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Abstract

Background: Aggresomes are juxtanuclear inclusion bodies that have been proposed to
represent a general cellular response to misfolded proteins in mammalian cells. Yet, why
aggresomes are not a pathological characteristic of protein misfolding diseases is unclear. Here, we
investigate if a misfolded protein inevitably forms aggresomes in mammalian cells.

Results: We show that a cytoplasmic form of the prion protein may form aggresomes or dispersed
aggregates in different cell lines. In contrast to aggresomes, the formation of dispersed aggregates
is insensitive to histone deacetylase 6 inhibitors and does not result in cytoskeleton
rearrangements. Modulation of expression levels or proteasome inhibitors does not alter the

formation of dispersed aggregates.

Conclusion: Our results establish that aggresomes are not obligatory products of protein

misfolding in vivo.

Background

The deposition of protein aggregates is a pathological fea-
ture of a large number of diseases targeting the nervous
system and/or peripheral organs. Neurodegenerative dis-
eases include Alzheimer's disease (AD), Parkinson's dis-
ease (PD), Huntington's disease (HD) and related
polyglutamine disorders, amyotrophic lateral sclerosis
(ALS), and prion diseases, [1-3]. Besides the brain, other
organs affected in aggregation disorders include the liver
and/or the lung in alphal-antitrypsin deficiency and
cystic fibrosis, and the heart in familial amyloid cardio-
myopathy [4].

In order to elucidate the relationship between protein
aggregation and cell dysfunction, protein aggregation has
been recapitulated in cultured cells by overexpressing
wild-type or mutant proteins. These proteins are alpha-
synuclein and parkin in PD [5,6], huntingtin in HD [7],
presenilinl and presenilin-binding proteins in AD [8],
polyglutamine-containing proteins in polyglutamine dis-
eases [9], superoxide dismutase in ALS [10], the prion pro-
tein (PrP) in prion diseases [11,12], cystic fibrosis
transmembrane conductance regulator in cystic fibrosis
[13]. These studies have defined several features including
the coalescence of protein deposit at the centrosome, and
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the collapse of intermediate filament vimentin protein
forming a cage around the deposits. Such juxtanuclear
protein deposits were termed aggresomes, and it was orig-
inally proposed that aggresome formation is a general cel-
lular response to the accumulation of misfolded proteins
[13].

There is recent evidence that protein aggregates in animal
models of human neurodegenerative diseases resemble
aggresomes. Mutant superoxide dismutase molecules
form aggresome-like particles in a mouse model of ALS
[10]. Prion-infected mice also produce perinuclear aggre-
somal-like particles [14]. Moreover, it was proposed that
Lewy-bodies formation in PD patients is similar to the for-
mation of aggresomes in cultured cells [15,16]. However,
aggresomes are not a key pathological feature of all neuro-
degenerative diseases in humans, which suggests that they
may not represent a general response to protein misfold-
ing in vivo.

We have previously reported that a cytoplasmic form of
PrP termed CyPrP forms aggresomes in murine N2a and
human embryonic kidney 293 cells [12]. In the present
study, we have characterized the cellular and molecular
response to CyPrP expression in various cells. Our data
indicate that although CyPrP misfolds and produces
insoluble particles in all cell lines tested, aggregates dis-
play two types of molecular morphology. We confirmed
that CyPrP spontaneously forms aggresomes in N2a cells.
By contrast, other cells including Hela, Cos-7, Huh-7 cells
exclusively produce dispersed aggregates which are not
juxtanuclear and are not associated with a cage-like struc-
ture of vimentin. These findings lead us to propose that
cellular management of protein misfolding is complex,
and that aggresomes are not obligatory end-products of
protein misfolding in cells.

Methods

Cell culture, transfections and treatment

Human cervical cancer Hela, embryonic kidney 293,
mammary adenocarcinoma MCF-7, mouse neuroblast-
oma N2a, fibroblasts NIH3T3, and monkey fibroblasts
COS-7 were cultured in Dulbecco's modified Eagle
medium (DMEM) supplemented with 10% FBS. Transfec-
tions were conducted with exponentially growing cells
using Lipofectamine 2000 as described by the manufac-
turer (Invitrogen).

For tetracycline-regulated expression, cells were trans-
fected with pRevTet-On (Invitrogen) and selected with
200 pg/ml G418 (Sigma) to obtain individual clones.
Selected clones were propagated and transfected with
PRevIRE-CyPrPEGFP, Cells were then tested for their tetra-
cycline-regulated CyPrPEGFP expression by western blot-
ting. For inhibition of histone deacetylase, cells were
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transfected with CyPrPEGFP and incubated for 24 h in the
presence of 5 uM scriptaid or its inactive structural analog
nullscript (BioMol), or in the presence of 5 uM tubacin or
its inactive structural analog (kindly provided by Dr Ralph
Mazitschek, Broad Institute, Cambridge, MA, USA).

Plasmid constructs and antibodies

Cloning of CyPrPEGIP, a form of PrP without N-terminal
secretion and C-terminal glycosylphosphatidylinositol
anchor signal peptides was described previously [12].
CyPrPPsRed2 was obtained from PrPPsRed2 [12], by deleting
the N- and C-terminal signal peptides. DsRed2, like EGFP,
was introduced in the natural Smal restriction site of
human gene encoding PrP, Prnp, at bp113 (amino-acid
38). To construct CyPrPmOrange, mQOrange was amplified as
a Smal fragment from pREST-BmOrange kindly provided
by Dr Roger Tsien (University of California San Diego,
CA, USA). The PCR product was introduced in the natural
Smal restriction site of Prnp. A clone containing mOrange
in the right orientation was selected. CyPrP124stopmOrange
was obtained by inserting the PCR product in the Smal
restriction site of CyPrP124stop [12]. For tetracycline-reg-
ulated expression of CyPrPEGFP, CyPrPEGFP was cloned
between the BamH1 and HindlIlII restriction sites of pRev-
TRE (Invitrogen). All clones were sequenced and their
expression verified by western blot analysis.

The construct encoding GFP-250 was kindly provided by
Dr Elisabeth Sztul (University of Alabama at Birmingham,
AL USA).

Monoclonal anti-PrP (clone 3F4), anti-tubulin-alpha
(clone 236-10501), and anti-vimentin (clone V9) anti-
bodies were purchased from Chemicon, Molecular
Probes, and Sigma, respectively.

Biochemical assays

To fractionate protein aggregates on sucrose gradient, cells
from a 10 cm-petri dish were harvested, washed twice
with ice-cold PBS, and resuspended in 2 ml hypotonic
fractionation buffer (KCl 10 mM; B-mercaptoethanol 1
mM; MgCl2 1.5 mM; Hepes 10 mM, pH7.9). Cells were
mechanically broken with 20 strokes in a Dounce homog-
enizer. Nuclei and unbroken cells were removed by cen-
trifugation 5 min at 1,500 x g. The supernatant was
centrifuged 5 min at 10,000 x g to pellet the aggregates.
The pellet was resuspended with 0.5 ml fractionation
buffer and layered on top of a continuous 1.2 M-2 M
sucrose gradient in fractionation buffer. After a 2 h centrif-
ugation at 150,000 g in a Beckman SW60 Ti rotor at 4°C,
1 ml fractions were collected and proteins were precipi-
tated with 12% trichloroacetic acid. The resulting pellets
were dissolved in sample buffer, separated by SDS-PAGE
and analyzed by immunoblotting.
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To assay the detergent insolubility of PrP, cells were solu-
bilized in lysis buffer (0.5% sodium deoxycholate, 0.5%
Triton X-100, 150 mM NaCl, and 50 mM Tris-HCI, pH
7.5) supplemented with protease inhibitors(mini-tablets
from Roche). The lysate was clarified by centrifugation at
16,000 x g for 3 min, followed by ultracentrifugation at
186,000 x g for 40 min. The pellet from the second cen-
trifugation, containing detergent-insoluble PrP, was resus-
pended in SDS-PAGE sample buffer. Detergent-soluble
PrP was precipitated from the supernatant by addition of
0.05 volumes of 10% SDS and 4 volumes of methanol at
-20°C. PrP was visualized by SDS-PAGE and Western
blotting using antibody 3F4 and ECL detection [12].

Immunofluorescence and fluorescence in situ hybridization
Cells grown on coverslips were fixed and processed for
immunofluorescence using anti-PrP monoclonal anti-
bodies 3F4 as previously described [12]. For in situ stain-
ing, permeabilized cells were incubated 10 min with 2 x
SSC, and hybridized with 1 nM of an end-labeled bioti-
nylated oligo-dT (50 nucleotide, IDT) overnight at 40°C.
After washing twice with 2 x SSC and once with 0.5 x SSC,
cells were equilibrated in 1 x PBS containing 1 mg/ml
BSA. Cells were incubated with 2 pg/ml Alexa Fluor 633-
labeled strepavidin (Molecular Probes) in 1 x PBS con-
taining 1 mg/ml BSA. After a 1 h incubation, cells were
washed and mounted as previously described [12]. For
fluorescence analysis, cells were examined with an Eclipse
TE2000-E visible/epifluorescence inverted microscope
(Nikon Corporation) equipped with band pass filters for
fluorescence of Hoechst (Ex. D340/40: Em. D420), GFP
(Ex. D450/40: Em. D500/50) and tetramethylrhodamine
isothiocyanate (TRITC) (Ex. D528/25: Em. D590/60)
(Nikon Corporation). Photomicrographs of 1344 x 1024
pixels were captured using a 100 x oil immersion objec-
tive and Orca cooled color digital camera (Hamamatsu
Photonics). Images were processed using NIS Elements
AR software (Nikon Corporation). Within the same fig-
ure, all pictures were taken with identical exposure time
except in figure 3.

Metabolic labelling

106 cells were transfected either with the empty vector,
EGFP or CyPrPEGF? and incubated 24 hours at 37°C. Cells
were washed twice with PBS and incubated 20 minutes in
starvation media (DMEM without methionine and
cysteine, Gibco). Cells were then pulsed with 25 pCi/ml
35§ labelling mix (Easy Tag Express protein labelling mix,
NEG772, Perkin-Elmer) for 1 h at 37°C. In control exper-
iments, the translation inhibitor cycloheximide was
added at 30 pg/ml prior to starvation. After labelling, cells
were washed twice with PBS, scraped, collected in 1 ml
PBS and centrifuged 5 minutes at 5000 rpm at 4 °C. Pellets
were lysed with 100 pl of buffer B [10 mM Tris pH 8.0,
100 mM NaCl, 0,5% Nonidet-P40, 0,5% Sodium deoxy-
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cholate and 1 mini EDTA-free protease inhibitor tablet
(Roche) per 10 ml]. Proteins were dosed with BCA protein
assay (Pierce) and 50 pg of total proteins were loaded on
10% polyacrylamide denaturing gels. Gels were then
exposed 24 hrs to a Phosphor screen (GE Healthcare) and
scanned on a Storm 860 Imager (Molecular Dynamics).

Results and discussion

To test if aggresomes formation is a general cellular
response to protein misfolding, different cells were trans-
fected with a construct encoding a cytoplasmic form of
prion protein genetically fused to EGFP, termed CyPr-
PEGEP - As previously described, CyPrPEGIP formed aggre-
somes in mouse neuroblastoma N2a cells (Fig. 1A) [12].
In contrast, CyPrPEGF? produced dispersed aggregates in
other cells, including Hela, COS-7, Huh-7, MCF-7, and
NIH3T3 (Fig. 1A; not shown). We compared the detergent
solubility of CyPrPECI? in N2a and Hela cells (Fig. 1B).
After ultracentrifugation of detergent lysates, CyPrPEGIP
was largely insoluble, with more than 80% of the protein
found in the pellet of N2a and Hela lysates. The difference
of density of both types of aggregates was analysed in a
sucrose gradient. Aggresomes were detected in fractions 5
to 8, whilst dispersed aggregates were present in fraction 5
(Fig. 1C).

It was of interest to test the generality of these findings
with another aggresome-forming protein. To address this
point, we expressed a cytosolic chimera termed GFP-250.
This chimeric polypeptide composed of the entire soluble
protein GFP fused at its COOH terminus to a 250-amino
acid fragment of the cytosolic protein, p115, has been
used to determine the dynamics of aggresomes formation
[17]. Similar to CyPrPEGFP, GFP-250 formed aggresomes
in N2a cells and dispersed aggregates in Hela, COS-7, and
Huh-7 cells (Fig. 1A). The solubility of GFP-250 was inde-
pendent of the formation of aggresomes or dispersed
aggregates, and the protein was largely insoluble in N2a or
Hela cells (Fig. 1B). Like CyPrPEGFP, GFP-250 aggresomes
and dispersed aggregates also displayed differences of
density in a sucrose gradient (Fig. 1C).

We determined the proportion of aggresomes and dis-
persed aggregates 24 h after transfection (Fig. 1D). N2a
and 293 cells produced a majority of aggresomes, while
the proportion of dispersed aggregates was largely domi-
nant in Hela and Huh-7 cells. One possibility to explain
that Hela and Huh-7 cells did not produce aggresomes
after 24 h of expression could be that the kinetics of coa-
lescence of individual aggregates at the centrosome are
slower in these cells. To address this question, we deter-
mined the proportion of cells producing aggresomes and
dispersed aggregates different times post-transfection.
After 12 h of transfection, cells produced mostly dispersed
aggregates (Fig. 1E). At 24 h, N2a cells mainly produced
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Characterization of two types of CyPrPEGFP aggregates in different cells. (A) The cellular localization of CyPrPEGFP
and GFP-250 was visualized after 24 h of expression in N2a, Hela, Cos7, and Huh-7 cells. Nuclei were stained with Hoechst
(blue). Green and blue channels are shown merged. (B) Western blot of CyPrPEGFP and GFP-250 in 100 pg of protein extract
from detergent-soluble (Sup.) and -insoluble (Pellet) fractions of N2a and Hela cells. The percentage of protein in the superna-
tant and pellet indicated below each blot was measured by densitometric analysis, and represents the mean and S.D. of three
independent experiments. (C) Western blot of CyPrPEGFP and GFP-250 in different fractions of a 1.2 to 2 M sucrose gradient
loaded with lysates from N2a or Hela cells. This experiment is representative of two independent experiments. (D) The per-
centage of cells displaying aggresomes (black columns) or dispersed aggregates (white columns) was calculated in N2a,
HEK?293, Hela, and Huh-7 cells 24 h post-transfection. (E) The percentage of N2a (black columns) and Hela (white columns)
cells displaying aggresomes or dispersed aggregates was calculated different times post-transfection with CyPrPEGFP or GFP-
250. (D, E) Data represent the mean and S.D. of three independent experiments. More than 200 cells were counted for each

condition.

aggresomes, indicating that dispersed aggregates had coa-
lesced at the centrosome (Fig. 1E). In contrast, over 80%
of Hela cells displayed dispersed aggregates even 96 h
post-transfection (Fig. 1E). Inhibiting proteasomes accel-
erate the formation of perinuclear aggresomes [14]. Yet,
two proteasome inhibitors, epoxomycin and MG132, did
not induce the coalescence of dispersed aggregates in a
perinuclear aggresome (not shown). From these data, we
conclude that end-products of misfolded proteins are
aggresomes in N2a cells, and dispersed aggregates in Hela

cells. Since similar results were obtained using CyPrPEGFP
and GFP-250, the following experiments were carried out
with CyPrPEGFP,

The next experiments were designed to determine whether
dispersed aggregates may represent independent aggreso-
mal particles. The microtubule-associated histone
deacetylase6 (HDACG6) regulates the formation of aggre-
somes by recruiting misfolded proteins to dynein motors
on microtubules, and inhibition or down-regulation of
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HDACSG prevents the assembly of aggresomes [18]. There-
fore, it was important to test the effect of HDAC6 inhibi-
tors on the assembly of dispersed aggregates. Tubacin and
scriptaid, two specific HDAC6 inhibitors [19,20], effi-
ciently prevented the formation of aggresomes in N2a
cells (Fig. 2A). Inactive structural analogs of tubacin and
scriptaid, niltubacin and nullscript, respectively had no
effect (not shown). In Hela cells, both tubacin and scrip-
taid did not alter the formation of dispersed aggregates
(Fig. 2A). We concluded that HDACG is not involved in
the formation of dispersed aggregates. Aggresome forma-
tion requires an intact microtubule network [13]. The
absence of CyPrPEGIP aggresomes in Hela cells may result
from a different organization of the microtubule network
in these cells. Alternatively, the formation of dispersed
aggregates may be independent from microtubules. This
second hypothesis is supported by our previous observa-
tion that the microtubule-associated HDAC6 is not
involved in the assembly of dispersed aggregates (Fig 2A).

A. Control

Tubacin

Scriptaid Nocodazole

Merge

EGFP
B. Vimentin CyPrP

Figure 2

The formation of dispersed aggregates is independ-
ent of deacetylase HDACé6, microtubules, and inter-
mediate filament vimentin. (A) The cellular localization
of aggregates was determined in N2a and Hela cells trans-
fected with CyPrPEGFP for 24 h in the absence (control) or in
the presence of 5 uM tubacin, 5 uM scriptaid, or 5 UM noco-
dazole. Nuclei were stained with Hoechst (blue). (B) Immun-
ofluorescence analysis of vimentin (red) in N2a and Hela cells
transiently transfected with CyPrPEGFP, Nuclei were stained
with Hoechst (blue). Red (left panel) and green (middle
panel) channels are shown separately, and merged with blue
channel (right panel).
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Thus, in a second set of experiments, we evaluated the
effect of the microtubule-depolymerising agent nocoda-
zole. Nocodazole did not prevent the formation of dis-
persed aggregates (Fig. 2A). In a control experiment, we
ascertained that nocodazole prevented the assembly of
aggresomes in N2a cells as previously described (Fig 2A)
[12]. This result demonstrates that the formation of dis-
persed aggregates does not require an intact microtubule
network. In a third set of experiments, we determined the
distribution of intermediate filament vimentin protein
which forms a cage surrounding aggresomes [13]. The
concentration of vimentin filaments around CyPrPEGP
aggresomes was confirmed in N2a cells (Fig. 2B). In sharp
contrast, the distribution of vimentin remained
unchanged in Hela cells (Fig. 2B). All together, these
results indicate that dispersed aggregates are not small
independent aggresomal particles.

We tested if differences in expression levels could explain
the formation of aggresomes or dispersed aggregates. N2a
and Hela cells were transfected with tetracycline-regulated
expression vectors. In this experimental paradigm, level of
CyPrPEGFP is modulated by adding to the cells increasing
concentrations of tetracycline. Even at very low levels of
expression CyPrPEGFP formed aggresomes in N2a cells
(Fig. 3). The formation of dispersed aggregates in Hela
cells was also independent of CyPrPEGFP expression levels

(Fig. 3).

Since the size and location of CyPrPEGIP aggregates in N2a
and Hela cells is different, one could suggest that the

Tetracycline

(ng/ml) 50 200 1000
h i i
- i i
Figure 3

The assembly of aggresomes or dispersed aggregates
is independent of the level of expression of CyPr-
PEGFP_Aggregates were visualized by fluorescence 24 h after
addition of different concentrations of tetracycline in the cul-
ture medium of N2a and Hela cells. From left to right, expo-
sure times for the green channel are 850 ms, 400 ms, and 60
ms. Insets represents western blot analysis of CyPrPEGFP (top
band) or tubulin to check for equal loading (bottom band).
Results are representative of 3 independent experiments.
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molecular assembly of proteins inside these aggregates is
also different. To test this hypothesis, we took an
approach based on monomeric and oligomeric fluores-
cent proteins. The EGFP moiety fused to CyPrP is fluores-
cent, indicating that structural constraints on individual
CyPrPEGFP molecules within aggregates are limited and
that EGFP is correctly folded. However, more constraints
may be imposed on the arrangement of molecules inside
the aggregates. Therefore, we reasoned that CyPrP fused to
an obligate oligomeric fluorescent protein may not neces-
sarily produce fluorescent aggresomes and/or dispersed
aggregates. We used DsRed2, an obligate tetramer fluores-
cent protein [21]. Surprisingly, CyPrPPsRed2 did not form
fluorescent aggregates neither in N2a cells, nor in Hela
cells (Fig. 4A). This result indicated that DsRed2 cannot
form tetramers when fused to CyPrP. We performed sev-
eral control experiments to validate this result. First,
CyPrPDsRed2 gooregates were detected by immunofluores-
cence, indicating that DsRed2 does not inhibit the aggre-
gation of CyPrP (Fig. 4A). Second, we expressed
CyPrPDsRed2124stop, a cytoplasmic form of PrP unable to

DsRed2 DsRed2
A. CyPrP e B. cyPrP124stop e
Direct Immuno- Direct
fluorescence fluorescence fluorescence

a . .
- . - N

mOrange

Hela

Figure 4

Oligomeric DsRed2 does not fluoresce when geneti-
cally fused to CyPrP. (A) Direct fluorescence or immun-
ofluorescence (3F4 anti-PrP antibodies, green) of N2a and
Hela cells expressing CyPrPPsRed2 Nuclei were stained with
Hoechst (blue). Blue and red channels are shown merged. (B,
C) Direct fluorescence of N2a and Hela cells expressing
CyPrP124stopPsRed2 (B) or CyPrPmOrange (C). Nuclei were
stained with Hoechst (blue). Blue and red channels are
shown merged.
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form aggregates [12]. CyPrPPsRed2]124stop produced dif-
fuse red fluorescence in the cytoplasm (Fig. 4B), indicat-
ing that DsRed2 fused to a cytoplasmic soluble form of
PrP is able to form fluorescent tetramers. Third, we engi-
neered a fusion protein between CyPrP and mOrange, a
fluorescent monomeric version of DsRed2 [22]. N2a and
Hela cells expressing CyPrPmOrange displayed fluorescent
aggregates (Fig. 4C). All together, these data indicate that
the arrangement of CyPrP molecules in aggresomes or dis-
persed aggregates is such that CyPrPPsRed2 cannot assem-
ble into fluorescent tetramers. Furthermore, the molecular
assembly of CyPrP is likely similar in both aggresomes
and dispersed aggregates.

Besides structural differences between aggresomes and
dispersed aggregates, it was of interest to test for func-
tional dissimilarities. CyPrP aggresomes induce the aggre-
gation of poly(A+) RNA, resulting in the shutoff of protein
translation [23]. We investigated whether dispersed CyPrP
aggregates in Hela cells also induce the aggregation of
poly(A)* RNA and a decrease in protein synthesis. In
untransfected cells, poly(A)* RNA displayed a punctuate
and diffuse staining and was distributed between the
nucleus and the cytoplasm of N2a and Hela cells (Fig.
5A). In cells expressing CyPrPEGI?, we observed the aggre-
gation of poly(A)*-RNA in N2a cells, whilst the distribu-
tion of poly(A)*-RNA remained unchanged in Hela cells
(Fig. 5A). Figure 5B shows that CyPrPEGI? expression
largely reduced levels of protein translation compared to
mock-transfected cells or cells expressing the control cyto-
plasmic EGFP protein in N2a cells (Fig. 5B). In contrast,
there was no decrease in protein translation in Hela cells
expressing CyPrPEGFP (Fig. 5B). In control experiments,
protein synthesis was inhibited with cycloheximide. These
results indicate that aggresomes and dispersed aggregates
have different impacts on the physiology of the cells.

Protein aggregation is a major characteristic of most neu-
rodegenerative diseases [2,3]. In order to elucidate the
relationship between protein aggregation and cell dys-
function, in vitro models using recombinant proteins
have been developed. The reconstitution of protein aggre-
gation in cultured cells has led to the proposition that
aggresomes are a general response to protein misfolding
[13]. In this report, we show that CyPrP may either form
aggresomes or dispersed aggregates independently of pro-
tein levels and of proteasomal activity. This result is signif-
icant since it demonstrates that aggresome is not an
obligatory final product of protein misfolding, and it may
explain in part why aggresome is not a conspicuous path-
ological feature of all neurodegenerative diseases in
humans.

Several lines of evidence indicate that the mechanisms

involved in the assembly of cytoplasmic protein aggre-
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In contrast to aggresomes, dispersed aggregates of
CyPrPEGFP do not affect the localization of poly(A)*-
RNA or protein translation. (A) N2a and Hela cells were
transiently transfected with CyPrPEGFP, After 24 h, cells were
fixed, permeabilized, and processed for in situ hybridization
to detect poly(A)* RNA (Red), and analysed by fluorescence
microscopy. Asterisks indicate transfected cells. (B) Total
protein production was measured by analyzing newly synthe-
sized proteins in N2a and Hela cells transfected with empty
vector, EGFP, or CyPrPEGFP, as indicated. Cells were labelled
with 25 nCi/ml 35S labelling mix in methionine (Met)- and
cysteine (Cys)-deficient medium. Where indicated, medium
contained 30 pg/ml cycloheximide (CHX). Equal amounts of
proteins were separated by 10% SDS-PAGE and radioactivity
signals were determined with a phosphorimager. The posi-
tion of the molecular mass markers is indicated on the right.

gates are more complex than a simple accumulation of
misfolded proteins. First, the observation that CyPrP does
not form aggresomes in some cell lines, including Cos-7,
Hela, and Huh-7 may indicate that such cells are not able
to assemble aggresomes. Yet, Cos-7 has been used as a cell
model to investigate the dynamics of aggresome forma-
tion [24]. Similarly, several proteins are able to form
aggresomes in Hela and Huh-7 cells [25-27]. Therefore, all
cells probably possess the molecular machinery to form
aggresomes. However, CyPrPEGI? does not accumulate in
an aggresome in all cells. Second, in contrast to mono-

http://www.biomedcentral.com/1471-2121/9/59

meric EGFP and mOrange fluorescent proteins, the obli-
gate tetrameric DsRed2 protein does not produce
fluorescence when fused to CyPrP. This observation sug-
gests that structural constraints imposed on individual
molecules within aggregates are important and that the
arrangement of protein molecules may not be random.
Third, in contrast to other proteins or other mutant forms
of PrP, the formation of CyPrP aggresomes is independent
of expression levels and proteasome inhibition [11,13].
Furthermore, proteasome inhibition does not result in the
conversion of dispersed aggregates into aggresomes.
Forth, by co-expressing two unrelated misfolded proteins,
it was observed that nonspecific co-aggregation between
hydrophobic proteins does not occur and that protein
aggregation is highly specific [28].

Conclusion

Our data using HDACG6 inhibitors and nocodazole indi-
cate that dispersed aggregates do not require the microtu-
bules network to assemble. A possible interpretation of
these observations is that dispersed aggregates represent
intermediate particles in an incomplete aggresomal path-
way in Cos-7, Hela, and Huh-7 cells. Why dispersed aggre-
gates are not transported to and accumulated at the
centrosome in these cells remains to be determined.
Another interpretation is that dispersed aggregates form
through a novel pathway independent from the aggreso-
mal pathway.

Consequently, there is accumulating evidence that pro-
tein aggregation in vivo cannot be considered to result
from the simple coalescence of misfolded proteins, driven
by interactions between solvent-exposed hydrophobic
surfaces that are normally buried. The elucidation of the
mechanisms governing protein aggregation, assembly and
cellular localization of aggregates will help understanding
aggregation diseases including a majority of neurodegen-
erative disorders.

Abbreviations
CyPrPEGFP; cytoplasmic prion protein genetically fused to
EGFP; HDACG6: histone deacetylase 6.
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