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Abstract

Background: Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder
with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN/,
the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the
"Transient Receptor Potential" family of proteins and has been shown to function as a non-selective
cation channel whose activity is modulated by pH. Two cell biological defects that have been
described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids
from lysosomes.

Results: We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse
macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable
RNAI clones, we show that mucolipin- 1 is required for the exit of lipids from these compartments,
for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the
Major Histocompatibility Complex Il to the plasma membrane.

Conclusion: Mucolipin-| functions in the efficient exit of molecules, destined for various cellular
organelles, from lysosomal compartments.

Background

Mucolipidosis Type IV (MLIV) is a genetic neurodevelop-
mental and neurodegenerative disease affecting a variety
of functions in patients [1-3]. A very thin corpus callosum
found in MRI scans of the brain of patients indicates a def-
icit in embryonic brain development [1,3]. A neurodegen-
erative process that causes optical nerve atrophy and loss
of vision occurs in all patients in childhood [4]. Patients
suffer severe psychomotor retardation and most do not
learn how to walk and speak. MLIV patients also have
achlorhydria, or the inability to secrete gastric acid by
parietal cells [5,6].

Cells in MLIV patients exhibit a number of defects. Many
tissues, including the cornea, stomach parietal cells, and
pancreas have large vacuoles containing fibrinogranular
inclusions, multilamellar membranes and vesicles [5-10].
MLIV cells show a delay in the degradation and/or trans-
port of endocytosed lipids that accumulate in these large
vacuoles [11-15]. MLIV fibroblasts also show a defect in
the fusion of lysosomes with the plasma membrane in
response to treatment with the Ca2+ionophore ionomycin
[16].

The gene mutated in MLIV is MCOLN1, which encodes
mucolipin-1 (ML1) [17-19]. ML1 is predicted to have six
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transmembrane domains and is a group 2 Transient
Receptor Potential (TRP)-related cation channel [20].
ML1 is a non-selective, pH-regulated cation channel with
a preference for monovalent cations [21-24]. One possi-
ble cell biological function for ML1 in skin fibroblasts is
as a proton leak channel that regulates the rate at which
endosomes/lysosomes acidify [25]. ML1 localizes to late
endocytic compartments and its overexpression results in
abnormalities in these structures [15,22,23,26-28].

ML1 is first transported to the plasma membrane and is
subsequently endocytosed and targeted to lysosomes
[15,27-29]. However, the transport of ML1 is also depend-
ent on the AP-1 adaptor complex, but not the AP-2 or the
AP-3 adaptor complexes, suggesting a second direct trans-
port route from the Trans-Golgi Network to lysosomes
[30]. ML1 can be cleaved within the first intracellular loop
and the two resulting portions remain associated. It is not
clear whether this cleavage occurs in endosomes/lyso-
somes or at the Trans-Golgi Network, and whether it is
required for the inactivation of the protein or is part of its
normal processing [22,30].

There are two other mucolipins in mammals. Mucolipin-
1, mucolipin-2, and mucolipin-3 interact to form homo-
and hetero-multimers [27]. All three proteins localize to
late endosomes/lysosomes, though the localization of
mucolipin-3 requires an interaction with either of the
other two homologues [27]. It is therefore not known
whether some of the symptoms in MLIV patients are due
to the mislocalization of mucolipin-3 due to the absence
of ML1. While there are no known existing mutations in
mucolipin-2, varitint-waddler (Va) mice have mutations in
mouse mucolipin-3 resulting in deafness and pigmenta-
tion defects [31,32]. There is likely some redundancy in
function between the mucolipins since DT40 B-lym-
phocytes lacking ML1 do not show a pronounced lyso-
somal defect, while in contrast, overexpression of
dominant negative forms of ML1 or of mucolipin-2
results in the large vacuole defect characteristic of MLIV
cells [33].

CUP-5 is the sole Caenorhabditis elegans mucolipin and is
required for the biogenesis of lysosomes from late endo-
some [34,35]. Analogous to the cellular abnormalities in
MLIV, mutations in cup-5 result in the accumulation of
large vacuoles in some cells and in embryonic lethality,
mostly due to developmental/tissue degeneration defects
[34,36,37]. Mucolipin function is conserved since expres-
sion of human ML1 or mucolipin-3 rescues both of these
defects. Mucolipin-2 has not yet been tested.

In this study, we sought to define more accurately the sites
at which ML1 functions and to identify primary defects in
cells with reduced ML1 levels. We used RAW264.7 cells
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because, like coelomocytes of C. elegans, macrophages
have elaborate lysosomal transport pathways that allow
us to visualize intermediate steps in lysosomal transport.
Here, we show that ML1 is required for dynamic late
endosomal/lysosomal trafficking events in macrophages.

Results

Co-localization of ML with markers for various endocytic
compartments

We made a stable RAW264.7 clone in which GFP-ML1 is
expressed under the control of the CMV promoter. In
these stable clones, approximately 70% of the cells
express GFP-ML1. A similar GFP fusion to CUP-5 is fully
functional and rescues all defects of cup-5(null) worms,
while a similar fusion to human ML1 rescues the MLIV
defects in fibroblasts [16,35].

To determine the subcellular localization of GFP-ML1, we
immuno-stained these cells using antibodies against the
early endosomal protein HRS, M6PR that cycles between
late endosomes and the Golgi apparatus, the late endo-
somal/lysosomal lipid LBPA, and the lysosomal marker
LAMP1 (Fig. 1A) [38-42]. Consistent with previous stud-
ies that localized ML1 to late endocytic compartments in
other cell types, we saw more extensive co-localization of
GFP-ML1 with late endocytic markers (Fig. 1B) [15,22,26-
28]. The high incidence of co-localization of GFP-ML1
with LBPA is a novel result and indicates that ML1 local-
izes primarily to compartments that contain internal ves-
icles and lamellae [41,43].

We also made a functional fusion of the red fluorescent
protein mCherry to the amino-terminus of ML1. To ascer-
tain that this fusion protein shows the same localization
pattern as GFP-ML1, we co-transfected cells with the
mCherry-ML1 and the GFP-ML1 or YFP-Lamp1 expressing
plasmids. Consistent with the Lampl immunofluores-
cence staining, mCherry-ML1 co-localized strongly with
YFP-Lamp1 and with GFP-ML1 (Fig. 1C, D). We then co-
transfected cells with mCherry-ML1 and GFP-Rab7 (late
endosome/lysosome) expressing plasmids [44]. We saw
significant co-localization of mCherry-ML1 with GFP-
Rab7.

Co-localization of GFP-MLI with endocytosed substrates

To further define the localization and behavior of ML1 in
lysosomal compartments, we examined the localization
of GFP-ML1 relative to endocytosed soluble solutes. We
pulsed stable GFP-ML1 clones with BSA-AlexaFluor 594
for 1 minute and then fixed the cells after various chase
times (Fig. 2). There are four main conclusions from this
analysis. First, we saw progressively increased co-localiza-
tion between BSA-AlexaFluor 594 and GFP-ML1 that
peaked at around 15 minutes and remained the same for
24 hours (Fig. 2B). Second, there were always some com-
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Figure |

Co-localization of ML with markers for various compartments. A) Confocal images of stable GFP-MLI (green) cells
stained for the indicated markers (red). The inset in the LBPA panels is a magnification of individual compartments. Bar is 10
pm. B) Quantitation of the fraction of GFP-MLI stainings that overlaps with each of the markers from panel A. Bars represent
standard deviations. C) Confocal images of cells co-transfected with mCherry-MLI (mCH-MLI, red) and with GFP or YFP
fusions to the indicated markers (green). Bar is 10 um. D) Quantitation of the fraction of mCherry-MLI stainings that overlaps
with each of the markers from panel C. Bars represent standard deviations.
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Figure 2

Co-localization of GFP-MLI with soluble endocytosed molecules. A) Confocal images of stable GFP-MLI (green) cells
that endocytosed BSA-AlexaFluor 594 (red) for | minute and then chased for the indicated times before fixation. The bottom
panel of the |5-minute time point represents a magnification of the area indicated in the top panel. Bar is 5 um in unmagnified
panels. B) Quantitation of the extent of co-localization of BSA-AlexaFluor 594 with GFP-MLI at various chase times. Bars rep-
resent standard deviations. C) Confocal images of stable GFP-MLI (green) cells that endocytosed Dextran-Rhodamine (red)
for | minute and then chased for the indicated times before fixation. Some chase times are not shown. The bottom panel of
the |5-minute time point represents an artificial magnification of the area indicated in the top panel. Bar is 5 um in unmagnified
panels. D) Quantitation of the extent of co-localization of Dextran-Rhodamine with GFP-MLI at various chase times. Bars rep-
resent standard deviations.
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partments that contained BSA-AlexaFluor 594 but that
were not labeled with GFP-ML1, even at the 24-hour time
point when all of the BSA-AlexaFluor 594 is in terminal
compartments. Third, we saw many tubules emanating
from GFP-ML1-labeled compartments (Fig. 2A). Fourth,
we saw BSA-AlexaFluor 594 concentrations in substruc-
tures that were 300-500 nm in diameter and that were
attached by tubules to endocytic compartments. GFP-ML1
localizes to these endocytic compartments, including the
tubules and attached substructures (Fig. 2A, 15 min
zoom). The number of these GFP-ML1-labeled compart-
ments that showed a polarized distribution of BSA-Alex-
aFluor 594 increased over the time course of the
experiment, peaked to about 15 +/- 2 per cell at the 15-
minute time point, and remained the same at later time
points. These structures were not a consequence of the
overexpression of GFP-ML1 since they were apparent in
untransfected RAW264.7 cells (data not shown).

We also examined the progress of the fluid-phase marker
dextran-Rhodamine through GFP-ML1-labeled compart-
ments [45]. We essentially saw the same behavior using
Dextran-Rhodamine, including the extent of co-localiza-
tion at various time points and the appearance of sub-
structures with polarized distributions of Dextran-
Rhodamine (Fig. 2C, D).

Reduction of MLI levels results in a delay in the transport
of lipids to the Golgi apparatus

We made two independently isolated RAW264.7 stable
clones, called LS9 and LS10, expressing an shRNA from
the constitutive histone H1 promoter and targeting
MCOLNT. The levels of MCOLN1 mRNAs are significantly
reduced, 19.8 +/- 3.2% and 18.7 +/- 1.7% of RAW264.7
levels in LS9 and LS10, respectively (Fig. 3A). The levels of
MCOLN2 mRNAs are unchanged, 97.4 +/- 2.5% and
102.6 +/- 3.1% of RAW264.7 levels in LS9 and LS10,
respectively (Fig. 3A). We could not detect MCOLN3 RNA
in repeated Northern blot experiments (data not shown).

Reducing ML1 levels in RAW264.7 cells does not result in
the hyperacidification of late endosomal/lysosomal com-
partments. This was determined either by staining of cells
with the pH-sensitive dye Acridine Orange or after loading
the terminal compartments with the pH-sensitive endo-
cytic substrate dextran-Oregon Green 488 (Fig. 3B, C).
Previous studies have produced conflicting data on the
hyperacidification of lysosomes in MLIV fibroblasts
[25,46,47]. The lack of hyperacidification of terminal
compartments in our RAW264.7 RNAi lines may be due
to residual ML1 activity, to redundancy with mucolipin-2,
and/or the presumed pH regulatory function of ML1 may
be tissue-specific.

http://www.biomedcentral.com/1471-2121/8/54

MLIV fibroblasts also show a delay in the transport of the
fluorescent lipid analogue Bodipy-LacCer from endocytic
compartments to the Golgi apparatus [12,15]. To deter-
mine whether RAW264.7 cells had a similar defect, we
pre-labeled the terminal compartments of RAW264.7,
LS9, and LS10 cells with dextran-Cascade Blue, pulsed
cells with Bodipy-LacCer for 30 minutes, and chased for
45 minutes or 90 minutes. By 45 minutes, all of the Bod-
ipy-LacCer reached the peri-nuclear Golgi apparatus of
RAW264.7 and did not co-localize with the dextran-Cas-
cade Blue (Fig. 3D). In contrast, while some of the Bod-
ipy-LacCer reaches the peri-nuclear Golgi apparatus in LS9
and LS10 cells, there is still significant co-localization of
the Bodipy-LacCer with dextran-Cascade Blue-labeled
compartments indicating a delay in the exit of Bodipy-
LacCer from these compartments (Fig. 3D).

Reduction of MLI levels results in a delay in the transport

of endocytosed proteins to lysosomes

Previous results had shown that CUP-5 in C. elegans is
required for the transport of endocytosed BSA from late
endosomes to lysosomes [35]. To determine whether ML1
is also required for lysosomal transport, we loaded the ter-
minal compartments of RAW264.7, LS9 or LS10 cells with
BSA-AlexaFluor 594 by incubating cells with the fluores-
cent marker the first day for 4 hours followed by a 24-hour
incubation in the absence of the marker. Approximately
5% of LS9 and LS10 cells showed a significantly enlarged
terminal compartment that contained the fluorescent
endocytosed marker (Fig. 4A). In the absence of ML1-spe-
cific antibodies, we cannot determine whether these rep-
resent cells with the most reduction in ML1 levels or
whether loss of ML1 in all cells would give a similarly low
penetrant phenotype. The complete loss of ML1 in DT40
B lymphocytes has been reported not to affect the sizes of
the terminal compartments [33].

To determine whether there is a delay in the trafficking of
endocytosed proteins to terminal compartments of LS9
and LS10 cells, we pulse-chased BSA-AlexaFluor 488 into
cells whose terminal compartments were pre-loaded with
BSA-AlexaFluor 594 (Fig. 4A). After a 10-minute pulse,
most of the BSA-AlexaFluor 488 has reached the BSA-Alex-
aFluor 594-stained terminal compartments in RAW264.7
cells. This co-localization in wild type cells remains the
same after 15 or 30 minutes chase times (Fig. 4A). In con-
trast, in LS9 and LS10 cells, there is no co-localization of
the BSA-AlexaFluor-488 and the BSA-AlexaFluor 594-
stained compartments, either normal-sized ones or
enlarged ones, after the 10-minute pulse (Fig. 4A), By 15
minutes of chase, some of the BSA-AlexaFluor 488 has
reached the terminal compartments, and this co-localiza-
tion is complete by 30 minutes (Fig. 4A).
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MCOLNI RNA:i clones. A) Northern blot done on |5 g of total RNA isolated from RAW?264.7, LS9, or LSI0 cells. The
same filter was probed for MCOLN |, stripped, and re-probed for GAPDH, stripped again and re-probed for MCOLN2. B) Con-
focal images of RAW264.7, LS9, and LSI0 cells stained with Acridine Orange (AO). Bar is 6 um. C) Quantitation of the inten-
sity of staining of AO-stained compartments and of dextran-Oregon Green (OG)-stained compartments. Bars represent
standard deviations. D) Confocal images of RAW?264.7, LS9, and LS10 cells whose terminal compartments were pre-loaded
with Dextran-Cascade Blue (DEX-CB, red). BSA-Bodipy LacCer (B-LACCER, green) was added for 30 minutes and chased for
the indicated times before fixation. Arrows indicate co-localization of the two markers. Bar is 5 um.

Having observed a delay in lysosomal transport, we asked ~ LS10 cells showed increased cellular levels of endocytosed
whether there was a delay in the degradation of endocy-  HEL at the different chase times relative to RAW264.7 cells
tosed proteins. We therefore pulsed cells with Hen Egg  (Fig. 4B, C). The BSA transport and HEL degradation
Lysozyme (HEL) for 5 minutes and determined the  resultsindicate that ML1 is required for the efficient trans-
remaining HEL in cells at various chase times. LS9 and  port of endocytosed proteins to lysosomes.
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Trafficking and endocytosis defect of proteins in MCOLNI RNA.:i clones. A) Confocal images of RAW264.7, LS9, and
LS10 cells whose terminal compartments were pre-loaded with BSA-AlexaFluor 594 (BSA-AF 594, red). BSA-AlexaFluor 488
(BSA-AF 488, green) was added for 10 minutes to the cells and the cells were chased for the indicated times before fixation.
Bar is 5 um. B) Western blots of HEL that was endocytosed for 5 minutes and chased for the indicated times. C) Quantitation
of the HEL that remains in cells relative to the 0 time point. Bars represent standard deviations from two independent assays.

Page 7 of 16

(page number not for citation purposes)



BMC Cell Biology 2007, 8:54

Nature of the enlarged compartments in MCOLN| RNAi
RAW264.7 cells

To determine the nature of the enlarged vacuoles in the
MCOLNT1- RNAi clones, we pre-loaded their terminal
compartments with BSA-AlexaFluor 594 and stained these
cells for various markers (Fig. 5). None of the enlarged
vacuoles stained for M6PR or for HRS, indicating that they
do not have typical early or late endosomal characteristics.
These enlarged vacuoles stain for LAMP1 and for Rab?7,
which is consistent with their lysosomal nature. Further-
more, they strongly stain for LBPA, which is consistent
with cells isolated from MLIV patients showing enlarged
compartments that contain both multivesicular and mul-
tilamellar membranes [5-10].

Reduction of MLI levels results in a delay in the transport

of MHCII to the plasma membrane

GFP-ML1 localizes to late endocytic LBPA-positive com-
partments and is likely required for the efficient exit of lip-
ids and of endocytosed proteins from these
compartments. The Major Histocompatibility Complex II
(MHCII) localizes to LBPA-positive late endosomal/lyso-
somal compartments of antigen presenting cells and is
transported to the plasma membrane upon stimulation of
these cells [48,49]. To determine whether ML1 is required
for this transport step, we first determined whether MHCII
co-localizes with GFP-ML1 in normally growing cells or
after addition of LPS at 100 pg/ml for one day to the cells.
This LPS treatment has been previously shown to induce
the differentiation of RAW264.7 macrophages into den-
dritic-like cells while upregulating plasma membrane lev-
els of MHCII and of other dendritic cell surface markers
[50,51].

In the absence of LPS, we saw some MHCII expression in
GFP-ML1-positive vesicles in RAW264.7 macrophages
(Fig. 6A). The addition of LPS to these cells resulted in the
described increase in cell size and morphology and a dra-
matic enhancement of MHCII expression. In these LPS
treated cells, MHCII co-localized with GFP-ML1 on tubu-
lovesicular compartments (Fig. 6A). Because of the sub-
stantial amount of MHCII that remained in the cytoplasm
of cells, we could not unambiguously visualize MHCII
that had been transported to the plasma membrane.

To determine whether ML1 is required for the transport of
MHCII to the plasma membrane of RAW264.7 cells, we
treated RAW264.7, LS9, and LS10 cells with LPS for one
days and stained cells to detect MHCII at the plasma
membrane. In the absence of LPS, none of the three lines
showed any surface staining. In the presence of LPS,
RAW264.7, LS9, and LS10 showed plasma membrane
staining, indicating that MHCII is transported to the
plasma membrane in all three lines (Fig. 6B). However,
the levels of MHCII at the plasma membrane of LS9 and

http://www.biomedcentral.com/1471-2121/8/54

LS10 cells were approximately four-fold lower than those
of RAW264.7 cells (Fig. 6B, C). We saw the same result
using two different anti-MHCII antibodies and in the
presence or in the absence of IFN-y that elevates total
MHCII levels (unpublished data). RAW264.7, LS9 and
LS10 cells express similar levels of intracellular MHCII as
assayed by immunofluorescence staining following per-
meabilization (Fig. 6D). In all three lines, MHCII localizes
to LBPA-positive intracellular compartments (Fig. 6D).
These results indicate that in the absence of ML1, there is
a reduction in the efficiency of the transport of MHCII to
the plasma membrane.

Discussion

Macrophages, like C. elegans coelomocytes, are highly
endocytic cells. Because of the dynamic nature of lyso-
somal pathways in these cells, it is technically easier to
characterize intermediates steps in lysosomal transport. In
this study, we show that ML1 localizes primarily to LBPA-
positive lysosomal compartments and is required for the
efficient transport of at least two kinds of molecules from
these compartments.

MLI localization in RAW264.7 macrophages

ML1 localizes primarily to LBPA-positive, Lamp1-posi-
tive, and Rab7-positive compartments. The limited co-
localization of overexpressed GFP-ML1 with early (HRS-
positive) and with late (M6PR-positive) endosomal mark-
ers is consistent with ML1 being transported to the surface
and subsequently being endocytosed and transported
through various endosomes before accumulating in these
LBPA-positive compartments [15,27-29]. It is not known
whether ML1 has separate functions in earlier steps, for
example, in HRS-positive or in M6PR-positive endo-
somes. We think that this is unlikely because if there is a
delay in trafficking from one compartment to another,
then we would expect that the resulting enlarged structure
would be a hybrid of these two compartments. Reducing
ML1 levels results in expanded compartments that do not
stain for either HRS or MG6PR but that do stain for LBPA,
Lamp1, and Rab7.

Transport of endocytosed solutes in RAW264.7
macrophages

During their transport to lysosomes, endocytosed BSA
and dextran are found in intermediate structures where
BSA and dextran concentrate in substructures that are
attached by tubules to parent compartments. GFP-ML1
localizes to all of these structures. This is strikingly similar
to what has been previously observed in coelomocytes
[35]. The substructures have a diameter of 300 to 500 nm,
and given the time course of the experiments, likely are
subcompartments that contain concentrations of lumenal
proteins that are destined for lysosomes. The scission of
these "buds" would segregate lysosomally-destined pro-
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Figure 5

Nature of the enlarged compartment in MCOLN| RNAIi clones. Confocal images of RAW264.7 and LS9 cells whose
terminal compartments were pre-loaded with Dextran-Rhodamine (red) and stained for the indicated markers (green). All of
the makers were detected using immuno-specific antibodies, except for GFP-Rab7 that was transfected into wild type and
MCOLNI - cells. Bar is 5 pum.
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teins from the rest of the LBPA-positive compartments.
This is, or is analogous to, the reformation of lysosomes
from hybrid organelles that has been observed both in
vitro and in live cells [52,53].

While it is not yet known how BSA, dextran, and very
likely other molecules are concentrated in substructures,
these substructures, are topologically similar to endocytic
invaginations at the plasma membrane. A possible mech-
anism for the concentration of endocytosed solutes in
these substructures is the use of scavenger receptors that
would bind lumenal molecules and cytoplasmic adaptors
to concentrate these receptors in the substructures. ML1 is
unlikely to have such a function since the absence of CUP-
5 in worm coelomocytes does not block the concentration
of BSA in substructures though it does block the scission
of these from the parent compartments [35].

If GFP-ML1 is found primarily in a pre-terminal compart-
ment, then why do we always detect a high co-incidence
of localization of endocytosed molecules with GFP-ML1,
even at late chase times. We think this is because terminal
lysosomal compartments continuously fuse with, and
deliver their content to, late endosomal compartments
forming what has been termed hybrid organelles [52,53].
As mentioned above, a budding and fission reaction is
used for the reformation of lysosomes [52,53].

Even at 24 hours of chase time after the uptake of fluores-
cent BSA, there are always some terminal compartments
that contain endocytic tracers and that do not stain for
GFP-ML1. We think these represent dense core lysosomes
in which GFP-ML1 has been inactivated, possibly by
Cathepsin B-mediated cleavage as has previously been
described [22]. These dense core lysosomes continuously
fuse with earlier GFP-ML1-positive compartments.

MLI requirement in lysosomal transport pathways

We show that reducing ML1 levels results in the delay in
the transport of Bodipy-LacCer to the Golgi apparatus, of
endocytosed proteins to the terminal compartments, and
of MHCII to the plasma membrane. As has been previ-
ously shown, the Bodipy-LacCer co-localizes with endocy-
tosed dextran during its transit to the Golgi apparatus, and
given the high incidence of localization of dextran with
GFP-ML1, very likely with GFP-ML1. Similarly, MHCII
and GFP-ML1 co-localize extensively.

In our model we suggest that ML1 localizes primarily to a
pre-lysosomal MG6PR-negative, LBPA-positive compart-
ment that serves as a hub for the transport of molecules to
various destinations (Fig. 7). Soluble molecules like BSA
and dextran are concentrated in substructures that ema-
nate and separate from these compartments. Following
the fission reaction, these substructures fuse with lyso-
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somes, during which time ML1 is inactivated, possibly
due to a reduction in pH and the activation of proteases.
Previous results have implicated Cathepsin B in the prote-
olytic cleavage and the inhibition of ML1 channel activity
in lysosomal compartments [22]. This is an iterative proc-
ess in which ML1-negative lysosomes continuously fuse
with GFP-ML1-labeled compartments, thus delivering
partially digested peptide fragments for loading on
MHCII. The transport of MHCII to the plasma membrane
also involves tubulovesicular intermediates, and thus may
also require ML1 for their formation or for the scission of
tubules before they fuse with the plasma membrane [49].

Reducing ML1 levels results in a delay and not a block in
these lysosomal transport events. In the case of BSA trans-
port, the assays we used would only detect a delay in
transport and not a complete bloc if for example ML1 is
required for the formation or scission of substructures but
is not required for the fusion of lysosomes with late endo-
somes. In addition, mucolipin-2 likely has redundant
functions with ML1 since while a genomic knockout of
MCOLN1 in DT40 B-lymphocytes does not result in
expanded terminal compartments, the overexpression of
dominant-negative carboxyl-terminal GFP fusions of ML1
or of mucolipin-2 both show this phenotype.

Finally, we do not know whether ML1 directly functions
in Bodipy-LacCer trafficking, in BSA transport, and/or in
MHCII transport. One possibility is that ML1 performs a
similar function in all of these transport steps, for exam-
ple, in the formation and/or scission of tubulovesicular
extensions. Alternatively, ML1 may be required in one
transport step such that the loss/reduction of ML1 levels
retards this step leading to the accumulation of substrates
in the hub compartment, and this accumulation indirectly
interferes with other transport pathways. Future studies
will identify specific requirements of ML1 in these trans-
port pathways.

Conclusion

Mucolipin-1 localizes to dynamic compartments in
murine macrophages. Mucolipin-1 is required for the effi-
cient exit of lipids destined for the Golgi apparatus, of
endocytosed molecules destined for terminal lysosomes,
and of MHCII destined for the plasma membrane, from
these compartments.

Methods

Cell culture and transfection

Mouse RAW264.7 macrophages (ATCC, Manassas, VA)
were grown in Dulbecco's Modified Eagle Medium
(DMEM) containing 2 mM Glutamax and supplemented
with 10% Fetal Bovine Serum, 100 U/ml penicillin, and
100 pg/ml streptomycin (Invitrogen, Carlsbad, CA) at37°
in 95% air at 5% carbon dioxide. LS5, the GFP-ML1 stable
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Figure 6

Co-localization of GFP-ML1 with MHCII and MHCII transport to the plasma membrane. A) Confocal images of
fixed and permeabilized GFP-MLI cells co-stained to detect MHCII (red) and GFP-MLI (green) either in the absence of LPS or
after 48 hours in 100 pg/ml LPS. Bar is 10 um. B) Confocal images of RAW264.7, LS9, and LS10 cells stained to detect surface
MHCII either in the absence of LPS or after 24 hours in 100 pg/ml LPS. All images were taken using the same exposure and
maghnification. C) Quantitation of the levels of MHCII at the plasma membrane in the LPS-treated cells shown in panel B. Bars
represent standard deviations from at least 60 measurements for each strain. D) Confocal images of fixed and permeabilized
RAW264.7, LS9, and LS10 cells co-stained to detect MHCII (red) and LBPA (green) after 24 hours in 100 pg/ml LPS. Bar is 10

pum.

clone, and LS9 and LS10, the MCOLN1 RNAi stable  Transfections of plasmids were done using Fugene 6
clones, were grown under the same conditions and  (Roche, Indianapolis, IN).
including G418 at 250 pg/ml.
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Molecular methods

Standard methods were used for the manipulation of
recombinant DNA [54]. Polymerase chain reaction (PCR)
was done using the Expand Long Template PCR System
(Roche) according to the manufacturer's instructions. All
other enzymes were from New England Biolabs (Beverly,
MA), unless otherwise indicated.

Plasmids
All PCR fragments were sequenced after insertion into
plasmids.

Plasmid pHD300 encoding a fusion protein of EGFP to
the amino-terminus of mouse ML1 is the ~1.7 kb PCR
fragment (template: mouse ¢DNA; primers: 5'
CACACAAAGCTITATGGCCACCCCGGCGGGCCGGCGC
3' and 5' CACACAGTCGACTCAGTTCACCAG-
CAGCGAATGGTC 3') restriction digested with HindIIl +
Sall and inserted into the same sites of pEGFP-C3 (Clon-
tech, Mountain View, CA).

Plasmid pHD334, in which the red fluorescent protein
mCherry replaces EGFP in the same frame of pEGFP-C3,
was made by restriction digesting the 720 bp PCR frag-
ment (template: pmCherry; primers: 5' CACACAACCG-
GTCGCCACCATGGTGAGCAAGGGCGAGGAGG 3' and
5' CACACAAGATCTGAGTACITGTACAGCTCGTCCAT-
GCCG 3') with Agel + BglII and inserting into the same
sites of pEGFP-C3 [55].

Plasmid pHD339 encoding a fusion protein of mCherry
to the amino-terminus of mouse ML1, was made by sub-
cloning the ~1.7 kb HindIII + Sall fragment from pHD300
into the same sites of pHD334.

Plasmid pHD307 expressing the mouse MCOLN1 shRNA
was made by annealing and ligating the two complimen-
tary oligos 84696 (5'
AGCTTAAAAATCAGCCTCITCATCTACATTCTCTT-
GAAATGTAGATGAAGAGGCTGAGGG 3') and 84697 (5'
GATCCCCTCAGCCTCITCATCTACATTITCAAGAGAATG-
TAGATGAAGAGGCTGATTTTTA 3') into BgllI-HindIII cut
pSUPER-neo (Oligoengine, Seattle, WA). This shRNA is
expressed in front of the histone H1 promoter and targets
the sequence 5' UCAGCCUCUUCAUCUACAU 3' in the
mouse MCOLNT mRNA.

Making MCOLNI RNAi clones

We identified two stable transfectants, LS9 and LS10,
using plasmid pHD307. To determine the efficiency of the
RNAi, we ran 15 pg of total RNA from RAW264.7, LS9, or
LS10 cells on a gel. The Northern blot was probed with
DNA fragments complimentary to MCOLNI1, to
MCOLN2, or to GAPDH. The same filter was probed for
MCOLNT1, stripped, and re-probed for GAPDH, stripped
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again and re-probed for MCOLN2. The intensities of the
bands were quantitated using ImageJ software (N.I.H.,
Bethesda, MD). To determine the levels of MCOLN1 or
MCOLN?2 in LS9 (or LS10) relative to RAW264.7 cells, we
divided the intensity of the MCOLNT1 band by that of the
GAPDH band in LS9 (or LS10) to get a "relative level" in
each strain. The "relative level" from LS9 (or LS10) was
divided by the "relative level" from RAW264.7 and multi-
plied by 100 to get percent change of MCOLNI or
MCOLN2 mRNA levels. The RNA isolation and Northern
blots were repeated twice to calculate means and standard
deviations.

Time course of uptake: GFP-MLI

Cells that were grown on coverslips were incubated in
DMEM/F-12 medium (Invitrogen) for at least 1 hour
before the start of the experiment. Bovine Serum Albumin
(BSA)-AlexaFluor 594 (Invitrogen) was dissolved and
added to cells at 1 mg/ml in DMEM/F-12 for 1 minute at
37°. Alternatively, dextran MW 10,000-Rhodamine (Inv-
itrogen) was added to cells at 1 mg/ml in DMEM/F-12 for
1 minute at 37 °. Following the first minute of incubation,
the medium was replaced with DMEM/F-12 containing 1
mg/ml BSA and the cells were fixed after various chase
times at 37°. Fixation was done by adding ice-cold 2%
paraformaldehyde in PBS to the cells and incubating at
room temperature (RT) for 1 hr. Coverslips were washed
three times with PBS before loading in Slowfade mount-
ing medium (Invitrogen) on slides for viewing. The per-
cent co-localization is the number of BSA-AlexaFluor 594
(or Dextran Rhodamine)-stained discrete structures that
co-localized with GFP-ML1-stained structures divided by
the total number of BSA-AlexaFluor 594 (or Dextran
Rhodamine) stained structures in a section and multiplied
by 100. The graphs show the average from sections of at
least 20 different cells.

Time course of uptake: MCOLN -

Cells that were grown on coverslips were incubated in
DMEM/F-12 medium for at least 1 hour before the start of
the experiment. BSA-AlexaFluor 594 was added to cells at
1 mg/ml in DMEM/F-12 for 1 hour at 37°. The medium
was replaced with regular medium and the cells were left
for 24 hours to pre-label the terminal compartments.
Cells were again incubated in DMEM/F-12 medium con-
taining 2 mM glutamine for at least 1 hour before the start
of the experiment. BSA-AlexaFluor 488 (Invitrogen) was
added to cells at 1 mg/ml in DMEM/F-12 for 10 minutes
at 37°. Cells were washed once with DMEM/F-12, incu-
bated in DMEM/F-12 containing 1 mg/ml BSA, and the
cells were fixed after various chase times at 37°. Fixation
was done by adding ice-cold 2% paraformaldehyde in PBS
to the cells and incubating at room temperature (RT) for
1 hour. Coverslips were washed three times with PBS
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Figure 7

Model of MLI functions. The cartoon shows the localiza-
tion of MLI (green dots) relative to soluble endocytosed
molecules (shades of red). The grey circles and sheets are
LBPA-stained membranes. MLI that co-localizes with HRS
and M6PR is not shown.

before loading in Slowfade mounting medium (Invitro-
gen) on slides for viewing.

Immunofluorescence

For conventional immunofluorescence, cells that were
grown on coverslips were fixed for 20 minutes in 4% para-
formaldehyde in PBS at RT or in 100% MetOH (kept at -
20°) for 15 minutes at -20°. Cells were washed three
times with PBS at RT, 5 minutes each time. Paraformalde-
hyde-fixed cells were incubated in 50 mM NH,Cl in PBS
for 10 minutes at RT and washed two more times with
PBS. Blocking was done for 30 min in blocking buffer (1%
BSA, 0.1% Saponin, in PBS). Cells were then incubated in
primary antibodies diluted in blocking buffer for two
hours at RT, washed three times with PBS, incubated in
Cy2 or Cy3 labeled secondary antibodies (Jackson Immu-
noResearch Laboratories, West Grove, PA) diluted 1:200
in blocking buffer for one hour at RT, washed three times
with PBS, and mounted in Slowfade mounting medium
(Invitrogen) on slides for viewing.

For surface staining of MHCII, cells that were grown for 24
hours in the presence or absence of 100 pg/ml LPS were
first washed three times with ice-cold PBS and were then
incubated with primary antibody diluted in 1 x PBS/1 mg/
ml BSA at 4° for two hours. Cells were then washed three
times, five minutes each, with 1 x PBS/1 mg/ml BSA at 4°
and were then incubated in secondary antibody diluted in
1 x PBS/1 mg/ml BSA at 4° for one hour. Cells were
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washed again and then fixed in 1% formaldehyde for 1
hour at 4° before washing with PBS and loading on slides.
The confocal images of these cells were acquired using the
same exposure and magnification. Quantitation of the
intensity of surface MHCII labeling was done using Adobe
Photoshop (Adobe Systems Incorporated, San Jose, CA).

Antibodies/dilutions used were Chicken anti-GFP/1:200
(Abcam, Cambridge, MA), Rat anti-Lamp1/1:1 (Develop-
mental Studies Hybridoma Bank, Iowa City, IA), Mouse
anti-lyso(bis)phosphatidic acid (LBPA)/1:1 [41], Rabbit
anti-Mannose 6-Phosphate (CI-M6PR)/1:500, Rabbit
anti-HRS/1:250 [42], and Rat anti-Mouse Major Histo-
compatibility Complex II (MHCII) - M5/114.15.2/1:5
(BD Biosciences, San Jose, CA) [56], or Mouse anti-Mouse
Major Histocompatibility Complex II (MHCII) - 34-5-3/
1:5 (BD Biosciences). For the 34-5-3 antibody, Fc Block
was included with the primary antibody at a 1:50 dilution
(BD Biosciences).

The percent co-localization is the number of GFP-ML1-
stained structures that co-localized with markers for vari-
ous compartments divided by the total number of GFP-
ML1-stained structures in a section and multiplied by 100.
The graphs show the average from sections of at least 20
different cells.

Acridine Orange staining

RAW264.7, LS9, and LS10 cells were washed twice with
PBS/0.5 mg/ml BSA and incubated in a 100 um solution
of Acridine Orange (AO, Sigma-Aldrich, St. Louis, MO)
diluted in PBS/0.5 mg/ml BSA for 10 minutes at RT. Cells
were then washed twice in PBS/0.5 mg/ml BSA and
imaged immediately by confocal microscopy. All images
were taken using the same exposure and magnification.
Unstained cells were imaged as a control and did not
show any background fluorescence under the conditions
used to visualize the AO. We used Image] software to
measure the mean intensity of staining of individual AO-
stained compartments. At least 100 structures were meas-
ured for each strain to determine the means and standard
deviations.

Dextran-Oregon Green staining

RAW264.7, LS9, and LS10 cells were washed once with
DMEM/F-12 medium and incubated in the same medium
for 1 hour at 37°. Cells were then incubated in DMEM/F-
12 medium containing 1 mg/ml dextran (MW-10,000)-
Oregon Green 488 (Invitrogen) for 5 minutes at 37°.
Cells were washed twice with DMEM/F-12 medium and
chased for another hour at 37° before confocal micros-
copy. All images were taken using the same exposure and
magnification. Unstained cells were imaged as a control
and did not show any background fluorescence under the
conditions used to visualize the dextran-Oregon Green

Page 13 of 16

(page number not for citation purposes)



BMC Cell Biology 2007, 8:54

488. We used Image] software to measure the mean inten-
sity of staining of individual dextran-Oregon Green 488-
stained compartments. At least 60 structures were meas-
ured for each strain to determine the means and standard
deviations.

Bodipy-LacCer trafficking

Growing cells were washed twice with PBS and once with
DMEM/F-12 medium. Cells were then incubated in
DMEM/F-12 medium containing 10 mg/ml dextran (MW-
10,000)-Cascade Blue (Invitrogen) for 4 hours at 37°. The
staining solution was replaced with normal medium and
the cells were left for 24 hours at 37°. Cells were washed
twice with PBS and once with DMEM/F-12 medium and
then left in DMEM/F-12 medium for 1 hour at 37°. Cells
were then incubated in DMEM/F-12 medium containing
5 uM BODIPY-FL LacCer-BSA (Invitrogen) for 30 minutes
at 37°. The staining solution was replaced with 2 ml of
pre-heated DMEM/F-12 and the cells were left for 45 min-
utes or 90 minutes at 37°. To remove plasma membrane
labeling after the chase, cells were back exchanged six
times, 10 min each time, with 2 ml ice-cold DMEM/F-12/
5% BSA and the plates were left on ice until all samples
were ready for confocal microscopy. Unstained cells that
were similarly treated, except for the addition of the dyes,
were imaged as a control and did not show any back-
ground fluorescence under the conditions used to visual-
ize the dextran-Cascade Blue or the BODIPY-FL LacCer-
BSA.

Hen Egg Lysozyme degradation assay

Growing cells were washed twice with PBS and once with
DMEM/F-12 medium. Cells were then harvested in
DMEM/F-12 medium and 107 cells were added to 100
mm plates. After 2 hours at 37°, cells were washed twice
with 37°-pre-heated DMEM/F-12 medium. Cells were
then incubated for 5 minutes in 37°-pre-heated Hen Egg
Lysozyme (HEL) dissolved in DMEM/F-12 medium at 10
mg/ml. This solution was removed and the cells were
washed three times with 37°-pre-heated PBS and 5 ml of
37°-pre-heated DMEM/F-12 was added to the cells. Cells
were dislodged from the plates by scraping and clumps
were broken up by pipetting. The 5 ml solution of cells
was then added to 37 °-pre-heated 15 ml tubes and incu-
bated while mixing at 37°. This is time zero. At times 0
min, 30 min, 60 min, and 90 min, 1 ml of cells was
removed and added to pre-chilled eppendorf tubes. Cells
were spun down in the cold, washed once with ice-cold
PBS, and resuspended in 150 pl of Western loading buffer
(50 mM Tris pH 6.8, 10% glycerol, 4% SDS, 10 mM DTT,
0.01% Bromophenol Blue) preheated to 95°.

For Western analysis, 10 pl of each sample was used per
lane. Each filter was cut horizontally such that the top half
was probed using Rabbit anti-GAPDH (Cell Signaling
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Technology, Danvers, MA, 1:1000 dilution) and the bot-
tom half was probed using Rabbit anti-HEL (Abcam,
1:5000 dilution). For antigen detection, we used Goat
anti-Rabbit IgG secondary antibodies conjugated to HRP
(Pierce, Rockford, IL, 1:50,000) and the Amersham ECL
Advance Western Blotting Detection Kit (Amersham Bio-
sciences, Pittsburgh, PA).

To quantitate the cellular levels of HEL over time, we used
Image] to quantitate the intensities of the HEL and
GAPDH bands on scanned images. For each lane, we
divided the HEL intensity by the GAPDH intensity to nor-
malize HEL levels relative to cellular protein. We then
divided the normalized HEL number at the 30 min, 60
min, and 90 min time point by the number at the 0 min
time point to determine the percent of cellular HEL rela-
tive to the O time point. We note that the reported differ-
ences between the cell lines may be more robust than
shown here because of the non-linear nature of the HRP-
based ECL detection assay.

The whole experiment was repeated twice to get averages
and standard deviations.

Microscopy

Confocal images were taken with a Nikon PCM 2000
using HeNe 543 excitation for the red dye and Argon 488
for the green dye or with a Zeiss-Meta 510 microscope.
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