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Abstract

Background: The organic solute transporter (OSTa-OSTp) is a heteromeric transporter that is
expressed on the basolateral membrane of epithelium in intestine, kidney, liver, testis and adrenal
gland and facilitates efflux of bile acids and other steroid solutes. Both subunits are required for
plasma membrane localization of the functional transporter but it is unclear how and where the
subunits interact and whether glycosylation is required for functional activity. We sought to
examine these questions for the human OSTa-OSTf transporter using the human hepatoma cell
line, HepG2, and COS7 cells transfected with constructs of human OSTa-FLAG and OST(3-Myc.

Results: Tunicamycin treatment demonstrated that human OSTa is glycosylated. In COS7 cells
Western blotting identified the unglycosylated form (~31 kD), the core precursor form (~35 kD),
and the mature, complex glycoprotein (~40 kD). Immunofluorescence of both cells indicated that,
in the presence of OSTp, the alpha subunit could still be expressed on the plasma membrane after
tunicamycin treatment. Furthermore, the functional uptake of 3H-estrone sulfate was unchanged in
the absence of N-glycosylation. Co-immunoprecipitation indicates that the immature form of
OSTa interact with OSTf. However, immunoprecipitation of OST[} using an anti-Myc antibody did
not co-precipitate the mature, complex glycosylated form of OSTa, suggesting that the primary
interaction occurs early in the biosynthetic pathway and may be transient.

Conclusion: In conclusion, human OSTa is a glycoprotein that requires interaction with OSTf} to
reach the plasma membrane. However, glycosylation of OSTa is not necessary for interaction with
the beta subunit or for membrane localization or function of the heteromeric transporter.

Background

The organic solute transporter (OSTa-OSTp) is a hetero-
meric transporter of bile acids and other organic solutes
and steroids. In the human, OSTa-OSTp is found pre-
dominantly in epithelial cells of liver, intestine, kidney,
adrenal gland and testis[1]. It is expressed on the basola-

teral membrane of these cells and has been shown to
transport estrone 3-sulfate, digoxin, dehydroepiandroster-
one 3-sulfate, prostaglandin E, and a variety of bile acids
[1-3]. Regulation of this basolateral transporter is through
the action of the bile acid-activated nuclear receptor, the
farnesoid x receptor (FXR) [4]. Thus, conditions of
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cholestasis have been shown to result in up-regulation of
OSTa-OSTB at both the mRNA and protein levels [4].
Recently the importance of this transporter in intestinal
bile acid transport and in the enterohepatic circulation
has been confirmed in Osta-/- mice [5]. Data from studies
of these mice highlight the role of Osta-OSTp and FGF15
in regulating hepatic bile acid synthesis.

It was noted early on that transport activity required the
coexpression of two distinct gene products. The first,
Osta, is a predicted 340-amino acid protein with seven
membrane spanning domains and the second, Ostp, is a
128-amino acid, single membrane spanning protein [2].
Transport is bidirectional across the plasma membrane,
and most likely occurs by facilitated diffusion of sub-
strates down their electrochemical gradients [3]. Plasma
membrane localization and functional activity requires
the expression of both subunits [3,6-8]. Several groups
have shown that the functional requirement for co-expres-
sion of both subunits is associated with the physical asso-
ciation of the two proteins [7,8]. Dawson and colleagues
demonstrated that mouse Ostf} was necessary for mouse
Osta to acquire N-glycosylation in transfected HEK293
cells, thus suggesting that the beta subunit is acting as a
chaperone to allow the alpha subunit to exit the ER [6].
Quality control at the level of the ER can involve many dif-
ferent mechanisms. Newly synthesized proteins must be
folded correctly and, in some cases, must be assembled
into multimeric protein complexes in order to be traf-
ficked to the Golgi and plasma membrane. If this does not
occur the protein may be ubiquitinated and designated
for degradation. Thus, the chaperone activity of OSTP may
require a properly folded alpha subunit or may aid in the
folding of the peptide. Alternatively, the protein-protein
interaction may mask a retention/retrieval motif or reveal
a forward trafficking motif in the alpha subunit. Recent
work shows that both subunits must be expressed in order
to prevent degradation of the other subunit, suggesting a
specific interaction between the two proteins [5,7]. Sun
and colleagues have suggested that OSTP is interacting
with the N-terminus, and not the C-terminus, of OSTa
[8]. This raises the question of whether the glycosylation
of the alpha subunit could influence the interaction with
the beta subunit and, thus, affect membrane localization
and function of the intact transporter. Therefore, in this
study we have sought to examine more fully the interac-
tion of OSTa and OSTP in two mammalian expression
systems where we can look at both the endogenous and
exogenous, transfected expression of the human trans-
porter.

Methods

Cell Culture

The human hepatocellular carcinoma cell line, HepG2,
and the monkey kidney cell line, COS7, were acquired
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from ATCC (Manassas, VA). HepG2 cells were cultured in
MEM with non-essential amino acids (ATCC) containing
10% FBS and 1% penicillin-streptomycin, at 37°C with
5% CO,. COS7 cells were cultured in DMEM containing
10% FBS and 1% penicillin-streptomycin, at 37°C with
5% CO,.

Cell treatment

After HepG2 cells reached ~70% confluence, they were
washed and cultured in fresh medium containing 10%
charcoal-stripped serum in the presence or absence of 50
puM chenodeoxycholate (CDCA) (Sigma, St Louis, MO),
or 2 uM 6-ethyl CDCA (Dr. Roberto Pellicciari, Universita
Di Perugia, Italy). Twenty four to forty-eight hours after
addition of CDCA, RNA and protein were isolated or cells
were fixed for immunofluorescence as described below.
To inhibit glycosylation, tunicamycin (Sigma) was added
at concentrations indicated in the figure legends 6 hrs
after the addition of CDCA treatment in HepG2 cells or 4
hrs after the initiation of transfection in COS7 cells.

Lysates from COS?7 cells transfected for 48 hrs with OSTa.-
FLAG and OSTB-MYC were digested with peptide:N-gly-
cosidase F (PNGase F) and endoglycosidase H (EndoH)
according to the manufacturer's instructions (New Eng-
land Biolabs) and subjected to SDS-PAGE as described
below.

Cloning human OST alpha, beta and vector constructs
HepG2 cell cDNA was used as a template. We generated a
1.03 kb cDNA fragment encoding the full-length of
human OSTa and a 0.4 kb cDNA fragment encoding the
full-length of human OSTB by PCR. The primers for
amplification of human OSTa and OSTP were based on
the published human sequences (GenBank accession
number AK172837 and AY194242). The forward primer
OSTa 5'-GCTTGGTACCATGGAGCCGGGCAGGACCCA-
GATAA-3' and the reverse primer OSTa 5'-
CCGCTCGAGTTACTITGTCATCGTCGTCCTITGTAATC-
CCCGGCITTGAGGTTCAAGTCCAGGTC-3' were used.
The forward primer OSTB 5'-GCTGGATCCACCATGGAG-
CACAGTGAGGGGGCTCC-3"' and the reverse primer
OSTB 5'-GCACTCGAGGCTCTC AGTITCTGGTACATC-
CGG-3' were used. The amplified cDNA fragment encod-
ing the full-length of OSTa was then subcloned into the
Kpn I and Xho I sites of the mammalian expression vector
pcDNA3.1 (Invitrogen) and the cDNA fragment encoding
the full-length of OSTB was subcloned into the BamH 1
and Xho I sites of pcDNA3.1 Myc/His vector (Invitrogen).
PcDNA3.1-OSTa-FLAG and pcDNA3.1-OSTB-Myc/His
were sequenced using Yale Keck DNA sequencing facility.
The coding sequences were identical to the published
sequences with the GenBank accession numbers for OSTa.
[AY194243] and for OSTP [BC103842].
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COS7 cells were transfected with FuGene 6 (Roche) using
1 ug OSTa-FLAG or OSTB-Myc DNA/9 cm? surface area,
according to manufacturer's instructions. pcDNA vector
control (1 pg DNA) was used when only one subunit was
transfected. Cells were harvested 24-48 hr after transfec-
tion, as described for Western blotting or immunofluores-
cence.

Quantitative RT-PCR

Cells were extracted with Trizol (Invitrogen, Carlsbad,
CA) and RNA was isolated according to manufacturer's
instructions. Quantitative RT-PCR was carried out as
described previously [4] using Applied Biosystems 7500
DNA sequence detector system with TagMan universal
master mix (Applied Biosystems, Foster City, CA). Specific
primer pairs for hOSTa and hOSTp were the same as pre-
viously described [4].

Western blot/Immunoprecipitation

Cells were washed with PBS and then extracted directly in
RIPA buffer (25 mM Tris, pH 7.2, 150 mM NaCl, 10 mM
EDTA, 1% Triton X-100, 1% deoxycholate, 0.1% SDS) or
in 1% Triton X-100, 50 mM Tris HCIl, pH 7.4,150 mM
NaCl, 1 mM EDTA for immunoprecipitation. Lysates were
centrifuged at 10,000 x g for 20 min and the supernatant
was collected for analysis using SDS-PAGE. Immunopreci-
patation was performed using anti-FLAG affinity gel (M2,
Sigma, St Louis, MO) or anti-Myc polyclonal antibody
(abcam, Cambridge, MA) and Protein A/G beads (Santa
Cruz). Lysates were precleared and negative controls were
performed with non-specific anti-mouse IgG. In the case
of immunoprecipitation of endogenous protein from
HepG2 cells, a Native IgG kit from Pierce was used with
polyclonal antibodies raised against OSTa. (hOSTa-327)
and OSTP (hOSTB-1) provided by Ned Ballatori (Roches-
ter, NY).

Pulse-chase experiments were carried out in COS7 cells 24
hr after transfection. After incubation for 15 min with
Cys/Met minus media, cells were pulsed for 15 min with
media containing 135 pCi 35S Trans-label (MP Biomedi-
cals, Solon, OH). Cells were either extracted immediately
in 1% Triton X-100, 50 mM Tris Hcl, pH 7.4,150 mM
NaCl, 1 mM EDTA or chased for 2 hr in complete media.
Immunoprecipitation was carried out as described above.

Immunofluorescence

Cells were fixed with cold methanol for 10 min or with
4% paraformaldehyde for 15 min. Quenching of non-spe-
cific fluorescence in formaldehyde fixed cells was done
with 50 mM NH,CI for 20 min prior to blocking 20 min-
utes in blocking buffer (PBS, 1% BSA, 0.05% Triton X-
100). In the case of OSTB, non-permeablized conditions
using no detergent was found to give better surface labe-
ling. Primary antibody was diluted in blocking buffer and
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incubated on the cells for 2 hours at room temperature.
After washing in PBS, secondary antibody (Alexa 594 or
488 anti-IgG (Invitrogen)) was incubated for 1 hour at
room temperature. Fluorescence was visualized with a
Zeiss LSM510 (Carl Zeiss Inc, Thornwood, NY) confocal
microscope and images processed with Photoshop
(Adobe, Mountainview, CA).

Transport assay

HepG2 cells were cultured in 35 mm dishes as described
above. At ~70% confluency 50 pM CDCA or vehicle was
added and the culture continued for 48 hrs. 3H-Taurocho-
late (1 uM) or 3H-estrone 3-sulfate (15 nM) were made up
in transport buffer (116 mM NaCl, 5.3 mM KCl, 1.1 mM
KH2PO4, 0.8 MgS04.7H20, 1.8 mM CaCl, 11 mM glu-
cose, 10 mM HEPES) and warmed to 37°C. For each time
point, triplicate dishes were washed 3 times with warm
transport buffer alone and then incubated for the given
time with 1 ml transport buffer containing 3H-substrate.
Uptake of substrates was stopped by rapid addition and
aspiration of 1 ml of cold transport buffer three times.
Cells were lysed with 1 ml 0.5% Triton X100. Cell lysates
(600 pl) were combined with OptiFluor scintillation fluid
(5 ml) and counted in a PerkinElmer WinSpectral LSC
(PerkinElmer, Waltham, MA). Protein content of the
lysates was determined with the BCA reagent (Pierce Bio-
technology, Rockford, IL) and used to normalize the
counts.

Results

N-glycosylation of OSTc is not required for plasma
membrane expression in HepG2 cells

Previous studies indicate that human hepatocytes express
OSTa-OSTB on their basolateral membranes [4]. In
untreated human hepatoma, HepG2, cells, there was little
expression of OSTa-OSTB mRNA or protein. However,
treatment with the FXR agonist, CDCA, up-regulated
mRNA levels of both subunits rapidly within one hour
and peaked between 12 and 24 hours. mRNA levels
increased ~12 fold for OSTa and ~20 fold for OSTP (Fig-
ure 1A). Protein levels for both subunits were not detecta-
ble until at least 12 hrs after treatment with 50 uM CDCA
or 2 uM 6-ethyl CDCA (Figure 1B). Both subunits were
visualized on the plasma membrane at that time, with 70—
90% of cells expressing the transporter after 48 hrs (Figure
1C). A time course using immunofluorescence detected
no OSTa prior to 12 hrs, although OST could be visual-
ized in a perinuclear localization at earlier time points
(data not shown). Finally, uptake of both 3H-taurocholate
and 3H-estrone 3-sulfate was increased 3-4 fold in CDCA
treated cells, indicating that OSTa-OSTp was functional in
these cells when expressed on the plasma membrane (Fig-
ure 1D). Uptake of taurocholate can also be mediated by
other basolateral transporters such as the sodium tauro-
cholate co-transporting protein (NTCP) and the family of
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FXR agonists up-regulate OSTo and OST3 mRNA and protein in HepG2 cells. (A) mRNA was isolated from
HepG2 cells treated with CDCA for the indicated time periods. Quantitative RT-PCR indicates that treatment with 50 uM
CDCA up-regulates mRNA for OSTa (closed bars) and OST[3 (open bars) in a time dependent manner, peaking between 12
and 24 hrs. (B) Lysates from HepG2 cells treated with CDCA for the indicated time periods were combined with Laemmli
sample buffer and subjected to SDS-PAGE. Protein expression for both subunits is detectable between 12 and 24 hrs and
increases significantly at 48 hrs as demonstrated by Western blotting using the specific polyclonal antibodies described in Meth-
ods. (C) Immunofluorescence on cells treated for 48 hrs with vehicle alone, 50 uM CDCA or 2 uM 6-ethyl CDCA demon-
strates that both the up-regulated OSTa and OSTJ subunits are correctly expressed on the plasma membrane. (D) Transport
studies in HepG2 cells using 3H-taurocholate (I uM) and 3H-estrone 3-sulfate (50 nM) indicate that treatment with 50 uM
CDCA up-regulates functional activity 3—4 fold over non-treated cells.

organic anion transporter proteins (OATPs). Therefore,
we also measured mRNA levels for OATP1A2, OATP1B1,
OATP1B3, and NTCP by Q-PCR. While most were
unchanged after CDCA treatment, mRNA for OATP1B3
was up-regulated (data not shown), consistent with previ-
ous reports [9]. Thus, we cannot rule out that some of the
uptake was due to OATP1B3.

Examination of the amino acid sequence of the alpha sub-
unit has indicated that, unlike in the mouse, rat and skate
sequences, the human OSTa subunit does not have the
traditional N-glycosylation consensus sequence of Asn-X-
Ser/Thr [1]. Therefore, it was of interest to determine if the
human OSTa protein was glycosylated. Tunicamycin is an
antibiotic that has been shown to inhibit N-glycosylation
of proteins by blocking the addition of N-acetylglu-
cosamine to dolichol phosphate, the first step in the for-
mation of core oligosaccharide [10]. Treatment of HepG2
cells with tunicamycin (1 pg/ml), 5 hours after the addi-
tion of 50 uM CDCA and for a total of 15 hrs, reduced the

molecular weight of OSTa from ~36 kD to ~30 kD (Figure
2A). Treatment with the glycosidases, Endo H and
PNGase F, confirmed that these proteins were the mature
and non-glycosylated forms of OSTa (data not shown).
There was no shift in the molecular weight of the OSTB
subunit after tunicamycin treatment. This confirms previ-
ous data demonstrating that the only potential N-glyco-
sylation consensus sequence in mouse Ostf is in a
presumably transmembrane domain and, thus, is not uti-
lized [6]. These data indicate that endogenously expressed
human OSTa is a glycoprotein. However, despite the lack
of N-glycosylation in these treated cells, immunofluores-
cence demonstrated that the OSTo subunit was still
expressed on the plasma membrane at similar levels to
untreated cells (Figure 2B). Furthermore, the tunicamycin
treated HepG2 cells showed no difference from untreated
cells in 3H-estrone 3-sulfate uptake, demonstrating that
the non-glycosylated OSTa was still capable of associating
with OST to form a functional transporter (Figure 2C). In
contrast, previous work has suggested that N-glycosyla-
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Figure 2

Tunicamycin prevents glycosylation of OSTo but does not affect its plasma membrane localization or its
transport function. Tunicamycin (| pg/ml) was added to HepG2 cells 5 hrs after the addition of 50 uM CDCA and incuba-
tion continued for a total of 15 hrs. Cells were then extracted with RIPA buffer for PAGE and Western blotting, fixed for
immunofluorescence, or subjected to the transport assay as described in Methods. (A) Western blot analysis of cell lysates
indicates that the molecular weight of the OSTa subunit was reduced from ~36 kD to ~28-30 kD (see arrows), indicating that
this subunit is glycosylated. The molecular weight of the OSTf subunit was not significantly changed and B-actin was used as a
loading control. (B) Immunofluorescence for OSTa shows that tunicamycin treatment did not prevent expression of the alpha
subunit on the plasma membrane. (C) Transporter function as assessed by 3H-estrone 3-sulfate uptake was also not affected by
treatment with tunicamycin. n = 3

Page 5 of 13

(page number not for citation purposes)



BMC Cell Biology 2008, 9:57

tion of Oatps is essential to their functioning[11,12]. The
lack of difference in uptake after tunicamycin treatment
suggests that little, if any, of the 3H-estrone 3-sulfate trans-
port was through OATPs.

Plasma membrane expression of OST c requires OST/, but
not N-glycosylation

COS7 cells were transfected with OSTa-FLAG and OSTB-
Myc in order to evaluate the behavior of the individual
subunits. When OSTa-FLAG alone was transfected,
immunofluorescence revealed only an intracellular signal
and never detected protein on the plasma membrane (Fig-
ure 3A). However, when both OSTa-FLAG and OSTB-Myc
were transfected together, both proteins were detected on
the plasma membrane by immunofluorescence (Figure
3A). Transfection of OSTB-Myc alone resulted in plasma
membrane and intracellular localization (Figure 3A),
demonstrating the ability of Ostf to traffic to the plasma
membrane independently of Osta in an over-expressing
system. This has also been reported in transfected MDCK
and HEK293 cells [7,8].

Western blotting revealed that transfection of OSTa-FLAG
alone resulted in two bands of approximately 31 and 35
kD (Figure 3B). Co-expression of OSTB with OSTa
resulted in an additional, higher molecular weight species
of OSTa of ~40 kD (Figure 3B). These data are similar to
that reported for mouse ileum and for HEK293 cells trans-
fected with mouse Osta and Ostf [6], and suggest that
this band represents a mature, complex glycosylated form
of the OSTa subunit. Indeed, when N-glycosylation was
inhibited with tunicamycin (0.5 pg/ml, 24 hrs) this 40 kD
band disappeared (Figure 4A). In addition, the 35 kD
band also disappeared, suggesting that this band repre-
sents the core glycosylated or precursor form found in the
ER. The 31 kD band was not eliminated by tunicamycin
treatment indicating that it is the non-glycosylated OSTa
subunit. In contrast to HepG2 cells, tunicamycin treat-
ment of COS7 cells appeared to reduce the expression of
a higher molecular weight band of the OSTB subunit (Fig-
ure 4A), although this was not a consistent finding. This
subunit is not glycosylated, thus the change may reflect a
non-specific effect of the tunicamycin treatment in this
experiment.

The glycosylation status of OSTa was further clarified by
treatment of cell lysates with the glycosidases, Endo H and
PNGase F. These two enzymes can distinguish between N-
glycans that only contain the core oligosaccharide that has
been added in the ER (Endo H sensitive) and those that
have trafficked through the Golgi and have had their car-
bohydrate chains modified (PNGase F sensitive, Endo H
resistant) [13]. Figure 4B shows that the 40 kD band was
sensitive to PNGase F, but not Endo H, treatment, indicat-
ing that the mature alpha subunit has exited the Golgi.
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The 35 kD band was sensitive to both Endo H and
PNGase F and, thus, represents a glycoprotein that has not
trafficked through the Golgi. The 31 kD band remains
after both glycosidase treatments, confirming that it repre-
sents the non-glycosylated OSTa subunit. These data
demonstrate that human OSTp is required for human
OSTa to be processed from the high mannose type N-
linked glycan in the ER to complex oligosaccharides in the
cis/medial Golgi region. Immunofluorescence of tuni-
camycin treated COS7 cells transfected with OSTaFLAG
and OSTB-Myc showed that the lack of glycosylation did
not prevent OSTa trafficking to the plasma membrane,
confirming data seen in HepG2 cells (Figure 4C). Thus,
the interaction of the beta subunit with the alpha subunit
in the ER and the subsequent trafficking through the Golgi
does not require that OSTa be glycosylated.

Immunoprecipitation demonstrates that immature forms
of OST« and OST/ associate

In order to gain further insight into the interaction of the
two subunits, immunoprecipitation was conducted using
antibodies to the tags associated with both the alpha and
beta subunits. In COS7 cells, when OSTaFLAG was
immunoprecipitated with anti-FLAG agarose beads, the
precipitate also contained OSTP (Figure 5A). Although all
the OSTa was efficiently precipitated, only a fraction of
the OSTP was found in the precipitate. When OSTP was
immunoprecipitated with anti-Myc antibody, only the
two lower molecular weight forms of OSTa were found in
the precipitate (Figure 5A). Despite repeated attempts
using more protein and over-exposure of the blots (data
not shown) the mature, complex glycosylated form of
OSTa was never seen. Metabolic labeling of transfected
COS7 cells demonstrated that the 40 kD form of OSTa
appeared only after co-transfection of the alpha and beta
subunits and after a time lag of > 15 min (Figure 5B; ear-
lier time points not shown). Furthermore, anti-FLAG pre-
cipitated all forms of OSTa as well as OSTB, but anti-Myc
co-precipitated only OSTB and the immature forms of
OSTa (31 and 35 kD bands), confirming the previous
data. This suggested that the physical association of the
two subunits may be necessary for the transporter to be
processed and trafficked through the intracellular com-
partments, but possibly not necessary once OSTa reaches
the plasma membrane.

To test whether this could be an artifact of transfection of
exogenous DNA, we also conducted immunoprecipita-
tion of endogenous protein in HepG2 cells. In this case it
should be noted that after CDCA treatment we see expres-
sion only of the mature form of OSTa (Figure 2A), sug-
gesting that the immature form(s) move very rapidly
through the Golgi and are of too low abundance to detect.
Immunoprecipitation using the polyclonal anti-OSTa
and OSTP antibodies does not demonstrate co-precipita-
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Figure 3

Membrane expression of OSTo requires the co-expression of OST[ in COS7 cells. (A) COS7 cells were trans-
fected with OSTa-FLAG and/or OSTfB-Myc as described in Methods and immunofluorescence was performed to visualize the
localization of the individual subunits using mouse anti-FLAG and rabbit anti-Myc antibodies. Transfection of OSTa-FLAG
(green) alone indicates that in the absence of OST[, OSTa is retained intracellularly (left row). In contrast, transfection of
OST}P (red) alone shows that this subunit can traffick to the plasma membrane without OSTa (middle row). Co-expression of
OSTa and OSTP subunits results in plasma membrane localization of OSTa (right row). Bar= 10 uM. (B) Transfected cells
were also lysed with RIPA and lysates subjected to PAGE and Western blotting. When OSTa-FLAG and OSTf-Myc were co-
transfected a higher molecular weight band for OSTo was detected (arrow), suggesting a mature, glycosylated form of OSTa

(B).
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The mature form of OSTa is glycosylated when co-transfected with OST(, but this is not necessary for plasma
membrane localization. COS7 cells were treated with 0.5 pg.ml of tunicamycin or vehicle at the time of transfection and
cells were cultured for an additional 48 hrs. (A) Proteins were separated by PAGE, transferred to PYDF membrane, and OST
subunits were detected with anti-FLAG and anti-Myc antibodies. The two higher molecular weight bands (arrows) are not
detectable after inhibition of glycosylation with tunicamycin. (B) The two higher molecular weight bands (m and p) are sensitive
to digestion with PNGase F, but not Endo H, indicating that they contain complex oligosaccharides. m = mature, p = precursor,
u = unglycosylated. (C) The lack of glycosylation of OSTa after tunicamycin treatment does not prevent its plasma membrane
localization. Anti-FLAG-green, anti-Myc-red
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Figure 5 (see previous page)

Immunoprecipitation experiments indicate that the intracellular, immature OSTo and OST( are physically
associated. (A) Lysates from COS7 cells transfected with OSTa-FLAG and OST[3-Myc for 48 hrs were subjected to immuno-
precipitation using mouse anti-FLAG agarose beads (left two panels) or rabbit anti-Myc and proteinA/G beads (right two pan-
els). Following PAGE and transfer to PYDF membrane the blots were probed with rabbit antibodies to OSTa. (top left panel)
and OST[ (bottom left panel) or mouse antibodies to FLAG (top right panel) and His (bottom right panel), respectively. As
noted in the Methods, OST-Myc also contains a His tag. Anti-FLAG agarose efficiently removes all OSToa-FLAG from the
lysate (Lys), however, it only co-precipitates a portion of OST(left two panels). Although anti-Myc was rather inefficient in
removal of OST(-Myc from the lysate, it was capable of co-precipitating the immature forms of OSTa(right two panels). The
mature, glycosylated OSTa (arrowhead) was never detected in the precipitate. (B) COS7 cells transfected with OSTa alone,
OST} alone, or both subunits were subjected to metabolic labeling and immunoprecipitation. Twenty-four hours after trans-
fection cells were pulsed for |5 min with 35S-Trans label. Cells were either lysed immediately (0 chase) or chased for 2 hrs (120
chase). Immunoprecipitation was carried out using mouse anti-FLAG agarose beads (left panel) or rabbit anti-Myc and pro-
teinA/G beads (right panel). The left panel shows that the higher molecular weight band (glycosylated form of OSTa) is only
present in cells transfected with both subunits, and only after the 2 hr chase (arrowhead). A time course indicated that it was
detectable after 30 min of chase (data not shown). The ~20 kD OST[ subunit is co-precipitated from these cells (+). In con-
trast, immunoprecipitation of OST[} with anti-Myc antibody resulted in co-precipitation of only the immature form of OSTa
(right panel). The asterick (*) indicates the position where the mature form would have appeared.

IP

anti-OSTu anti-OST[

Lys UB IPIPUBUB IP IP UB Blot
CDCA - + - - + + - - + + *

“WT &EE - 8 os1o

- = --—25
& - .« 20 OSTP

Figure 6

Immunoprecipitation of endogenous protein in HepG2 cells further support the data that co-precipitation
does not occur between the mature forms of OSTo and OSTf. HepG2 cells were treated for 48 hrs with CDCA and
then lysed with 1% Triton X-100 buffer as described in Methods. Cells extracts were subjected to immunoprecipitation using
rabbit anti-OSTa (middle panel) or rabbit anti-OSTf (right panel) and the immunoprecipitates (IP) and the fraction not bound
to the Protein A/G beads (UB) were separated by SDS-PAGE. As a positive control, the cell lysate (Lys) was also subjected to
SDS-PAGE (left panel). Western blot was then performed using the same polyclonal antibodies and a Native IgG kit from
Pierce. In the case of HepG2 cells, only the mature form of OSTa is detected in the lysate. Co-immunoprecipitation of OSTa
and OST does not occur, although the proteins are clearly detectable in the unbound fractions. Lys = lysate; UB = unbound
fraction; IP = immunoprecipitated, bead fraction
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tion of the two subunits (Figure 6A). This is consistent
with the lack of association between the mature, plasma
membrane subunits.

Discussion

The importance of the novel heteromeric, basolateral
transporter, Osto-OstB, in enterohepatic circulation of
bile acids and the homeostasis of bile acid synthesis has
recently been confirmed [5]. Although it is clear that func-
tion of this facilitated transporter requires expression of
both subunits, it is not known whether functional activity
depends upon (1) the acquisition of N-glycosylation of
the alpha subunit, (2) the beta subunit for its ability to
release the alpha subunit from an ER retention signal, or
(3) the physical interaction of the two proteins at the
plasma membrane. The data provided here indicate that
glycosylation of OSTa is not necessary for transporter
localization or function. Furthermore, it shows that the
physical interaction of the two subunits may be transient,
suggesting that association at the plasma membrane may
not be necessary for transporter function.

Glycosylation of a protein is one of the major biosynthetic
functions of the ER and is a common post-translational
modification of membrane proteins. Although the addi-
tion of the "core" oligosaccharide occurs in the ER, further
extensive processing or trimming occurs in the Golgi and
results in what is commonly referred to as the complex or
mature glycoprotein [13]. N-glycosylation is found usu-
ally in the sequences Asn-X-Ser or Asn-X-Thr, where X is
any amino acid [13,14]. Although this consensus motif is
found in the N-terminus of the alpha subunit in the
mouse, rat and skate, it is not present in the human OSTa.
[1]. Instead, the sole asparagine residue in an extracellular
site is in the sequence Asn25-X-Gly in the N-terminus. We
have shown in this study that, despite the lack of tradi-
tional consensus sequence, human OSTa is expressed on
the cell surface as a glycoprotein. Similar to previous
reports [3,4,6,7,15] our data indicate that endogenous
alpha subunit migrates in SDS-PAGE as a single band and
precursor forms are not detected. This suggests that in the
presence of the beta subunit the glycoprotein is efficiently
trafficked through the Golgi. It is only in the over-express-
ing transfected cells that the multiple forms of the alpha
subunit are seen (Figure 3, 4 and 5 this manuscript; [3,6].

The necessity for glycosylation of proteins has been stud-
ied for many years and is largely believed to be important
in proper folding and stabilization of newly synthesized
proteins and in affecting the charge and solubility of the
protein [16,17]. The critical nature of this folding is high-
lighted by the finding that detection of misfolded glyco-
proteins in the ER can result in ER-associated degradation
(ERAD) [18,19]. Our data indicate that the lack of oli-
gosaccharide chain on the alpha subunit does not desig-

http://www.biomedcentral.com/1471-2121/9/57

nate the polypeptide for ERAD. Instead, after tunicamycin
inhibition of glycosylation, the transporter was still traf-
ficked properly to the plasma membrane where it was
fully functional, indicating that interaction between the
alpha and beta subunits is not compromised by the lack
of oligosaccharide. Perhaps because the alpha subunit of
the organic solute transporter has only one asparagine res-
idue in an extracellular domain[1], the affect of the
absence of the carbohydrate on folding is not critical.
Tunicamycin treatment has been used to study glycosyla-
tion of other hepatocyte proteins. The absence of oligosac-
charide did not affect the secretion of transferrin or very
low density lipoprotein[20], but did interfere with the
ability of the apical membrane protein, Mrp2, to be traf-
ficked to the plasma membrane in rat hepatocytes [21].
And recently the N-linked carbohydrates have been
described for the hepatocyte basolateral membrane pro-
tein oatplal and found to be important in the protein's
localization and function [12]. In HepG2 cells it has been
reported that five of eight glycoproteins studied did not
require glycosylation for their trafficking [22]. Mochizuki
et al have shown that rat Bsep requires at least two of its
four N-linked glycans for proper protein stability, intrac-
ellular trafficking and functional activity [23].

Interestingly, we (Figure 5B) and others [5,7] have shown
that the absence of one of the subunits leads to degrada-
tion of the other subunit. Thus, it is the presence and
interaction of the two subunits that are critical to the sta-
bility of the heteromeric, intact transporter, and not the
glycosylation of the alpha subunit. Protein-protein inter-
actions in the ER are known to be critical for many differ-
ent processes, including trafficking and function of
multimeric membrane proteins. The presence of fully
functional oligomeric complexes at the plasma mem-
brane can involve specific ER retention/retrieval
motifs[24,25], anterograde ER export signals [26,27],
interaction with scaffold protein [28-31], and phos-
phoylation [29,32]. The necessity for interaction between
OSTa and OSTP subunits in the ER suggests that physical
association of the two proteins may mask a retention/
retrieval motif or, alternatively, may reveal a forward traf-
ficking motif. The RXR motif is one such retention/
retrieval sequence and it is interesting that both the alpha
and beta subunits contain an RXR-like motif in their C-ter-
minal sequence. It remains to be determined whether this
sequence is important in the localization of the organic
solute transporter.

Our immunoprecipitation data confirm that the OSTa
and OSTP interaction is essential early in the biosynthetic
process, but suggest that it may not be necessary later once
the major protein gets to the plasma membrane. Because
the only way to get OSTa to the plasma membrane is to
co-express the beta subunit, it is impossible to determine
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if the alpha subunit actually requires the beta subunit for
its functional activity. However, the lack of co-precipita-
tion between the mature form of OSTa and the OSTp sub-
unit suggests that this may not be the case. When Li and
colleagues [7] performed similar immunoprecipitations
in HEK293 cells transfected with mouse Osta. and Ostf
constructs, they also saw only a single band after precipi-
tation with anti-Myc. However, they indicate that it is the
mature form of the protein. Given that all data point to
the interaction of the subunits in the ER, one would also
expect to see the immature form precipitated. Similarly, in
mouse ileum Li et al show only one band for Osta on
Western blots and this protein is co-precipitated by an
antibody to Ostf [7]. Although the explanation for these
differences in immunoprecipitation is still unclear, we
cannot discount that it is due to species variability or spe-
cies-specific antibody affinity.

The possible transient nature of the subunit interaction
also appears to be in conflict with immunofluorescent
studies which suggest co-localization of the subunits at
the plasma membrane in transfected cells (Figure 2 and
[8]. However, the finding of a yellow color indicating co-
localization may be due to the close proximity of the two
subunits, not the actual association. Optical microscopes
are unable to resolve two items that are closer together
than 200 nm. Also, we cannot discount the possibility
that, similar to tunicamycin treated cells, some "imma-
ture" protein might be expressed on the plasma mem-
brane, and, thus, be detected by the primary antibodies.
Bimolecular fluorescence complementation has also been
used to study the interaction of the two subunits in
HEK293 cells transfected with mouse Osta and Ostf [7].
These studies clearly show that complementation occurs
between Osta and Ostf and results in plasma membrane
localization. However, the possibility that the interaction
might be transient cannot be assessed because, once the
complementation reaction occurs, it is irreversible.

Conclusion

In conclusion, this study demonstrates that, although
human OSTa is a glycoprotein, the carbohydrate chains
are not necessary for interaction with OSTP or subsequent
exit from the ER. Furthermore, plasma membrane locali-
zation and functional activity of the organic solute trans-
porter does not depend upon N-glycosylation. Interaction
between the two subunits occurs early in the biosynthetic
pathway, but may not be necessary at the plasma mem-
brane.

Abbreviations

CDCA: chenodeoxycholate; Endo H: endoglycosidase H;
ER: endoplasmic reticulum; FXR: farnesoid x receptor;
OST/Ost: organic solute transporter; PNGase F: pep-
tide:N-glycosidase F
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