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Mechanically tuned 3 dimensional @
hydrogels support human mammary
fibroblast growth and viability
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Abstract

Background: Carcinoma associated fibroblasts (CAFs or myofibroblasts) are activated fibroblasts which participate
in breast tumor growth, angiogenesis, invasion, metastasis and therapy resistance. As such, recent efforts have been
directed toward understanding the factors responsible for activation of the phenotype. In this study, we have
investigated how changes in the mechanical stiffness of a 3D hydrogel alter the behavior and myofibroblast-like
properties of human mammary fibroblasts (HMFs).

Results: Here, we utilized microbial transglutaminase (mTG) to mechanically tune the stiffness of gelatin hydrogels
and used rheology to show that increasing concentrations mTG resulted in hydrogels with greater elastic moduli
(G). Upon encapsulation of HMFs in 200 (compliant), 300 (moderate) and 1100 Pa (stiff) mTG hydrogels, it was
found that the HMFs remained viable and proliferated over the 7 day culture period. Specifically, rates of proliferation
were greatest for HVIFs in moderate hydrogels. Regarding morphology, HMFs in compliant and moderate hydrogels
exhibited a spindle-like morphology while HMFs in stiff hydrogels exhibited a rounded morphology with several large
cellular protrusions. Quantification of cell morphology revealed that HMFs cultured in all mTG hydrogels overall
assumed a more elongated phenotype over time in culture; however, few significant differences in morphology were
observed between HMFs in each of the hydrogel conditions. To determine whether matrix stiffness upregulated
expression of ECM and myofibroblast markers, western blot was performed on HMFs in compliant, moderate and stiff
hydrogels. It was found that ECM and myofibroblast proteins varied in expression during both the culture period and
according to matrix stiffness with no clear correlation between matrix stiffness and a myofibroblast phenotype. Finally,
TGF-B levels were quantified in the conditioned media from HMFs in compliant, moderate and stiff hydrogels. TGF-3
was significantly greater for HVIFs encapsulated in stiff hydrogels.

Conclusions: Overall, these results show that while HMFs are viable and proliferate in mTG hydrogels, increasing matrix
stiffness of mTG gelatin hydrogels doesn't support a robust myofibroblast phenotype from HMFs. These results have
important implications for further understanding how modulating 3D matrix stiffness affects fibroblast morphology and
activation into a myofibroblast phenotype.
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Background
Breast cancer is one of the leading causes of cancer-
related deaths among women worldwide. Albeit dismal,
the mortality rate of breast cancer has diminished due to
the availability of treatments including total or partial re-
moval of the breast, chemotherapy and radiation ther-
apy, as well as endocrine and targeted therapies. Despite
these options, the preponderance of recurring cancer
and metastasis still remain [1]. While the growth and
metastatic potential of breast cancer is dependent on a
number of factors, the tumor microenvironment which
includes fibroblasts, immune cells, endothelial cells and
the extracellular matrix (ECM), have been reported to
play a role in these tumor cell behaviors [2]. Of particu-
lar interest is the role of activated fibroblasts, referred to
as myofibroblasts or cancer associated fibroblasts
(CAFs), in breast tumor progression and metastasis.

Myofibroblasts are activated fibroblasts which have
known roles in wound healing, tissue morphogenesis, fi-
brotic diseases and tumorigenesis [3—5]. First described
in granulation tissues, myofibroblasts are highly con-
tractile and accordingly express alpha smooth muscle
actin (a-SMA) in actin stress fibers [6]. Additionally,
myofibroblasts secrete several growth factors and cyto-
kines of which transforming growth factor beta
(TGE-B1) is the most well-known [4]. Furthermore,
myofibroblasts contribute to the desmoplastic reaction, a
feature of breast carcinomas [7], as a result of their in-
creased expression and deposition of a number of ECM
proteins [8]. With regard to a role in tumorigenesis,
these activated stromal cells are termed carcinoma asso-
ciated fibroblasts (CAFs). Similar to myofibroblasts,
CAFs exhibit increased contractile capabilities and
marked up-regulation of a-SMA [5]. CAFs have also
been reported to express the smooth muscle marker des-
min and the cell surface glycoprotein fibroblast activa-
tion protein (FAP) [5, 9]. In addition, CAFs have been
documented to secrete several growth factors including
TGEF-B1 [10, 11], and stromal derived factor 1 (SDF1)
[12] amongst others and have further been reported to
remodel the ECM as a result of their deposition of new
ECM proteins and expression of matrix degrading en-
zymes such as matrix metalloproteinases (MMPs).
Within breast tumors, CAFs have been reported to com-
prise up to 80% of the fibroblasts within the tumor
microenvironment [13]. Given the prevalence of these
cells in breast tumors, there is much interest devoted to
better understanding the factors which not only drive
the acquisition of the CAF phenotype but how these
CAFs contribute to aberrant epithelial cell behavior and
breast tumor progression.

One mechanism responsible for the conversion of fi-
broblasts into myofibroblasts or CAFs is matrix stiffness
or increased tissue rigidity [14-16]. The altered
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mechanical properties of tissues are in large part a result
of changes in the architecture of the ECM in which in-
creased deposition and aberrant cross-linking of matrix
proteins accompanies pathologic conditions such as
breast cancer. In 2D cultures, matrix stiffness has been
shown to promote the transition of non-activated fibro-
blasts to myofibroblasts [17]. For example, Peyton et al.
[18] cultured smooth muscle cells atop mechanically
tuned poly(ethylene) glycol (PEG) hydrogels functional-
ized with cell adhesive binding sites. Matrix stiffness
combined with different cell adhesive sites promoted cell
spreading, proliferation and focal adhesions and F-actin
fiber formation, properties which are indicative of an ac-
tivated fibroblast phenotype [18]. Similarly, Li et al. [15]
demonstrated that portal fibroblasts differentiated to
myofibroblasts following culture atop mechanically stiff
polyacrylamide gels. More recently, Liu et al. [19] re-
ported that lung fibroblasts cultured atop mechanically
tuned polyacrylamide gels exhibited enhanced prolifera-
tion and mRNA expression of collagens I and III with
increasing matrix stiffness [19]. While these and other
results clearly point to a role for matrix stiffness in the
differentiation of fibroblasts to myofibroblasts in 2D, fur-
ther analysis of this phenomenon in 3D is necessary.

Increasingly, the use of 3D culture approaches have
become desirable as these systems better replicate the
in-vivo environment and as a result, provide a platform
from which changes in cell behavior may be more accur-
ately addressed. With regard to a role for mechanical
stiffness in the activation of a myofibroblast phenotype
in 3D cultured cells, Galie et al. [20] reported that low
serum concentration in cooperation with increased
matrix stiffness of collagen gels promoted the myofibro-
blast transition of cardiac fibroblasts. In addition,
Karamichos et al. [21] utilized mechanically constrained,
partially constrained and unconstrained collagen gels to
show that corneal fibroblasts seeded in constrained
matrices exhibited enhanced alignment, spreading and
contractile forces, properties associated with a myofibro-
blast phenotype [6]. Indeed, these studies indicate that
the mechanical properties of 3D hydrogels may not only
be tuned, but exploited to investigate cell behavior.

In the present study, we have utilized a gelatin based
hydrogel to investigate the role of mechanical stiffness
on the acquisition of a myofibroblast phenotype in 3D
encapsulated HMFs. Gelatin, a natural polymer pro-
duced via collagen hydrolysis, is an ideal scaffold because
of its biocompatibility, ease with which to adjust its
mechanical properties [22], and its derivation from colla-
gen, a principal component of the interstitial matrix [23]
and of breast tissue [24]. These characteristics combined
not only make gelatin an optimal cellular scaffold for
HMF growth, but for growth of several types of mam-
malian cells. To manipulate the mechanical stiffness of
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the gelatin hydrogel, microbial transglutaminase (mTG)
was used. Derived from Streptoverticillium mobaraense,
mTG is desirable as the enzyme is stable over a wide
temperature and pH range and crosslinks lysine and glu-
tamine residues in collagen and gelatin hydrogels, enab-
ling fine-tuned control over the mechanical strength of
the hydrogel [25]. Previous reports have shown that fi-
broblasts are viable and proliferate following encapsula-
tion in mTG cross-linked hydrogels [26]. Additionally,
studies by Yung et al. [25] found that mTG cross-linked
gelatin hydrogels supported the growth of HEK 293 hu-
man embryonic kidney cells.

In an effort to better understand the role of 3D matrix
stiffness on HMF properties, we utilized mTG to tune
the mechanical stiffness of gelatin hydrogels and
assessed how differences in matrix stiffness influenced
HMEF acquisition of a myofibroblast phenotype. Here, we
report that a range of concentrations of mTG yielded
hydrogels with various mechanical stiffnesses and further
demonstrated that HMFs encapsulated in compliant,
moderate and stiff hydrogels were viable and proliferated
during the culture period. Furthermore, markers of myo-
fibroblasts were assessed and varied in expression during
both the culture period and according to matrix stiff-
ness. Overall, these results have important implications
for understanding how 3D matrix stiffness affects fibro-
blast properties and acquisition of myofibroblast-like
features, findings which have important implications for
understanding the role of tumor stiffness and its effects
on cell behavior.

Methods
Reagents and antibodies
Reagents used include microbial transglutaminase

(ACTIVA TI; Ajinomoto, Tokyo, Japan) and porcine gel-
atin (Sigma, Allentown, PA). The dilutions and suppliers
for the antibodies used are provided in Table 1.

Isolation of microbial transglutaminase
Microbial transglutaminase (mTG) was purified based
on methods described by Kuwahara et al. [27]. A 5%

Table 1 Antibodies. Dilutions and manufacturer information for
antibodies used for western blot experiments

Reagents Manufacturer Dilution
Rabbit anti-human a-SMA Abcam 1:150-300
Mouse anti-human vimentin Abcam 1:500
Rabbit anti-human fibronectin Sigma 1:400
Rabbit anti-human collagen Gift: Larry Fisher, NIH 1:2000
Rabbit anti-human collagen IV Abcam 1:200-250
Rabbit anti-human laminin Abcam 1:400
Rabbit anti-human GAPDH Cell Signal Technologies 1:2000
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solution of mTG was made in 50 ml of Buffer A
(20 mM phosphate and 2 mM EDTA, pH 6.0). Initially,
2.5 ml of Sepharose FF beads (GE Healthcare, Atlanta,
GA) were allowed to settle out of solution. The super-
natant was removed and the beads were washed with 5
column volumes of Buffer A. The mTG solution was
added to the pre-equilibrated Sepharose beads and incu-
bated overnight at 4 °C at constant shaking. The protein
and bead mixture was loaded into a column and washed
4x with Buffer A. A volume of 5 ml of 200 mM NaCl
prepared in Buffer A was added to the column to collect
fractions of mTG. The NaCl was removed and the pro-
tein was concentrated using 10 kDa ultracentrifugal spin
columns. Purity of the mTG was examined using a
Coomassie stain. UV spectrometry was used to deter-
mine protein concentration. The mTG was stored at
-80 °C for later use.

Preparation of mTG-treated 3D Gelatin Hydrogels

A 7.5% solution of gelatin was prepared in 1X PBS. Once
dissolved, the gelatin solution was heated at 37 °C for
1-3 h to liquefy then sterile filtered using a 50 ml steri-
flip equipped with a 0.22 uM filter. The filtered gelatin
was stored at 4 °C. To cross-link gelatin, 7.5% gelatin
was mixed with various concentrations of mTG
(20-60 pg/ml) and plated in 24 well plates. mTG treated
gelatin hydrogels were allowed to polymerize at 37 °C
for 30—45 min.

Thermal stability of mTG Hydrogels

To evaluate the thermal stability of mTG gelatin, 7.5% gel-
atin was cross-linked at 37 °C with the 20, 30 and 60 pg/
mL of mTG. Upon cross-linking, the hydrogels were
weighed to obtain the initial weight then incubated in
1 mL of 1X PBS at 37 °C. At each hour for a total of 5 h,
the PBS was carefully removed from the gels and the gels
were weighed. After weighing, the PBS was added back to
the gels for continued incubation at 37 °C.

Rheology of mTG Hydrogels

Measurements of the elastic moduli (G’) of 20, 30, and
60 pg/mL mTG cross-linked 7.5% gelatin hydrogels were
obtained using a constant strain rheometer with a steel
plate geometry (Ares RFS III Rheometer, TA Instru-
ments). Prior to analyses, mTG hydrogels were allowed
to polymerize at 37 °C for 35-45 min. Following
polymerization, mTG cross-linked hydrogels were incu-
bated overnight in 1X PBS at 37 °C to mimic cell culture
conditions. The next day, the PBS was carefully removed
and the gels were analyzed for differences in the elastic
moduli. The strain was maintained at 10% and the fre-
quency used was 10 Hz. All measurements were
recorded as the stress/strain where stress is the force
(N/m?) applied and strain is the relative deformation of
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the gel in response to the applied force. The measure-
ment of stiffness was recorded in Pascals. Results are re-
ported from duplicate samples for each tested mTG
concentration.

Cell culture

Human mammary fibroblasts (HMFs), an immortalized
fibroblast cell line derived from a reduction mammoplasty,
were obtained from Dr. Parmjit Jat of the University
College London [28]. HMFs were cultured in DMEM
(Thermo-Fisher, Waltham, MA) supplemented with 10%
vol/vol heat inactivated FBS (Thermo-Fisher). Media was
replaced every 2-3 days and cells were passaged after
reaching 80-90% confluency using 0.25% trypsin EDTA
(Sigma). HMFs were maintained at 37 °C in a humidified
atmosphere containing 5% CO,.

mTG treatment of 2D HMFs

To determine whether mTG was toxic to HMFs, HMFs
were treated with several concentrations of mTG, ran-
ging from 6.3 pug/mL to 500 pg/mL. Prior to administer-
ing mTG, 25,000 viable HMFs were plated in a 24 well
plate and allowed to incubate overnight. Cell viability
was determined using the trypan blue exclusion assay.
Analyses were conducted using an automated cell coun-
ter (Thermo-Fisher). The next day, the cells were treated
in triplicate with various concentrations of mTG and
were left to incubate overnight at 37 °C. HMF viability
was measured using a 1:10 dilution of the Alamar Blue
(Thermo-Fisher) reagent. Absorbance readings were
measured at a wavelength of 570 nm using a Synergy
HT spectrophotometer (Biotek, Winooski, VT).

3D HMF encapsulation in Gelatin Hydrogels

To encapsulate HMFs in gelatin gels, 35,000 viable
HMFs were re-suspended in 20 uL of serum-free
DMEM. To this, 250 pL of gelatin containing 20, 30, or
60 pg of mTG was added to the cells. The gel encapsu-
lated cell suspension was added to each of 4-10 wells of
a 24-well plate. After plating, a gelation time of
30-45 min in a 37 °C incubator was given to enable
crosslinking. Upon polymerization, 1 mL of complete
media was added to each gel. The hydrogels were
maintained at 37 °C in a humidified atmosphere con-
taining 5% CO, for varying time points over a 7-day
incubation period.

HMF viability in mTG Hydrogels

The Live/Dead viability assay (Thermo-Fischer) was used
to quantify the percentage of viable HMFs found within
the various mTG cross-linked hydrogels. HMFs were en-
capsulated at a density of 35-50,000 cells/well in gelatin
hydrogels crosslinked with 20, 30 and 60 pg mTG.
Viability was measured at days 1, 3, 5, and 7 post-
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encapsulation. Calcein AM (Thermo-Fisher) and eth-
idium bromide (Thermo Fisher) were used at a concen-
tration of 1 pM each. Both reagents were mixed with
5 ml of pre-warmed 1X PBS and added to cell-
encapsulated gels at a volume of 500 pL. The gels were
incubated in the dark at room temperature for 45 min
prior to imaging. The EVOS microscope (Thermo-
Fisher) was used for imaging live and dead cells. A 10x
objective was used to capture images in the GFP (live),
RFP (dead), and phase channels. Three sets of images
were taken per well at three non-overlapping locations.
Images were analyzed using Image] (NIH) software,
which enabled quantification of live and dead cells. Here,
images representing live and dead cells were converted
to binary images. Viable and nonviable cells were manu-
ally counted in quadrants assigned to each image.

HMF morphology in mTG Hydrogels

To determine changes in morphology of HMFs encapsu-
lated in the various hydrogels, Image] (NIH) was used to
quantify cell circularity. Here, the circularity formula
uses 4m*area/perimeter” to designate a perfectly circular
shape with a value of 1.0 and an elongated shape with a
value of 0.0. To define the borders of a cell, the freehand
polygon tool was used to outline the cell periphery.
Next, “Measure” was selected to obtain the circularity
results. Cells in which borders couldn’t be clearly
defined or were found on the edges weren’t used in
these analyses. Six images were analyzed in each of the
hydrogel conditions and at each time point assessed (e.g.
days 1, 3, 5 and 7). Three to seven cells were analyzed
per image.

HMF proliferation in mTG Hydrogels

HMFs were encapsulated in 7.5% gelatin gels cross-
linked with 20, 30, or 60 pg/ml of mTG as previously
described. Cell proliferation was assessed in triplicate on
days 1, 3, 5, and 7 during the incubation period and was
evaluated using the WST-1 assay (Roche; Mannheim,
Germany) according to the manufacturer’s instructions.
Briefly, the WST reagent was added directly to cell cul-
ture media in a 1:10 dilution. HMF encapsulated gels
were allowed to incubate in WST reagent for 3 h in a
humidified atmosphere at 37 °C and 5% CO,. Results
were evaluated at a wavelength of 450 nm using a
Synergy HT spectrophotometer. These assays were per-
formed twice on triplicate samples for each of the gel
conditions and time points. To account for any influence
on the absorbance reading from the gel itself, the
WST-1 assay was performed on control gels, lacking
HMFs, cross-linked with 20, 30, and 60 pg/ml of mTG.
The absorbance values from control gels were obtained,
averaged, and then subtracted from the absorbance
values of the gels with encapsulated HMFs.



Woods et al. BMC Cell Biology (2017) 18:35

Weight measurements of HMF encapsulated Hydrogels
HMFs were encapsulated at a density of 147,000 cells per
35 mm dish in gelatin hydrogels cross-linked with 20, 30,
or 60 pg of mTG. Following polymerization, 2 ml of
complete media was added to the HMF encapsulated
hydrogels and these were left in the incubator at 37 °C.
After hydrogel swelling (1.5-2 h, time 0) and after 7 days
of growth, the media was carefully removed and the HMF
encapsulated hydrogels were placed in the -80C for 2 h to
overnight then placed in a freeze drier for a period of
3-5 days. Hydrogels were subsequently weighed to deter-
mine whether any weight changes in the hydrogels were
apparent at the end of the culture period.

Enzymatic digestion of HMF encapsulated Hydrogels
HMFs encapsulated in 7.5% gelatin hydrogels cross-
linked with 20, 30, or 60 pg/ml of mTG were subjected
to enzymatic digestion. Analyses were conducted at days
1, 3, 5 and 7 of culture. After removing the media, the
gels were washed 2x with 1X PBS and treated with
0.5 mg/ml collagenase (Sigma-Aldrich) in DMEM
containing a 1:100 dilution of protease inhibitor cocktail
(Sigma-Aldrich). The gels were incubated for
90-105 min at 37 °C in a humidified atmosphere con-
taining 5% CO,. Upon digestion, the contents of each
well were combined and mixed with an equal volume of
DMEM plus 10% EBS. The resulting mixture was centri-
fuged at 4500 RPM for 10 min. The supernatant was
decanted and 300-500 pl of ice cold RIPA buffer,
(150 mM NaCl, 1.0% triton X, 0.1% SDS, 50 mM Tris
(pH 8.0), and 0.5% sodium chlorate) containing a 1:100
dilution of protease inhibitor cocktail was added to the
pellet. The pellet was lysed on ice for 10 min and centri-
fuged at 12000 RPM for 10 min. The lysate was collected
and stored at —80 °C. A DC (Bio-Rad) assay was used ac-
cording to the manufacture’s protocol to measure pro-
tein concentration. Bovine serum albumin (BSA,
Bio-Rad) was used to establish a standard curve.

Western blot

HMFs isolated using collagenase digestion was analyzed
for protein expression using western blot. HMFs were
analyzed from 20, 30 and 60 pg/ml mTG gels at days 1,
3, 5 and 7 of culture. A total concentration of 10-25 pg
of protein was prepared in laemmli buffer (Bio-Rad), and
betamercaptoethanol (Sigma). RIPA buffer was added to
reach a final volume of 30 ul/well. The LiCOR molecular
weight marker (LiCOR, Lincoln, NE) was used as the
ladder. The protein samples were heated at 95 °C for
5 min and loaded into each well of 4-20% tris-glycine
gels (Bio-Rad). The gels were allowed to run for
30—45 min at 200 V. Using the Trans-Blot Turbo Trans-
fer System (Bio-Rad), the proteins were transferred from
the gels to PVDF membranes (Bio-Rad). The membranes

Page 5 of 17

were subsequently blocked in Odyssey blocking buffer
(LiICOR) at room temperature under constant shaking
for 2—-3 h. The membranes were incubated with continu-
ous shaking at 4 °C in the following primary antibodies:
vimentin, a-SMA, fibronectin, collagen I, collagen IV
and GAPDH (Table 1). The membranes were washed 3x
for 15 min in washing buffer containing 0.1% tween 20
in 1X PBS. The membranes were then incubated at
room temperature for 30 min in a 1:10,000 dilution of
anti-mouse and/or anti-rabbit fluorescent secondary
antibodies (LiCOR) at constant shaking. The membranes
were subsequently washed in washing buffer 3x for
15 min at constant shaking and imaged using a 700 nm
channel on the Odyssey CLx fluorescent imager
(LiCOR). To quantify protein expression, the mean grey
intensity of each band was analyzed using Image]. Here,
a region of interest (ROI) was drawn around the largest
band for a given protein within a row. This ROI was
then used to measure the mean grey intensities in the
remaining bands for the same protein. The pixel density
of the protein bands and background was inverted by
subtracting the mean grey values from 255. To
normalize, the inverted density of the proteins of interest
was divided by the averaged inverted density of GAPDH
to obtain a ratio of expression. All proteins were ana-
lyzed from 2 to 4 blots each.

TGF-B analyses

HMFs were encapsulated in 20, 30, 60 pg of mTG gel-
atin hydrogels and incubated for 1, 3, 5, and 7 days, dur-
ing which time the media was not changed. At the end
of each incubation period, conditioned media was col-
lected and spun down at 1200 RPM to remove any cellu-
lar debris. The supernatant was collected and stored at
-80 °C. TGF-B in the conditioned media was evaluated
in triplicate samples and analyzed utilizing the Quanti-
kine ELISA (RnD Systems) according to the instructions
supplied by the manufacturer. The optical density was
then evaluated at wavelengths of 450 nm using a Synergy
HT Spectrophotometer. The control, which was cell cul-
ture media, was analyzed and subtracted from the ex-
perimental samples.

Gel contraction assays

Gel contraction assays were set up as described by Duru
et al. [29]. In brief, HMFs were encapsulated at a density
of 147,000 cells in 1 ml of gelatin cross-linked with either
20, 30 or 60 pg/ml of mTG. The HMF/gelatin-mTG mix-
tures were plated in 35 mM dishes and a total of 3 hydro-
gels per mTG condition were prepared. Following
polymerization, 2 ml of complete media was added to
each hydrogel and these were incubated at 37 °C/5% CO,
for 48 h after which time, the gels were gently released
from the sides of the dish using a sterile pipette tip (time
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0). HMF encapsulated hydrogels were evaluated using a
transilluminator at time 0 (Biorad, Chemidoc XRS) then
visibly observed for changes in diameter during the re-
mainder of the 7 day culture period.

Statistical analyses

Statistical Analysis was performed using Prism from
GraphPad (GraphPad Software, LaJolla, CA). One-way
ANOVA followed by Turkey’s posttest and students
ttests were utilized to analyze statistical significance.
Two-way ANOVA followed by Bonferroni post-test was
used to analyze significance between groups. For
reporting significant difference: *p < 0.05, **p < 0.01, and
*#*p < 0.001. Data are reported +SD.

Results

HMF viability following 2D culture treatment with mTG
Prior to encapsulation of HMFs in mTG crosslinked gel-
atin hydrogels, it was necessary to first determine
whether the enzyme was toxic to HMFs in 2D cultures.
As such, HMFs were treated in 2D with various mTG
concentrations (6.3-500 pg /mL). After 24 h of treat-
ment, the percent cell viability was measured. It was de-
termined that HMFs were viable at most mTG
concentrations tested, suggesting that overall the enzyme
is non-toxic to HMFs (Fig. 1).

Rheology of mTG hydrogels

To determine the mechanical stiffness of mTG cross-
linked gelatin hydrogels, rheology was used to test the
elastic moduli (G’) of hydrogels treated with 20 (compli-
ant), 30 (moderate) and 60 pg/ml (stiff) of mTG. An
overview of the methodology and downstream assays

2D HMFs treated with mTG

150+

% Viability
3

o
i

Fig. 1 HMF responses to mTG in 2D culture. HMFs were treated in
2D with various concentrations of mTG. Up to 50 pg/ml of mTG,
viability wasn't significantly different from control, untreated cells.
p<005 “p<001; " p <0007
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used on HMF encapsulated 3D hydrogels is shown in
Fig. 2a. Prior to testing the elastic moduli, mTG cross-
linked hydrogels were allowed to polymerize for
35-45 min at 37 °C. Following polymerization, the
hydrogels were incubated in 1X PBS at 37 °C overnight
to mimic cell culture conditions. The following day, PBS
was removed from the hydrogels and the elastic moduli
were recorded from duplicate samples for compliant,
moderate and stiff hydrogels. G’ values corresponded to
200 Pa (20 pg/ml mTG), 300 Pa (30 pg/ml mTG) and
1100 Pa (60 pg/ml mTG) (Fig. 2b). These results demon-
strate that with increasing concentrations of mTG, the
elastic moduli of the gelatin hydrogels correspondingly
increases with the most dramatic change observed for
60 pg/ml of mTG.

Thermal stability of mTG hydrogels

Next, the thermal stability of mTG cross-linked hydro-
gels was measured. This factor is important as the
hydrogels will need to support long-term growth of
HMFs. Furthermore, hydrogel degradation not only al-
ters the mechanical properties of the gel, but may
additionally alter its biocompatibility, presumably as a
result of cytotoxic breakdown products. After crosslink-
ing the hydrogels with 20, 30 and 60 pg/mL of mTG,
the initial hydrogel weight was recorded for triplicate
samples. Subsequently, 1 mL of pre-warmed 1X PBS was
added to each of the hydrogels and the hydrogels were
placed in an incubator at 37 °C. At each hour for a total
of 5 h, the weight of the mTG hydrogels was measured
following careful removal of the PBS. The average weight
of the compliant and moderate hydrogels increased
between 1 and 2 h after which time, the weights
remained relatively stable (Fig. 2c). A slight decrease in
weight was observed for the moderate hydrogel between
4 and 5 h of incubation (Fig. 2c). Contrary to results
from compliant and moderate hydrogels, the average
weight for the stiff hydrogels increased between 0 and
1 h, but steadily decreased at each subsequent time
point analyzed (Fig. 2c). These results indicate that while
some loss of hydrogel weight occurred during the ana-
lysis period, there were no significant changes in the
weight of these.

Finally, to determine if the hydrogel weight changed
during the culture period as a result of cell-mediated
degradation, we measured the dry weight of HMF en-
capsulated hydrogels at the beginning of culture fol-
lowing a 1.5-2 h period of hydrogel swelling (time 0)
and at the end of the culture period (day 7). No sig-
nificant changes in hydrogel weight were recorded for
each of the mTG conditions (Fig. 2d), suggesting that
the hydrogels maintain their bulk integrity throughout
the culture period.
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Fig. 2 Hydrogel properties. a Schematic of hydrogel setup and downstream assays. b Rheology was performed on hydrogels cross-linked with 20, 30
and 60 pg/ml mTG. As mTG concentration increased, the elastic modulus (G) of the hydrogels corresponding increased. The most significant change
in G’ is shown for hydrogels cross-linked with 60 pg/ml mTG. ¢ Hydrogels cross-linked with 20, 30 and 60 pg/ml mTG were examined over a 5 h period
for changes in hydrogel weight following incubation with PBS. Hydrogels cross-linked with 20 and 30 ug/ml mTG exhibited increases in hydrogel
weight during the culture period indicative that the gels had swollen during this time frame. Hydrogels cross-linked with 60 ug/ml mTG exhibited a
slight, but not significant decrease in hydrogel weight during the incubation period. d Differences in the dry hydrogel weight were examined for HMF
encapsulated hydrogels at the start of the experiment (time 0) and at the end of the experiment (day 7). Hydrogel weights were similar between time
0 and day 7 measurements for each of the mTG hydrogels. ‘p <0.05; “p <001; “p <0001

HMF morphology in 3D mTG hydrogels

To determine whether increasing 3D mechanical stiff-
ness altered the morphology of HMFs, HMFs encapsu-
lated in compliant, moderate and stiff hydrogels were
evaluated at days 1, 3, 5, and 7 of culture. On day 1,
HMFs within compliant hydrogels appeared more
spindle-like and exhibited a greater degree of spreading
than HMFs in the moderate and stiff hydrogels (Fig. 3a).
By day 3, HMFs in all hydrogel conditions took on mul-
tiple morphologies such as rounded with and without
small projections (stiff hydrogels) as well as spindle-like
with some spreading (compliant and moderate hydro-
gels) (Fig. 3a). HMFs in stiff hydrogels also appeared lar-
ger in size than HMFs in the compliant and moderate
hydrogels at day 3 (Fig. 3a). At day 5, HMFs in the stiff

hydrogels had markedly larger cell bodies than HMFs in
compliant and moderate hydrogels which appeared elon-
gated and spindle-shaped (Fig. 3a). It was on the last day
of culture, day 7, that HMFs in the compliant and mod-
erate hydrogels became confluent and continued to ex-
hibit an elongated, spindle-like morphology (Fig. 3a).
Contrary, HMFs in the stiff hydrogels exhibited a large,
rounded morphology with large cellular protrusions, but
weren’t nearly as confluent as HMFs in the compliant
and moderate hydrogels (Fig. 3a). To quantify differ-
ences in cellular morphology, Image] was used to meas-
ure circularity where O indicates a perfect circle and
values approaching 1 indicate an elongated structure.
Using this tool, it was found that HMFs gradually as-
sumed an elongated morphology during the culture
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Fig. 3 HMF morphology in mTG hydrogels. a HMFs encapsulated in compliant, moderate and stiff hydrogels were examined for differences in
cell morphology during the culture period. At day 1, HMFs in all tested mTG concentrations appeared rounded and started to spread, forming
elongated spindle-like morphologies at day 3. At day 5, HMFs in compliant and moderate hydrogels assumed a more spindle-like morphology
while HMFs in stiff hydrogels appeared to have a larger cell body with thicker cellular protrusions. After 7 days in culture, HMFs in compliant and
moderate hydrogels retained their spindle-like morphology from day 5, but occupied a greater area of the hydrogel. HMFs in stiff mTG hydrogels
still exhibited a large cell body with multiple large cellular protrusions at day 7, an observation similar to that for day 5. b HMF morphology was
quantified based on the circularity where 0 indicates an elongated structures and 1 indicates a perfect circle. Overall, HMFs became more elongated
during the culture period in each of the mTG hydrogels. For stiff hydrogels, HMF morphology didn't change much after day 3 of culture. Comparing
hydrogel conditions, HMFs were more elongated in stiff hydrogels at days 1 and 3, compliant hydrogels at day 5 and moderate hydrogels at day 7.
'p<005 "p<001; " p<0001

A

assumed a more elongated morphology during the cul-
ture period in each of the hydrogel conditions with the

period although these changes weren’t as evident for stiff
hydrogels where patterns of HMFs elongation stayed

relatively consistent between days 3-7 (Fig. 3b). Compar-
ing hydrogel conditions, we found that HMFs in stiff
hydrogels were more elongated at days 1 and 3, HMFs
in compliant hydrogels at day 5 and HMFs in moderate
hydrogels at day 7. Together, these results indicate that
HMFs exhibited a more spindle-like morphology in
compliant and moderate hydrogels. In stiff hydrogels,
HMFs exhibited a more rounded morphology with nu-
merous cellular protrusions. Furthermore, HMFs

exception of HMFs in stiff hydrogels.

To determine whether gelatin hydrogels cross-linked
with higher concentrations of mTG supported cell
growth, HMFs were encapsulated in 7.5% gelatin hydro-
gels treated with 75 and 100 pg of mTG. The morph-
ology of the HMFs didn’t change over the 7 day culture
period and appeared rounded throughout (Fig. 4a). In
comparison to HMFs encapsulated in compliant, moder-
ate and stiff hydrogels, HMF proliferation was
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Fig. 4 HMF morphology and proliferation in 75 and 100 pg/ml mTG hydrogels. a HMFs were encapsulated in 75 and 100 pg/ml mTG hydrogels
and allowed to incubate for 7 days. HMFs displayed a rounded morphology at days 1 and 7 in culture. b HMFs encapsulated in mTG cross-linked
hydrogels were examined for changes in proliferation at day 7 of culture. HMFs in 75 and 100 ug/ml mTG hydrogels exhibited a significant decrease in
proliferation in comparison to HMFs in compliant, moderate and stiff hydrogels. HMFs in the moderate hydrogels exhibited the most significant

significantly reduced in 75 and 100 pg hydrogels at day
7 of culture, suggesting that high concentrations of
mTG do not support growth of 3D encapsulated HMFs
(Fig. 4b).

HMF viability and proliferation in mTG hydrogels

To test viability during the culture period, HMFs encap-
sulated in compliant, moderate and stiff hydrogels were
incubated in a calcein/ethidium bromide solution and
assessed for changes in the number of live/dead cells
using fluorescence microscopy. All analyses were con-
ducted at days 1, 3, 5, and 7 of the culture period. As
shown in Fig. 5, HMFs exhibited a significantly greater
percentage of viable cells in comparison to dead cells in
all tested hydrogel conditions and at each time point
evaluated. These results indicate that HMFs are viable in

3D hydrogels cross-linked with up to 60 pg/ml of mTG.
Representative images from live/dead HMFs for each
tested time point and in each of the hydrogel conditions
are shown in Additional file 1: Figure S1, Additional file 2:
Figure S2 and Additional file 3: Figure S3.

Changes in proliferation of HMFs encapsulated in
compliant, moderate and stiff hydrogels was additionally
evaluated using the WST assay. Similar to viability ana-
lyses, all assessments of HMF proliferation were con-
ducted at days 1, 3, 5 and 7 of the culture period. For
HMFs encapsulated in compliant and moderate hydro-
gels, proliferation steadily and significantly increased
during the culture period (Fig. 5b a, b). HMF prolifera-
tion in stiff hydrogels was significantly increased be-
tween days 1 and 3 but plateaued between days 5 and 7
of culture (Fig. 5b c¢). When comparing proliferation
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Fig. 5 HMF viability and proliferation encapsulated in mTG hydrogels. HMFs encapsulated in compliant, moderate and stiff hydrogels were
assessed for changes in viability and proliferation during the culture period. a Overall, HMFs exhibited significantly greater numbers of live versus
dead cells in all hydrogel conditions and at all time points tested. ba,b During the culture period, the rate of HMF proliferation in compliant and
moderate hydrogels significantly increased. bec The rate of HMF proliferation in stiff hydrogels increased between days 1 and 5, with no appreciable
changes between days 5 and 7. bd Overall, HMFs encapsulated in moderate hydrogels exhibited the most significant changes in proliferation at all
time points tested with the exception of day 3. 'p < 0.05; “p <001; 'p < 0.001

rates for HMFs encapsulated in all hydrogels, it was
found that proliferation was generally greater for HMFs
encapsulated within the moderate hydrogels in compari-
son to those encapsulated within the compliant and stiff
hydrogels (Fig. 5b d). At each time point assessed, with
the exception of day 3, HMF proliferation in the stiff
hydrogels was found to be significantly less than that for
HMFs encapsulated in the compliant and moderate
hydrogels (Fig. 5b d). Combined, these results suggest
that HMFs remain viable and proliferate during the
7 day culture period in each of the tested hydrogel con-
ditions. Additionally, these results show that HMFs en-
capsulated in the stiff hydrogels exhibit an overall lesser
rate of proliferation in comparison to HMFs encapsu-
lated in the compliant and moderate hydrogels.

Myofibroblast expression and function in HMFs
encapsulated in mTG hydrogels

Previous work has shown that markers of myofibroblasts
and ECM proteins are up-regulated in response to
matrix stiffness [30-33]. Since 60 pg of mTG yielded the
stiffest hydrogel, it was expected that myofibroblast and
ECM protein expression would be upregulated during
the culture period in comparison to HMFs in 20 (com-
pliant) and 30 pg (moderate) mTG hydrogels. As such,
in an effort to determine whether matrix stiffness upreg-
ulated the expression of myofibroblast markers in mTG
cross-linked 3D gelatin hydrogels, western blot was uti-
lized to assess the expression of myofibroblast markers

a-SMA and vimentin and ECM proteins collagen I and
IV, laminin and fibronectin in HMFs encapsulated in
compliant, moderate and stiff hydrogels at days 3, 5 and
7 of culture. These ECM proteins were selected as previ-
ous reports have shown that they are upregulated in
myofibroblasts [34-37]. Prior to analyzing changes in
myofibroblast marker expression, it was necessary to
first assess the conditions needed to liberate HMFs from
mTG cross-linked hydrogels. To accomplish this, hydro-
gels with the greatest mechanical stiffness (e.g. 60 pg
mTG) were incubated in 0.5 mg/ml of collagenase.
Changes in the weight of the hydrogels were monitored
over a 3 h period. After 1 h in collagenase, the 60 pg
mTG hydrogels were almost completely digested
(Fig. 6a). As such, a period of 1 h in 0.5 mg/ml collage-
nase was used to liberate HMFs from all mTG cross-
linked hydrogels.

Following isolation of HMFs from hydrogels, western
blot was utilized to analyze markers of myofibroblast
and ECM proteins. Collagen I and vimentin appeared to
be similarly expressed at all time points tested in each of
the hydrogel conditions (Fig. 6b). Quantification of pro-
tein expression though revealed that the 62 kDa band
from collagen I was significantly increased at days 3 and
5 in moderate hydrogels and was similarly expressed in
compliant and stiff hydrogels (Additional file 4: Figure
S4). Vimentin expression was higher in compliant
hydrogels at day 3 and for stiff hydrogels at days 5 and 7
although these results weren't significant (Additional file
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Fig. 6 HMF expression of myofibroblast markers and ECM proteins in mTG
analyzed for expression of myofibroblast markers and ECM proteins. a Collage

abundant in HMFs encapsulated in the moderate and stiff hydrogels with
hydrogels. Fibronectin expression was highest overall at days 5 and 7 for

stiff hydrogels at days 3 (significantly) and day 7 for compliant hydrogels.

5 (significantly) and for stiff hydrogels at day 7. Laminin was negligibly ex
at each time point assessed. Vimentin was significantly increased at day 3

Day 5
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Changes in the weight of the hydrogel were monitored during the incubation period wherein 1 h was shown to be a sufficient length of time for
dissolution of the hydrogel. b Protein lysates from compliant, moderate and stiff hydrogels were subjected to western blot for analysis of myofibroblast
and ECM proteins. a-SMA was most highly expressed in compliant hydrogels at day 5 and for moderate and stiff hydrogels at day 7. Collagen | and
vimentin expression were upregulated in HMF in moderate and stiff hydrogels in comparison to HMFs in compliant hydrogels. Collagen IV was more

detectable, albeit negligibly, at days 5 and 7 for HMFs in compliant and stiff hydrogels, respectively. ¢ Fibronectin expression was increased for

(significantly) and was similarly expressed for all hydrogel conditions at day 7. Collagen IV was increased for moderate hydrogels at days 3 and
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hydrogels HMFs were isolated from mTG cross-linked hydrogels and
nase was used to isolate HMFs from stiff (e.g. 60 ug/ml) mTG hydrogels.

expression greatest at days 3 and 5 for moderate and day 7 for stiff
HMFs in compliant and stiff hydrogels, respectively. Laminin was

Collagen | was increased for moderate hydrogels at days 3 and 5

pressed. a-SMA was consistently increased for compliant hydrogels
for compliant hydrogels

4: Figure S4). Comparing protein expression between
hydrogels, collagen I was similarly expressed at days 3
and 7 in all hydrogels, but was significantly higher for
moderate hydrogels at day 5 (Fig. 6¢). For vimentin, ex-
pression levels were significantly higher in compliant
hydrogels at day 3, but were similarly expressed across
the hydrogel conditions at days 5 and 7 with a decrease
in expression observed for stiff hydrogels at days 5 and 7
(Fig. 6c). Collagen IV didn’t appear to change over the
culture period for HMFs in compliant hydrogels, but
was observed to be increased at days 3 and 5 for HMFs
in moderate hydrogels and at day 7 for HMFs in stiff
hydrogels (Fig. 6b and Additional file 4: Figure S4).
Comparing hydrogel conditions, collagen IV was greatest
at days 3 and 5 for moderate hydrogels and at day 7 for
stiff hydrogels (Fig. 6¢). Fibronectin expression appeared
most abundant at day 5 for compliant hydrogels, days 3
and 5 for moderate hydrogels and days 3 and 7 for stiff
hydrogels (Fig. 6b and Additional file 4: Figure S4).

Comparing hydrogel conditions, fibronectin was in-
creased at days 3 (significantly) and 7 for stiff hydrogels
and was similar, albeit there was a reduction for the
moderate hydrogel, at day 5 (Fig. 6¢). a-SMA was most
highly expressed in compliant hydrogels at day 5 and for
moderate and stiff hydrogels at day 7 (Fig. 6b and Add-
itional file 4: Figure S4). Interestingly, a-SMA was con-
sistently upregulated in compliant hydrogels during the
culture period with significant changes observed at days
3 and 5 (Fig. 6¢). Laminin expression was overall un-
detectable for HMFs in compliant, moderate and stiff
hydrogels albeit faint bands were visible at days 5 and 7
for HMFs in compliant and moderate hydrogels, respect-
ively (Fig. 6b, c and Additional file 4: Figure S4). Table 2
summarizes the protein expression findings analyzed be-
tween hydrogels.

A defining characteristic of myofibroblasts is their
contractile nature, a feature which not only enables
wound closure [3], but permits the fibroblast’s ability to
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Table 2 Summary of protein expression results assessed between
hydrogel conditions. Day 3: fibronectin expression was significantly
higher for HMFs encapsulated in stiff as compared to compliant
and moderate hydrogels. Collagens | and IV were more highly
expressed for HMFs encapsulated in moderate as compared to
compliant and stiff hydrogels. a-SMA and vimentin expression
were significantly higher for HMFs encapsulated in compliant as
compared to moderate and stiff hydrogels. Laminin expression was
similar between the hydrogel conditions. Day 5: fibronectin
expression was higher and a-SMA was significantly higher for
HMFs encapsulated in compliant as opposed to moderate and
stiff hydrogels. Collagens | and IV were significantly higher
while vimentin was higher for HMFs encapsulated in moderate
hydrogels as compared to compliant and stiff hydrogels.
Laminin expression was similar between the hydrogel conditions.
Day 7: fibronectin, collagen IV and laminin expression was higher
for HMFs encapsulated in stiff hydrogels as compared to compliant
and moderate hydrogels. a-SMA and vimentin expression were in-
creased for HMFs encapsulated in compliant as compared to
moderate and stiff hydrogels. Collagen | expression was similar

*
i

between the hydrogel conditions. p <005; p<001; " p <0001

Day 3 Day 5 Day 7
Fibronectin Stiff (%, **) Compliant Stiff
Collagen | Moderate Moderate (**) Similar
Collagen IV Moderate Moderate (**) Stiff
Laminin Similar Similar Stiff
a-SMA Compliant (¥) Compliant (**, ***) Compliant
Vimentin Compliant (***) Moderate Compliant

Compliant (20 pg), Moderate (30 pg), Stiff (60 pg)

remodel and contract collagen hydrogels in 3D [29, 38].
Using a gel contraction assay, we encapsulated HMFs in
the various mTG hydrogels to determine whether in-
creasing matrix stiffness in 3D promoted a greater de-
gree of hydrogel contraction, a feature which may be
attributed to effects of matrix stiffness on a myofibro-
blast phenotype. During the 7 day culture period no
observable changes in hydrogel contraction were
found (data not shown), suggesting that HMFs may
not have fully differentiated into a myofibroblast
phenotype following encapsulation in the tested
hydrogel conditions. Interestingly, it appeared that fol-
lowing release of the hydrogels from the dish, the
HMFs became gradually more rounded (data not
shown), suggesting that the tension exerted by the at-
tachment of the hydrogel to the sides of the dish is
an important mediator for supporting the spreading
and growth of the fibroblasts.

Taken together, these results indicate that ECM and
myofibroblast proteins in HMFs vary in expression
during both the culture period and according to the
mechanical stiffness of the hydrogel and further suggest
that HMFs may not be fully differentiated into a myofi-
broblast phenotype as they didn’t contract the mTG
hydrogels.
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TGF-f expression from HMFs encapsulated in mTG
Hydrogels

TGF-B has been reported to be upregulated following
fibroblast transition into myofibroblasts [39]. To deter-
mine whether increasing matrix stiffness upregulated
TGE-p cytokine levels from 3D cultures of HMFs, condi-
tioned media from HMFs encapsulated in compliant,
moderate and stiff hydrogels were evaluated for differ-
ences in secreted TGF-f} at days 1, 3, 5 and 7 of culture.
All data were normalized to TGF-f levels observed in
control media (data not shown). Overall, it was found
that TGF-P levels significantly increased for HMFs en-
capsulated in hydrogels at each tested mTG concentra-
tion during the culture period (Fig. 7a-c). For HMFs in
compliant and moderate hydrogels, there was an in-
crease in TGF-f at day 3 followed by a decrease at day 5
(Fig. 7a-c). When comparing the various mTG hydro-
gels, HMFs encapsulated in the stiff hydrogels exhibited
the most significance difference in TGF-p, a result which
wasn’'t evident until days 5 and 7 of culture (Fig. 7d).
Overall, TGF-f levels weren’t significantly different be-
tween HMFs encapsulated in compliant and moderate
hydrogels at each tested time point of culture (Fig. 7d).
In fact, TGF-p was slightly decreased for HMFs in mod-
erate hydrogels in comparison to HMFs in compliant
hydrogels. Together, these results suggest that TGF-p
production increases overall during the culture period
and is greatest for HMFs encapsulated in stiff hydrogels
at days 5 and 7 of culture.

Discussion
CAFs are a major driver of breast cancer progression,
metastasis and therapy resistance [40]. One factor which
has been shown to support the transition of fibroblasts
into activated myofibroblasts is substrate stiffness [15,
18, 19]. In this paper, we sought to elucidate how mech-
anical stiffness in a 3D gelatin hydrogel alters the pheno-
type of HMFs. We show that mTG not only crosslinks
the gelatin hydrogels, but that increasing concentrations
of mTG produce hydrogels with greater bulk mechanical
stiffness as measured using the elastic modulus (G’). Fur-
ther, these hydrogels support viability and proliferation
of encapsulated HMFs. Although myofibroblast-like
properties were evident in some of the hydrogel condi-
tions, there wasn’t a clear correlation between substrate
stiffness in 3D and transition of HMFs into a
myofibroblast-like phenotype, suggesting that it will be
important for future experiments to elucidate whether
additional factors like biochemical cues or alternate
strategies to control matrix stiffness are necessary.
Fibroblasts are spindle shaped, but appear more planar
and elongated when grown on a stiff 2D substrate and
more rounded when grown on compliant surfaces [41].
Furthermore, stiff substrates facilitate invasive and
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Fig. 7 TGF-{3 production from HMFs encapsulated in mTG hydrogels. HMFs were encapsulated in compliant, moderate and stiff hydrogels and
conditioned media was collected at days 1, 3, 5 and 7 of culture for quantification of secreted TGF-3. Overall, TGF-( levels increased during the
culture period for HMFs encapsulated in compliant (a), moderate (b) and stiff (c) hydrogels. (d) TGF-3 production was significantly greater for
HMFs encapsulated in stiff hydrogels at days 5 and 7 of culture. 'p <005, "p<001; " p <0001

migratory properties of fibroblasts [42]. As such, we
sought to determine whether increasing matrix stiffness
promoted a more elongated, spindle-like morphology of
3D encapsulated HMFs. Overall, differences in cell
morphology were only apparent between HMFs encap-
sulated between compliant and moderate hydrogels and
with HMFs encapsulated in stiff hydrogels. For instance,
HMFs encapsulated in stiff hydrogels had larger cell
bodies with shorter and thicker cellular protrusions
while HMFs in the compliant and moderate hydrogels
exhibited a more elongated, spindle like morphology.
These results were largely supported with quantification
of circularity in which HMFs assumed a more elongated
morphology during the culture period in the compliant
and moderate hydrogels. For stiff hydrogels, HMFs be-
came more elongated at day 3; however, few changes in
cell morphology were apparent after this time. While it
was expected that HMFs in the compliant hydrogel
would in general exhibit a more rounded morphology
with few cellular extensions, it’s possible that the ability
of the cells to remodel the matrix may be more import-
ant than the initial substrate rigidity. Given that the sub-
strate stiffness was similar for compliant and moderate
hydrogels (200 and 300 Pa, respectively), it would follow
that the relative compliance of these hydrogels better
supported matrix remodeling and thus cell migration.
Contrary, it’s likely that the higher degree of matrix
cross-linking in the stiff hydrogels could have impeded
the HMFs from fully remodeling the gelatin matrix

needed for cell elongation and spreading within the
hydrogels. Similar findings were reported by Caliari et al.
[43] who found that human mesenchymal stem cells
(hMSCs) encapsulated in more cross-linked hyaluronic
acid (HA) hydrogels exhibited a more round morph-
ology while hMSCs encapsulated in less cross-linked
hydrogels exhibited a more spread morphology, a result
the authors attributed to the ability of the hMSCs to re-
model the compliant hydrogels. Moreover, a separate re-
port found that the degradability of HA hydrogels
influenced the spreading of encapsulated hMSCs [44].
For instance, hydrogels with a higher degree of degrad-
ability promoted cell spreading versus those with low de-
gradability [44], further highlighting the importance of
cell matrix remodeling as opposed to matrix stiffness ef-
fects on cell morphology in 3D. Thus, the ability of cells
to remodel their environment, as opposed to increased
matrix stiffness, is a likely regulator of cell spreading and
morphology in 3D.

During tumorigenesis, the stroma is characterized by
an increased number of activated, proliferative fibro-
blasts [45]. Furthermore, it has been reported that CAFs
exhibit a higher proliferative index than normal fibro-
blasts [46]. These observations prompted us to explore
the effect of matrix stiffness on HMF proliferation. It
was expected that an increase in matrix stiffness would
correlate with an increase in cell proliferation. While we
observed statistically significant increases in proliferation
over the culture period for HMFs encapsulated in all
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hydrogels, we found that HMFs encapsulated in the
moderate hydrogel exhibited a more significant change
in proliferation at almost all tested time points in com-
parison to HMFs encapsulated in compliant and stiff
hydrogels. Interestingly, Munoz-Pinto et al. [47] found
that vocal fold fibroblasts exhibited a greater rate of pro-
liferation following encapsulation in PEGDA hydrogels
with intermediate molecular weight hyaluronan, a
hydrogel with a mechanical stiffness between that of
PEGDA hydrogels containing high molecular weight
hyaluronan and PEDGA hydrogels alone. Further, this
finding may be due to the close relationship between cell
proliferation and spreading [48]. Chen et al. [48] demon-
strated that endothelial cell spreading and proliferation
increased proportionately in response to the geometry of
the substrate, suggesting that cell accessibility to matrix
cues is important for regulation of cell spreading and
growth. In addition, cell-cell contact is also an important
regulator of cell proliferation [49]. Although cell-cell
contact was evident in the stiff hydrogels, it was much
less than that observed for HMFs encapsulated in com-
pliant and moderate hydrogels and may be a contribut-
ing factor for the observed decreases in proliferation.
Despite these explanations for decreased proliferation in
the stiff hydrogels, differences in spreading and cell-cell
contact cannot explain why HMFs in moderate hydro-
gels exhibited the highest degree of cell proliferation
given that few morphological differences existed between
HMFs in compliant and moderate hydrogels. It will be
important for future work to further delineate the mech-
anism(s) responsible for the observed differences in
HMEF proliferation in mTG cross-linked 3D hydrogels.
One of the most well characterized phenotypic
markers indicative of a transition into an activated myo-
fibroblast is the expression of a-SMA [4]. Other markers
associated with the myofibroblast phenotype include col-
lagen I [6, 50], fibronectin [6, 37, 51] and vimentin [52]
although there is still much debate on the use of vimen-
tin as a myofibroblast marker. To determine whether
matrix stiffness resulted in the upregulation of these
phenotypic markers along with ECM proteins collagen
IV and laminin, we analyzed the expression of these in
3D encapsulated HMFs. Interestingly, a-SMA was most
highly expressed for HMFs in compliant hydrogels dur-
ing the culture period, an observation that was contrary
to our expectation. A similar finding was reported by
Munoz-Pinto et al. [47] who demonstrated that a-SMA
expression in vocal fold fibroblasts didn’t correlate with
increasing 3D mechanical stiffness at 21 days of culture.
Another recent study also found a reduction in a-SMA
mRNA and protein expression in valvular interstitial
cells encapsulated in stiff PEG hydrogels [53]. Together
with our findings, these reports suggest that an inverse
relationship exists between o-SMA expression and
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matrix stiffness in 3D. Despite this, another study
showed that hydrogels containing higher concentrations
of collagen promoted greater expression of a-SMA in
3D encapsulated fibroblasts [4]. It's possible that the
higher concentration of collagen in this study increased
the availability of cell binding sites in the hydrogels, con-
tributing to the reported increase in a-SMA expression.
In our study and that reported by Munoz-Pinto et al
[47], the availability of cell binding sites weren’t altered.
In this manner, changes in HMF expression of myofibro-
blast and ECM proteins should be attributed to the
mechanical properties of the hydrogel as opposed to the
number of cell binding sites. Despite this, a robust myo-
fibroblast phenotype was not evident in HMFs encapsu-
lated in the stiff hydrogel. The only marker to exhibit
upregulation for HMFs in the stiff hydrogels was fibro-
nectin which was increased at days 3 and 7 in compari-
son to HMFs in compliant and moderate hydrogels.
Given these results and those reported by Hinz et al. [4],
it will be important for future work to determine
whether substrate stiffness and/or increased availability
of cell binding sites in 3D drive the myofibroblast
phenotype.

TGEF-B is a multi-functional cytokine which has been
reported to be upregulated following fibroblast transition
into myofibroblasts [39] and has also been documented
to promote and maintain the myofibroblast phenotype
[11]. Therefore, it was hypothesized that if the transition
into the myofibroblast phenotype correlated with in-
creased matrix stiffness, then TGF-B production would
correspondingly increase with increased matrix stiffness.
TGE-B production was found to not only be significantly
increased for HMFs encapsulated in all hydrogels at each
tested time point during the culture period, but was sig-
nificantly greater for HMFs encapsulated in stiff hydro-
gels at day 5 and 7, suggesting that matrix stiffness
supports TGF-f production from 3D encapsulated
HMFs at later points in culture. These results are in ac-
cordance with a prior report demonstrating that cells
cultured atop a mechanically stiff hydrogel exhibited
greater levels of TGF-p activation, an observation the
authors attributed to cell mediated contractility and lib-
eration of matrix-bound TGF-f [54]. Furthermore, TGF-
B levels were also reported to be higher in HCT118 cells
encapsulated in 25 kPa hydrogels, but declined in gels
where the mechanical stiffness was much higher [55].
Overall, these studies support a role for mechanical stiff-
ness in the upregulation of TGF-f.

Conclusions

In conclusion, we have shown that HMFs are viable and
proliferate in gelatin hydrogels crosslinked with various
concentrations of mTG and express some myofibroblast
markers as matrix stiffness increases. Specifically, we
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show that cell proliferation in addition to collagens I and
IV, vimentin and TGF-p expression were increased in
HMFs encapsulated in moderate and stiff hydrogels. On
the other hand, a-SMA, considered as an excellent
marker for the myofibroblast phenotype, was increased
for HMFs in compliant hydrogels during the culture
period as compared to HMFs in moderate and stiff
hydrogels. Although these studies support a role for
matrix stiffness in activating some features of a myofi-
broblast phenotype, the functional and phenotypic
markers indicative of a myofibroblast phenotype weren’t
robustly expressed. Another important consideration is
that there was very little difference in the mechanical
stiffness between the compliant and moderate hydrogel,
potentially lending to fewer observed differences be-
tween HMFs encapsulated in these hydrogels. Given that
the model was suitable for culture of HMFs in hydrogels
of <1 kPa, this model could conceivably be applied to
additional studies in which a relatively soft hydrogel is
required. Overall, considering the role that mechanical
stiffness has on breast tumor growth, metastasis and
therapy resistance [56, 57], features that are in part at-
tributed to the presence of myofibroblasts promoting tis-
sue fibrosis [4], it will be important for future work to
determine whether the availability of cell binding sites
and/or the mechanical properties of the hydrogel are re-
sponsible for driving the myofibroblast phenotype in 3D.

Additional files

Additional file 1: Figure S1. Live/dead HMFs in compliant hydrogels.
Representative images of live cells (GFP) and dead cells (RFP), indicated
by arrows, for HMFs encapsulated in compliant hydrogels. (TIFF 2655 kb)

Additional file 2: Figure S2. Live/dead HMFs in moderate hydrogels.
Representative images of live cells (GFP) and dead cells (RFP), indicated
by arrows, for HMFs encapsulated in moderate hydrogels. (TIFF 3143 kb)

Additional file 3: Figure S3. Live/dead HMFs in stiff hydrogels.
Representative images of live cells (GFP) and dead cells (RFP), indicated
by arrows, for HMFs encapsulated in stiff hydrogels (TIFF 2954 kb)

Additional file 4: Figure S4. Quantification of protein expression in
compliant, moderate and stiff hydrogels. Protein expression for myofibroblast
and ECM markers was quantified from encapsulated HVIFs and normalized to
the GAPDH loading control. Fibronectin expression was significantly higher at
day 5 in comparison to days 3 and 7 for HMFs encapsulated in compliant
hydrogels. Vimentin expression was markedly higher at day 3 in comparison
to days 5 and 7 although the change wasn't significantly different. For
moderate hydrogels, collagens | and IV were higher at days 3 and 5 in
comparison to day 7 with significance observed for collagen I. In stiff
hydrogels, fibronectin expression was significantly higher at day 3 in
comparison to days 5 and 7 and a-SMA was significantly increased at
day 7 in comparison to days 3 and 5. While vimentin was upregulated
at days 3 and 5 in comparison to day 7, this change wasn't statistically
significant. p < 0.05; "p<0.01; " p<0.001. (TIFF 429 kb)

Additional file 5: Material 1, Circularity 20 ug, Circularity analyses on
HMFs encapsulated in 20 pg hydrogels. (XLSX 19 kb)
Additional file 6: Material 2, Circularity 30 pg, Circularity analyses on
HMFs encapsulated in 30 pg hydrogels. (XLSX 19 kb)

Additional file 7: Material 3, Circularity 60 ug, Circularity analyses on
HMFs encapsulated in 60 pg hydrogels. (XLSX 19 kb)
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Additional file 8: Material 4, Cell Viability 20 and 30 ug, Cell viability
analyses for HMFs encapsulated in 20 and 30 pg hydrogels. (XLSX 10 kb)

Additional file 9: Material 5, Cell Viability 60 ug, Cell viability analyses
for HMFs encapsulated 60 pg hydrogels. (XLSX 12 kb)

Additional file 10: Material 6, Cell Viability 2D mTG, Cell viability
analyses for HMFs grown on 2D culture flasks and treated with various
concentrations of mTG. (XLSX 14 kb)

Additional file 11: Material 7, ELISA 20, 30 and 60 pg, ELISA for TGF-3
for HMFs encapsulated in 20, 30 and 60 ug hydrogels. (XLSX 19 kb)

Additional file 12: Material 8, ELISA Day 3 20, 30 and 60 pg, ELISA for
TGF-B for HMFs encapsulated in 20, 30 and 60 pg hydrogels. HMFs
encapsulation for 3 days prior to collection of supernatant for TGF-f.
(XLSX 29 kb)

Additional file 13: Material 9, Proliferation 75 and 100 g, Proliferation
analyses for HMFs encapsulated in 75 and 100 pg hydrogels. (XLSX 12 kb)

Additional file 14: Material 10, Collagenase 60 ug, Gel weight following
collagenase digestion of 60 pg hydrogels. (XLSX 9 kb)

Additional file 15: Material 11, Gel Weight Measurements, Gel weight
of HMFs encapsulated in 20, 30 and 60 pg hydrogels. Weights were
taken shortly after polymerization and the end of the culture period.
(XLSX 13 kb)

Additional file 16: Material 12, Proliferation 20, 30 and 60 pg,

Proliferation analyses for HMFs encapsulated in 20, 30 and 60 pg hydrogels.
(XLSX 9 kb)

Additional file 17: Material 13, Rheology 20, 30 and 60 ug, Rheology
measurements for HMFs encapsulated in 20, 30 and 60 pg hydrogels.
(XLSX 15 kb)

Additional file 18: Material 14, Thermal stability 20, 30 and 60 pg, Analyses
of gel encapsulated HMFs for changes in gel weights following culture in a
37C incubator. (XLSX 11 kb)

Additional file 19: Material 15, Western Blot Quantification 20, 30 and
60 pg, Quantification of band intensity for western blots performed on
HMFs encapsulated in 20, 30 and 60 ug hydrogels. (XLSX 43 kb)
Additional file 20: Material 16, Western Blot 20, 30 and 60 g, Western
blots performed on HMFs encapsulated in 20, 30 and 60 ug hydrogels.
(PPTX 18885 kb)
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