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S10.tiff]

Additional file 11

Induction of escapades in cells treated with hydroxyurea. GFP-Esc1p was
induced by addition of 2% galactose for 5 hr in cells which had already
been treated with 0.1 M hydroxyurea for 2 hr (ATY2101). Note that the
appearance of escapades is comparable to that illustrated in Figure 1A.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S11.tiff]

Additional file 12

Induction of escapades in cells treated with nocodazole. GFP-Esc1p was
induced by addition of 2% galactose for 5 hr in cells which had already
been treated with 15 ug/ml nocodazole 2 hr (ATY2101). Note that the
appearance of escapades is comparable to that illustrated in Figure 1A.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S12.tiff]

Additional file 13

Induction of escapades in cells treated with latrunculin A. GFP-Esc1p was
induced by addition of 2% galactose for 5 hr in cells which had already
been treated with 200 ug/ml latrunculin A 2 hr (ATY2101). Note that
the appearance of escapades is comparable to that illustrated in Figure 1A.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S13 tiff]

Additional file 14

Nuclear shape in the absence of Esc1p. The contour of the NE was defined
in cells which lack Esc1p by monitoring the distribution of Sec63p-GFP in
a corresponding deletion strain (ATY3278).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-8-47-S14.iff]

Acknowledgements

E.

Bi, G. Blobel, V. Doye, J. Drazba, E. Fabre, S. Gasser, D. Goldfarb, J.

Haber, M. Hitomi, W.-K. Huh, E. Jones, . Kilmartin, M. Lam, J. Lithgow, M.
Luca, P. Lusk, A.G. Matera, D. MacDonald, D. Meyer, F. Najm, D. Narendra,
T. Rapoport, M. Rout, K. Runge, D. Shore, R. Sternglanz, P. Tiedrez, E.
Townsley, A. Vasaniji, K. Weis, H. Worman, R. Wright, D. Wu and Y.
Zhang. Confocal Microscopy Core Facility in the Comprehensive Cancer
Center of CWRU/UHC (P30 CA43703-12). T.H. was supported by an NIH
training grant: "Normal and Abnormal Development” T32-HD7104. A.T.'s
contribution was supported by institutional resources.

References

Jaspersen SL, Winey M: The budding yeast spindle pole body:
structure, duplication, and function. Annu Rev Cell Dev Biol 2004,
20:1-28.

Loidl J: Chromosomes of the budding yeast Saccharomyces
cerevisiae. Int Rev Cytol 2003, 222:141-196.

Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL:
The nuclear lamina comes of age. Nat Rev Mol Cell Biol 2005,
6(1):21-31.

Best S, Salvati F, Kallo ), Garner C, Height S, Thein SL, Rees DC:
Lamin B-receptor mutations in Pelger-Huet anomaly. Br |
Haematol 2003, 123(3):542-544.

Davido T, Getzenberg RH: Nuclear matrix proteins as cancer
markers. | Cell Biochem Suppl 2000:136-141.

Yabuki M, Miyake T, Doi Y, Fujiwara T, Hamazaki K, Yoshioka T, Hor-
ton AA, Utsumi K: Role of nuclear lamins in nuclear segmenta-
tion of human neutrophils. Physiol Chem Phys Med NMR 1999,
31(2):77-84.

Smith S, Blobel G: Colocalization of vertebrate lamin B and
lamin B receptor (LBR) in nuclear envelopes and in LBR-
induced membrane stacks of the yeast Saccharomyces cere-
visiae. Proc Natl Acad Sci USA 1994, 91(21):10124-10128.

Andrulis ED, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg
MR, Sternglanz R: Escl, a nuclear periphery protein required
for Sir4-based plasmid anchoring and partitioning. Mol Cell
Biol 2002, 22(23):8292-8301.

Page 15 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S6.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S7.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S8.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S9.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S10.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S11.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S12.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S13.tiff
http://www.biomedcentral.com/content/supplementary/1471-2121-8-47-S14.tiff
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15473833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15473833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12503849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12503849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14617022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14617022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12417731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12417731

BMC Cell Biology 2007, 8:47

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kolling R, Nguyen T, Chen EY, Botstein D: A new yeast gene with
a myosin-like heptad repeat structure. Mol Gen Genet 1993,
237(3):359-369.

Moretti P, Freeman K, Coodly L, Shore D: Evidence that a com-
plex of SIR proteins interacts with the silencer and telomere-
binding protein RAPI. Genes Dev 1994, 8(19):2257-2269.

Zhao X, Blobel G: A SUMO ligase is part of a nuclear multipro-
tein complex that affects DNA repair and chromosomal
organization. Proc Natl Acad Sci USA 2005, 102(13):4777-4782.
Lewis A, Felberbaum R, Hochstrasser M: A nuclear envelope pro-
tein linking nuclear pore basket assembly, SUMO protease
regulation, and mMmRNA surveillance. | Cell Biol 2007,
178(5):813-827.

Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM: Separation
of silencing from perinuclear anchoring functions in yeast
Ku80, Sir4 and Escl proteins. Embo | 2004, 23(6):1301-1312.
Teixeira MT, Dujon B, Fabre E: Genome-wide nuclear morphol-
ogy screen identifies novel genes involved in nuclear archi-
tecture and gene-silencing in Saccharomyces cerevisiae. |
Mol Biol 2002, 321(4):551-561.

Campbell JL, Lorenz A, Witkin KL, Hays T, Loidl J, Cohen-Fix O:
Yeast nuclear envelope subdomains with distinct abilities to
resist membrane expansion. Mol  Biol Cell 2006,
17(4):1768-1778.

Santos-Rosa H, Leung ], Grimsey N, Peak-Chew S, Siniossoglou S:
The yeast lipin Smp2 couples phospholipid biosynthesis to
nuclear membrane growth. Embo | 2005, 24(11):1931-1941.
Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E: A novel
complex of membrane proteins required for formation of a
spherical nucleus. Embo J 1998, 17(22):6449-6464.

Fabre E, Hurt E: Yeast genetics to dissect the nuclear pore
complex and nucleocytoplasmic trafficking. Annu Rev Genet
1997, 31:277-313.

Kimata Y, Lim CR, Kiriyama T, Nara A, Hirata A, Kohno K: Mutation
of the yeast epsilon-COP gene ANU2 causes abnormal
nuclear morphology and defects in intracellular vesicular
transport. Cell Struct Funct 1999, 24(4):197-208.

Matynia A, Salus SS, Sazer S: Three proteins required for early
steps in the protein secretory pathway also affect nuclear
envelope structure and cell cycle progression in fission yeast.
J Cell Sci 2002, 115(Pt 2):421-431.

Schneiter R, Hitomi M, Ivessa AS, Fasch EV, Kohlwein SD, Tartakoff
AM: A yeast acetyl coenzyme A carboxylase mutant links
very-long-chain fatty acid synthesis to the structure and
function of the nuclear membrane-pore complex. Mol Cell Biol
1996, 16(12):7161-7172.

Strambio-de-Castillia C, Blobel G, Rout MP: Proteins connecting
the nuclear pore complex with the nuclear interior. | Cell Biol
1999, 144(5):839-855.

Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T: Bipartite sig-
nals mediate subcellular targeting of tail-anchored mem-
brane proteins in Saccharomyces cerevisiae. | Biol Chem 2003,
278(10):8219-8223.

King MC, Lusk CP, Blobel G: Karyopherin-mediated import of
integral inner nuclear membrane proteins. Nature 2006,
442(7106):1003-1007.

Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM:
Chromosome looping in yeast: telomere pairing and coordi-
nated movement reflect anchoring efficiency and territorial
organization. | Cell Biol 2005, 168(3):375-387.

Yang CH, Lambie EJ, Hardin J, Craft J, Snyder M: Higher order
structure is present in the yeast nucleus: autoantibody
probes demonstrate that the nucleolus lies opposite the
spindle pole body. Chromosoma 1989, 98(2):123-128.

Wright R, Basson M, D'Ari L, Rine J: Increased amounts of HMG-
CoA reductase induce "karmellae": a proliferation of
stacked membrane pairs surrounding the yeast nucleus. | Cell
Biol 1988, 107(1):101-114.

Nasmyth K: Segregating sister genomes: the molecular biol-
ogy of chromosome separation. Science 2002,
297(5581):559-565.

Pan X, Roberts P, Chen Y, Kvam E, Shulga N, Huang K, Lemmon S,
Goldfarb DS: Nucleus-vacuole junctions in Saccharomyces
cerevisiae are formed through the direct interaction of
Vac8p with Nvjlp. Mol Biol Cell 2000, 1 1(7):2445-2457.

30.

31.

32
33.
34.

35.

36.

37.
38.
39.

40.

41.

42.

43.
44.

45.

46.
47.

48.

49.

50.

51.
52.

53.

54.
55.
56.

http://www.biomedcentral.com/1471-2121/8/47

Preston RA, Manolson MF, Becherer K, Weidenhammer E, Kirk-
patrick D, Wright R, Jones EW: Isolation and characterization of
PEP3, a gene required for vacuolar biogenesis in Saccharo-
myces cerevisiae. Mol Cell Biol 1991, 11(12):5801-5812.

Luca FC, Mody M, Kurischko C, Roof DM, Giddings TH, Winey M:
Saccharomyces cerevisiae Mob | p is required for cytokinesis
and mitotic exit. Mol Cell Biol 2001, 21(20):6972-6983.

Faty M, Fink M, Barral Y: Septins: a ring to part mother and
daughter. Curr Genet 2002, 41(3):123-131.

Longtine MS, Bi E: Regulation of septin organization and func-
tion in yeast. Trends Cell Biol 2003, 13(8):403-409.

Luedeke C, Frei SB, Sbalzarini |, Schwarz H, Spang A, Barral Y: Sep-
tin-dependent compartmentalization of the endoplasmic
reticulum during yeast polarized growth. | Cell Biol 2005,
169(6):897-908.

Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD: Plasma membrane
compartmentalization in yeast by messenger RNA trans-
port and a septin diffusion barrier. Science 2000,
290(5490):341-344.

Byers B, Goetsch L: Behavior of spindles and spindle plaques in
the cell cycle and conjugation of Saccharomyces cerevisiae.
J Bacteriol 1975, 124(1):511-523.

Belgareh N, Doye V: Dynamics of nuclear pore distribution in
nucleoporin mutant yeast cells. | Cell Biol 1997, 136(4):747-759.
Bucci M, Wente SR: In vivo dynamics of nuclear pore com-
plexes in yeast. | Cell Biol 1997, 136(6):1185-1199.

Hartwell LH, Unger MW: Unequal division in Saccharomyces
cerevisiae and its implications for the control of cell division.
J Cell Biol 1977, 75(2 Pt 1):422-435.

Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehr-
bass U: Nuclear retention of unspliced mRNAs in yeast is
mediated by perinuclear Mipl. Cell 2004, 116(1):63-73.
Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE,
Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, et al.: Accu-
mulation of mutant lamin A causes progressive changes in
nuclear architecture in Hutchinson-Gilford progeria syn-
drome. Proc Natl Acad Sci USA 2004, 101(24):8963-8968.

Mounkes L, Kozlov S, Burke B, Stewart CL: The laminopathies:
nuclear structure meets disease. Curr Opin Genet Dev 2003,
13(3):223-230.

Pollex RL, Hegele RA: Hutchinson-Gilford progeria syndrome.
Clin Genet 2004, 66(5):375-381.

Worman HJ, Courvalin |C: How do mutations in lamins A and C
cause disease? | Clin Invest 2004, 113(3):349-351.

Fairley EA, Kendrick-Jones J, Ellis JA: The Emery-Dreifuss muscu-
lar dystrophy phenotype arises from aberrant targeting and
binding of emerin at the inner nuclear membrane. | Cell Sci
1999, 112(Pt 15):2571-2582.

Morris GE: The role of the nuclear envelope in Emery-Drei-
fuss muscular dystrophy. Trends Mol Med 2001, 7(12):572-577.
Stein GS, Montecino M, van Wijnen AJ, Stein JL, Lian JB: Nuclear
structure-gene expression interrelationships: implications
for aberrant gene expression in cancer. Cancer Res 2000,
60(8):2067-2076.

Zink D, Fischer AH, Nickerson JA: Nuclear structure in cancer
cells. Nat Rev Cancer 2004, 4(9):677-687.

Pina B, Fernandez-Larrea |, Garcia-Reyero N, Idrissi FZ: The differ-
ent (sur)faces of Raplp. Mol Genet Genomics 2003,
268(6):791-798.

Colman-Lerner A, Chin TE, Brent R: Yeast Cbkl and Mob2 acti-
vate daughter-specific genetic programs to induce asym-
metric cell fates. Cell 2001, 107(6):739-750.

Sinclair D, Mills K, Guarente L: Aging in Saccharomyces cerevi-
siae. Annu Rev Microbiol 1998, 52:533-560.

Fuchs J, Loidl J: Behaviour of nucleolus organizing regions
(NORs) and nucleoli during mitotic and meiotic divisions in
budding yeast. Chromosome Res 2004, 12(5):427-438.
Torres-Rosell |, Machin F, Jarmuz A, Aragon L: Nucleolar segrega-
tion lags behind the rest of the genome and requires Cdcl4p
activation by the FEAR network. Cell Cycle 2004, 3(4):496-502.
Sinclair DA, Guarente L: Extrachromosomal rDNA circles - a
cause of aging in yeast. Cell 1997, 91(7):1033-1042.

Murray AW, Szostak JW: Pedigree analysis of plasmid segrega-
tion in yeast. Cell 1983, 34(3):961-970.

Longtine MS, McKenzie A 3rd, Demarini D), Shah NG, Wach A, Bra-
chat A, Philippsen P, Pringle JR: Additional modules for versatile

Page 16 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8483450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8483450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15738391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15738391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15738391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17724121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17724121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17724121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15889145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15889145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15889145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10532354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10532354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10532354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11839792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11839792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8943372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10085285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10085285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12514182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12514182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12514182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16929305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16929305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15684028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15684028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15684028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2673672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2673672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2673672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3292536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3292536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3292536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10888680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12111093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12111093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12888292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15967812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15967812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15967812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11030653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11030653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11030653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1100612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1100612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9049242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9049242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9087436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9087436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=400873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=400873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14718167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14718167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12787783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12787783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14755330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14755330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10393813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10393813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10393813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11733221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11733221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10786661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10786661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10786661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12655405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12655405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9891807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9891807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15252239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15252239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15252239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15004526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15004526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15004526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9428525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9428525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6354471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6354471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717241

BMC Cell Biology 2007, 8:47

57.

58.

59.

60.

6l.

62.

63.

64.

65.

and economical PCR-based gene deletion and modification
in Saccharomyces cerevisiae. Yeast 1998, 14(10):953-961.
Niedenthal RK, Riles L, Johnston M, Hegemann JH: Green fluores-
cent protein as a marker for gene expression and subcellular
localization in budding yeast. Yeast 1996, 12(8):773-786.

Vida TA, Emr SD: A new vital stain for visualizing vacuolar
membrane dynamics and endocytosis in yeast. | Cell Biol 1995,
128(5):779-792.

Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P: Sec3p
is needed for the spatial regulation of secretion and for the
inheritance of the cortical endoplasmic reticulum. Mol Biol
Cell 2003, 14(12):4770-4782.

Adams IR, Kilmartin JV: Localization of core spindle pole body
(SPB) components during SPB duplication in Saccharomy-
ces cerevisiae. | Cell Biol 1999, 145(4):809-823.

Hampton RY, Koning A, Wright R, Rine J: In vivo examination of
membrane protein localization and degradation with green
fluorescent protein. Proc Natl Acad Sci USA 1996, 93(2):828-833.
Huh WK, Falvo }V, Gerke LC, Carroll AS, Howson RW, Weissman
JS, O'Shea EK: Global analysis of protein localization in bud-
ding yeast. Nature 2003, 425(6959):686-691.

Heun P, Laroche T, Shimada K, Furrer P, Gasser SM: Chromosome
dynamics in the yeast interphase nucleus. Science 2001,
294(5549):2181-2186.

Luca FC, Winey M: MOBI, an essential yeast gene required for
completion of mitosis and maintenance of ploidy. Mol Biol Cell
1998, 9(1):29-46.

Tsankov AM, Brown CR, Yu MC, Win MZ, Silver PA, Casolari |M:
Communication between levels of transcriptional control
improves robustness and adaptivity. Molecular systems biology
2006, 2:65.

http://www.biomedcentral.com/1471-2121/8/47

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 17 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8813764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8813764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8813764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7533169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7533169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12960429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12960429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12960429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10330408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10330408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10330408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11739961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11739961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130867
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Relation of Escapades to Intranuclear Structures
	Formation of Escapades-Relation to Cytoplasmic Structures
	Inheritance of Escapades
	Why are Escapades not Present in Daughter Nuclei ?
	Functional Consequences

	Discussion
	Conclusion
	Methods
	Yeast Strains and Plasmids
	Media and Supplements
	Microarrays
	Budding Kinetics
	Microscopy

	Authors' contributions
	Additional material
	Acknowledgements
	References

