Intosalmi et al. BMC Molecular and Cell Biology (2019) 20:59

https://doi.org/s12860-019-0234-z

BMC Molecular and
Cell Biology

RESEARCH ARTICLE Open Access

Data-driven multiscale modeling reveals
the role of metabolic coupling for the
spatio-temporal growth dynamics of yeast
colonies

Jukka Intosalmi'”, Adrian C. Scott?, Michelle Hays?, Nicholas Flann*, Olli Yli-Harja>®,
Harri Lahdesmaki', Aimée M. Dudley?3 and Alexander Skupin’#"

Check for
updates

Abstract

Background: Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial
arrangements that are adapted to their specific functions or environments. These structures result from intercellular
signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate
into well-organized communities of diversified cells. Despite its importance, our understanding how this cell-cell and
metabolic coupling lead to functionally optimized structures is still limited.

Results: Here, we present a data-driven spatial framework to computationally investigate the development of yeast
colonies as such a multicellular structure in dependence on metabolic capacity. For this purpose, we first developed
and parameterized a dynamic cell state and growth model for yeast based on on experimental data from
homogeneous liquid media conditions. The inferred model is subsequently used in a spatially coarse-grained model
for colony development to investigate the effect of metabolic coupling by calibrating spatial parameters from
experimental time-course data of colony growth using state-of-the-art statistical techniques for model uncertainty
and parameter estimations. The model is finally validated by independent experimental data of an alternative yeast
strain with distinct metabolic characteristics and illustrates the impact of metabolic coupling for structure formation.

Conclusions: We introduce a novel model for yeast colony formation, present a statistical methodology for model
calibration in a data-driven manner, and demonstrate how the established model can be used to generate
predictions across scales by validation against independent measurements of genetically distinct yeast strains.

Keywords: Multicellular systems, Multiscale modeling, Yeast colony, Metabolic coupling, Diauxic shift, Markov chain
Monte Carlo, Bayesian optimization

Background

Multicellular organisms and colonies of unicellular
microbes are able to form characteristic structures by spe-
cialized cell types [1, 2]. While it is generally accepted that
the structure and functions of tissue and organs are genet-
ically encoded, more recently it has been demonstrated
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that the morphologies of biofilms like Saccharomyces
cerevisiae yeast colonies have a strong genetic compo-
nent [3-5]. Together with the frequently observed growth
medium dependency of yeast cultures, these findings fur-
ther underpin the importance of genome—environment
interactions for phenotype development [6]. To under-
stand the underlying mechanisms, it is key to investi-
gate how metabolic coupling is influencing individual cell
states and instructing structure formation.

Yeast colonies and biofilms represent an efficient exper-
imental model system to investigate how metabolic
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dynamics and spatial coupling determine morphogenesis
because yeast exhibits (i) cell state transition in depen-
dence on the environment by switching from glucose to
ethanol metabolism and quiescence [7], (ii) fast growth,
and (iii) can be easily genetically modified (Fig. 1A, B).
Although yeast is a unicellular organism, it can form
rather complex colony structures including heteroge-
neous cell states in a strain specific manner [8, 9].
Recently, we have shown that predominant changes in
morphology from smooth to wrinkled “fluffy” structures
can be induced by aneuploidy as a multicellular phenotype
switch [10]. Despite the systematic genetical characteri-
zation of this switch, the question how the gain or loss
of a chromosome copy leads to a significant change in
morphology is not understood.
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Mathematical modeling can provide essential insights
into the underlying processes as it allows quantitative
investigation of the coupling between metabolic and spa-
tial growth dynamics. A general challenge is thereby
to cover and parameterize the relevant scales ranging
from intra- and intercellular interactions to population
and environment dynamics. Existing multiscale model-
ing approaches for complex multicellular systems typi-
cally rely on large sets of physiological parameters that
are often not easily accessible in experiments [11, 12].
Other spatiotemporal modeling approaches are based on
homogeneity assumption and simulate partial differen-
tial equations neglecting the discrete properties of cells.
While being useful in building a general understanding
of different mechanisms across the scales, most of these
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Fig. 1 lllustration of real colony growth and summary of microenvironment model inference. a A real colony growing on a nutrient rich agar. b
Schematic illustration of the microenvironment model. ¢ lllustration of the alternative metabolic switching routes (hypotheses Hy, H,, and Hz) and
summary of microenvironment model inference. The hypothesis H; contains both possible transitions from the glucose state to the quiescent state
and the hypotheses H, and Hs can be obtained by removing one of the routes (these hypotheses correspond to setting the switching rate
parameters B, and B3 in the model to zero, respectively). Each hypothesis is accompanied with the posterior probability and the estimated
logarithmic marginal likelihood (shown in parentheses after hypothesis). The estimated marginal posterior predictive distributions are illustrated
using 99% quantiles (light blue region) as well as mean (black line) and median (blue line). The experimental data (total cell mass) is illustrated using
red color
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approaches do not allow for direct experimentally-based
model construction and validation. Such experimental
data driven model constructions have been successfully
applied in the context of mechanistic modeling of molec-
ular mechanisms [13-15] and extending these approaches
to more complex multiscale models will be essential for
methodological advancement in systems biology [16].

Here, we develop such a new multiscale modeling
framework for multicellular yeast structure formation
that allows for experimentally-based model construction
and validation. In contrast to previous approaches that
simulate individual cells [17], our framework is based
on an approximation that discretizes the spatial domain
into elementary cubes and allows us to model the het-
erogeneous microenvironment dynamics under the local
homogeneity assumption. Furthermore, the elementary
cube approximation enables us to model the informa-
tion flows (like nutrient transport or the flow of sig-
naling molecules) and mass transfer (movement of the
growing cell mass) by means of computationally efficient
flux mechanisms. The presented model represents a first
approach to simulate colony growth in a data driven man-
ner but does not address aneuploidy particularly as the
underlying mechanism at this stage.

To construct a growth and cell state model for the
homogeneous microenvironment dynamics, we com-
bine ordinary differential equation (ODE) modeling with
experimental data using advanced statistical techniques
and, by means of this objective approach, infer the
metabolic switching mechanisms as well as the corre-
sponding model parameterization directly from the data.
The calibrated microenvironment model is subsequently
embedded into the spatial framework which allows for
predictions of cell mass, cell state, nutrient, and metabolic
distributions throughout the colony formation process
after model calibration by colony growth data.

Our model construction process utilizes measurements
from two different yeast strains. First, we calibrate the
model using time-course data from wild-type yeast cells
(YAD145) and subsequently the calibrated model is val-
idated against independent measurements from a res-
piratory deficient (petite) yeast strain (YAD479). These
genotypically different training and validation strains are
known to result in distinct colony morphologies and
therefore the validation approves that our multiscale
model captures essential mechanisms across the scales
spanning from microenvironment dynamics to the spa-
tiotemporal colony formation dynamics.

Results

Dynamic model construction for cell growth and metabolic
switching in homogeneous medium

Depending on external conditions and their intracellu-
lar state, yeast cells can either metabolize glucose or
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ethanol for growth or remain in the so-called quiescent
state. The diauxic shift between the different metabolic
states is determined by nutrient sensing pathways and if
the extracellular glucose level becomes low, cells change
their metabolic wiring towards a state that allows growth
on ethanol produced during growth on glucose [7, 18].
Cells can also switch to a quiescent state in which they
act as passive by-standers that do not grow nor produce
any aromatic alcohols. The metabolically distinct glucose,
ethanol, and quiescent cell states are the starting point
in our model construction and a schematic illustration of
the dynamic interactions between these states is shown
in Fig. 1B.

The dynamics of the different cellular metabolic states
cannot be easily observed directly but it is rather straight-
forward to monitor cell growth by optic growth curve
measurements [19] (see “Methods” section). With the help
of mathematical modeling, we are able to infer the switch-
ing behavior between the metabolic states and the related
nutrient dynamics from time-course data. This is done
by constructing alternative quantitative growth models
with different metabolic switching mechanisms between
the states and testing these hypothetical models against
time-course data by means of statistical techniques. In
the following, we construct a mathematical model that
describes yeast cell growth on glucose and ethanol and
couples the growth dynamics with transient switching
between three distinct metabolic states: (i) glucose, (ii)
ethanol, and (iii) quiescent state (Fig. 1B).

We model the cell growth and switching between dif-
ferent metabolic states by ODEs. We start by considering
the glucose state in which the cells grow on glucose and
denote the cell mass in this state by m8. Given that glu-
cose intake is sufficiently fast, the cell mass dynamics in
the glucose state can be modeled as

dm?8
— = uymég — 1

g _ G 1
dt g+ K" pam )

where g denotes the level of available glucose and the first
term, puim8g, describes the actual growth kinetics with
the rate parameter p;. If the glucose signal drops to a
low level, cells start to switch gradually to the ethanol
state. This switching is reflected by the second term in
Eq. 1 with the switching rates ; and K. Analogously, the
third term in Eq. 1 describes the potential switching to
the quiescent state with the rate parameter 8. In a typ-
ical experimental setting, a fixed amount of glucose is
provided to cells in the beginning and the glucose level
decreases when it is used for growth. Subsequently, the
glucose concentration is governed by

a _

= gg. 2
It e (2)
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where y; is a parameter that determines the yield of glu-
cose to the produced biomass. Growth in the ethanol state
occurs in an analogous manner as in the glucose state. We
denote the cell mass in the ethanol state by m® and the cell
mass dynamics in this state is modeled as

am®

_ = €
dt M2m6+ﬁ1g+1<

Here, the first term describes the actual growth kinetics
with the rate parameter po, the second term corresponds
to the cell mass entering the ethanol state from the glucose
state, and the third term describes the possible switch-
ing from the ethanol state to the quiescent state with the
rate parameter fB3. Ethanol is typically not added to a cell
culture, but it is produced as a by-product of growth on
glucose. Thus, the ethanol dynamics is given by

m8 — Bam®. (3)

de = &mgg 12 e, (4)

at 2 V3
where the first term represents ethanol production dur-
ing the growth on glucose and the second term considers
the decrease due to biomass production. The parameters
y» and y3 determine the production and decrease, respec-
tively. The above expressions for m® and m°® dynamics
include switching to a quiescent state. We denote the cell
mass in the quiescent state by m% and describe the cell
mass dynamics in this state by

dm4

7 = Bom® + B3m®, (5)

with the terms introduced in Egs. 1 and 3. Given the
three distinct metabolic states, the total cell mass reflect-
ing directly the experimental time-course measurements
is given by m = m8+m®+m9. In experiments, cells are ini-
tially put in glucose rich medium and we therefore assume
that all cells are initially in the glucose state and the initial
glucose level is high. Consequently, we assume that only
the model variables m# and g have non-vanishing initial
values. These properties are also used in the reparame-
terization of the mathematical model which is presented
in detail in Additional file 1. The model output, i.e. the
total cell mass as a function of time, is denoted by m(t, 0)
where 0 is a parameter vector containing the parameters
that result from the reparameterization.

Statistical inference for model parameters and metabolic
transitions in homogeneous medium

The mechanisms that are included in the mathematical
model are illustrated in Fig. 1B. The full model con-
tains the essential transition from the glucose state to
the ethanol state and allows the cells also to switch to
the quiescent state directly from the glucose and ethanol
states. However, detailed information about the switch-
ing mechanisms to the quiescent state is not available and,
consequently, there remains notable uncertainty about the
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routes that cells may use to enter the quiescent state. To
treat this uncertainty accurately, we consider three alter-
native hypotheses (H1, Ha, and H3) regarding the switch-
ing routes between the metabolic states (schematic illus-
trations of corresponding switching models are shown in
Fig. 1C) and investigate the feasibility of these hypotheses
by quantitative statistical testing. In the following, we out-
line the experimental data used for model calibration and
explain how we infer the structure and parameterization
of the microenvironment model.

To obtain dynamic data on total cell mass that can be
used in the microenvironment model inference, we mea-
sured growth curves for wild-type and petite yeast strains
(see “Methods” section). The petite yeast strain differs
genetically from the wild-type strain and is not capa-
ble to grow on ethanol [10, 20]. In the context of our
microenvironment model, this means that the growth rate
parameter 5 should tend to zero when the petite strain is
considered but all other parameters can be expected to be
shared between these two strains. Given this direct con-
nection between the wild-type and petite strains, we can
carry out the statistical inference using the wild-type data
and subsequently test the predictive performance of our
models against the petite strain which is not included in
the model calibration.

For model inference, we first collect the wild-type
growth curve data into the data vector Dy. The elements
of this data vector contain the average total cell mass at
time points #,k = 1,...,N. The average cell mass as
well as the corresponding sample variances v, are com-
puted over 6 replicates (see Additional file 1: Figure S1 for
details about data pre-processing). From previous stud-
ies [5, 18, 21] the relative fractions of cells in ethanol
and quiescent states at steady state (reached in our set-
ting at £y = 80 hours) can be taken to be approximately
29+£6% and 62+ 6%, respectively. We denote these relative
fractions by «® = 0.29 and «9 = 0.62 and the correspond-
ing standard deviations representing uncertainty about
the exact values by o4e = 0.02 and opa = 0.02. These
wild-type data, which are used in the model calibration
and hypothesis testing, can be combined with the model
output under alternative metabolic switching hypothesis
H, Hy, and H3 by assuming independent normally dis-
tributed measurement errors and defining the likelihood
function

N

7 (D\Or;, Hi) = [ [N (Dilme; (¢ 021,), vic)
k=1

X N(ae

Wl?.[i(tN’GHl‘) 2 ) (6)
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where D = (D, vi,af 0qe,0%0qa} is the data, Oy,
is the parameter vector under the hypothesis H;, and
N (|, 0?) is the normal probability density function with
the mean y and variance o2, We next construct a Bayesian
statistical model by combining the likelihood function
with uninformative but proper prior distributions where
we do not assume any prior dependencies between the
parameters and use standard normal prior distributions
in logarithmic parameter space. The selected prior distri-
bution introduces a soft lower bound for the parameters.
Thus, if a certain rate parameter is present in the model,
its value cannot be infinitely close to zero. We estimate
the parameter posterior distributions and posterior prob-
abilities of alternative hypotheses by means of population-
based Markov chain Monte Carlo (MCMC) sampling and
thermodynamic integration (see “Methods” section for
details).

Quantitative hypothesis testing reveals the most likely
metabolic switching mechanisms

The posterior analysis is first carried out indepen-
dently for each alternative metabolic switching mecha-
nism (hypotheses Hi, Hy, and H3). The resulting approx-
imations for the parameter posterior distributions show
that the models are identifiable under all three metabolic
wiring scenarios (Additional file 1: Figures S2-S4 and a
summary about convergence diagnostics in Figure S5). In
general, the predictions in all three scenarios are in a good
agreement with the experimental wild-type data (see pre-
dicted total cell mass in Fig. 1C, wild type). The posterior
predictive distributions (PPDs) are very similar under the
hypotheses H; and H; and the only notable difference is a
larger dynamical variability under H; (Fig. 1C, Wild type).
This finding is consistent since the models are nested
and the additional switching route under hypothesis H;
increases the model flexibility. The PPD under hypothe-
sis H3 exhibits less variability and additionally a distinct
dynamic behavior of m® compared to the other two sce-
narios. Furthermore, Fig. 1C shows the PPDs also for the
petite strain and we can conclude that under all three
hypotheses we are capable of predicting the total cell mass
dynamics of the petite strain even though the dynamics
of the non-observed model components may differ signif-
icantly. Consequently, we can conclude that the predictive
performance of our models is good for both the train-
ing and the validation data sets. However, based on visual
inspection, it is impossible to judge which hypothesis is
most likely and, therefore, we perform statistically rigor-
ous quantitative hypothesis testing over the hypotheses
Hi, Hy, and Hs.

Despite the non-distinguishable model predictions in
the data space, the posterior analysis over different
metabolic switching hypotheses shows significantly more
evidence for Hy (Fig. 1C) with a posterior probability
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of H, very close to 1 (the posterior probabilities as
well as the estimated logarithmic marginal likelihoods
are shown in parentheses after the hypothesis labels in
Fig. 1C). This strong statistical evidence for Hy sug-
gests that the metabolic switching to the quiescent
state in wild-type yeast cells occurs always through the
ethanol state in agreement with the current biological
interpretations [7, 18, 22].

Spatial modeling framework to study colony formation

In our experimental setup, yeast cells grow on a glu-
cose rich agar plate and form 3d colonies (Fig. 1A) but
the underlying growth mechanisms in terms of metabolic
activity and cell state transitions are not understood. To
address this challenge, we construct a spatial modeling
framework which allows us to predict three dimensional
cell state and nutrient distributions during the colony for-
mation process based on our inferred microenvironment
model. In addition to cell mass and nutrient dynamics
within the colony, we also model the nutrient dynamics
within the agar.

To setup the spatial model, we discretize the space into
elementary cubes (Fig. 2A). Since the size of the elemen-
tary cubes is chosen appropriately, the growth dynam-
ics within each cube (microenvironment) can be mod-
eled under the homogeneity assumption. In other words,
each elementary cube consists of a homogeneous mix-
ture of nutrients and cells in distinct metabolic states
(Fig. 2A) and the time-evolution of these local com-
ponents can be described using the microenvironment
model developed above. The spatial colony formation is
subsequently determined by the dynamics of interact-
ing neighboring cubes with information exchange by the
flow of nutrient signals and movement of the growing
cell mass.

The cell mass movement is modeled by considering
fluxes between neighboring cubes determined by thresh-
olded fill levels of the neighboring cubes where cell mass
is moving from a high to low concentration (for illustra-
tion see Fig. 2B with parameters given in Table 1). The
thresholding is essential because the size of elementary
cubes is fixed and it is reasonable to assume that the mass
movement does not occur until a certain amount of cell
mass has accumulated locally and the resulting pressure
starts to push cells forward. In our implementation, the
fluxes are computed between six neighboring cubes in
each spatial direction and the time-evolution of the full
mass distribution is modeled using an ODE system which
is determined by the net impact of the individual fluxes.
The fluxes are always computed based on the thresholded
total mass distribution and the proportions of metabolic
states moving along the cell mass are proportional to the
proportions of cell states in the cube from which the cell
mass is moving. On top of the agar, cell mass can move
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Microenvironment
within colony

Microenvironment
within agar

1.Initial state 2. Mass grows 3. Threshold reached 4. Mass movement

Fig. 2 lllustration of the spatial modeling framework. Simulated colonies consist of interacting elementary cubes (for illustrative purposes, the cubes
are here notably larger than in practise). a lllustration of the elementary cube approximation of a yeast colony. The upper part of the colony (gray
elementary cubes) represents the cell mass domain. In these elementary cubes, each microenvironment consists of a mixture of nutrients and cells
in different metabolic states. Further, the lower part of the colony (green elementary cubes) represents the nutrient rich agar domain. In the agar
domain, each microenvironment can consist of a mixture of nutrients and no cell mass is present. b Mass movement is modeled by considering the
fill levels of the elementary cubes. The cell mass is growing in the cubes and once a the fill level threshold is reached, cell mass starts to be move
into the neighboring cubes. During the cell mass movement, relative fractions of cells in different metabolic states are moved along

only to five directions because mass movement into the A formal derivation of the mass movement and nutrient
agar is excluded. transfer models can be found in the “Methods” section.
The nutrient transfer is modeled using the same flux-
based model as the cell mass movement. However, the
thresholding is not needed for the nutrient transfer
because it can be assumed that nutrients can diffuse freely
over the domain. The domain for glucose diffusion is
the union of the agar domain and the elementary cubes
with positive cell mass. In addition, it is assumed that the
ethanol which is produced as a by-product during growth
on glucose can diffuse freely over the positive cell mass.

Data-driven calibration of the spatial model

As explained in detail above, the spatial model consists
of interacting elementary cubes and within each cube
we consider an approximately homogeneous mixture of
cells in different metabolic states and nutrients. Local
dynamics in each elementary cube are modeled using the
microenvironment model whose structure and param-
eterization is calibrated using growth curve data and
population composition information at 80 hours. More
specifically, we use the microenvironment model under
metabolic switching hypothesis Hy which was ranked the
highest in the statistical testing. The parameterization of
this model is fixed to the maximum a posteriori values

Table 1 Parameters of the spatial framework. Bounds are given
for parameters that are estimated

Parameter  Value Bounds that were obtained as a by-product of the posterior analy-
mass movement threshold th 1 - sis. Once the microenvironment model is parameterized,
mass movernent rate Armass 20h-" - we are left with several unknown parameters that are
nutrient transfer rate within agar  Aagar 254201 [575] needed for the spatial framework. These parameters are

the mass movement rate, the nutrient transfer rates in the

nutrient transfer rate within colony A 005 h~! [0.005,1] 1 o

o el agar and within the cell mass, and the initial glucose level
elementary cube edge length h ormm - in the agar (Table 1). Because practically no pressure is
e . agar
initial glucose conc. in the agar 5 ! - accumulating inside the colony, we set a high value for the
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mass movement rate (20 h™!). This means that the cell
mass is distributed at the same rate as the cells are grow-
ing and local crowding does not occur. Furthermore, we
assume that the glucose reserve in the agar can be mod-
eled by means of a disc with thickness of 0.2 mm and a
diameter of 1 cm. Then the local initial glucose level in the
elementary cubes in the agar domain can be normalized
to equal one and, consequently, we are left with two free
parameters: the nutrient transfer rate in the agar and the
nutrient transfer rate within the cell mass.

To estimate the free parameters of the spatial frame-
work, we measure the colony footprint as the area
under the growing wild type colony over time (see
“Methods” section for details) and optimize the free
parameters by minimizing the difference of the experi-
mental measured footprint and the area under the simu-
lated colony. Hence, we minimize the cost function

n
i 2
S()»agar: Acol) :log <Z (Azlm()"agar: Aeol) — Agleas) ) )
i=1

(7)

where Aggar and Acop are the transfer rates within the
agar and the colony, and Aj™ (Aagar, Acol) and A are
the simulated and measured areas at time ¢;, respectively.
Because objective initialization of the cell state and nutri-
ent distribution above the agar is practically impossible,
we initialize one elementary cube with cell mass in the glu-
cose state up to the cell mass movement threshold and set
the initial glucose level in this cube to one.

We minimize the cost function using Bayesian opti-
mization [23]. The optimization is initialized by evalu-
ating the cost function at 20 points which are sampled
within the bounds (Table 1) using Latin hypercube sam-
pling. After initialization, the optimal parameter values
(Table 1) are obtained after 9 iterations of the algorithm.
Figure 3A exhibits the fitted footprint area against the
experimental data. The model fit is in a good agreement
with the data even though at the late time points the model
shows saturating behavior that is not present in the real
data. This slight disagreement suggests that there is some
fraction of cells in a metabolic state which is not included
in the model. However, the calibrated model does not
only fit well to the wild type data but is also in an excel-
lent agreement with two replicates of our petite strain
validation data (see red curves in Fig. 3A). The third repli-
cate can clearly be seen as an outlier and may indicate
a low efficiency of biomass production [20] described in
the model by the yield parameter y;. Based on the good
fits, we conclude here that our model successfully cap-
tures essential dynamics also with respect to the colony
size over time.
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Predicting nutrient and metabolic state distributions

The calibrated model provides us with rich information
about the spatial organization within the colony as well
as the colony morphology over time. Figure 3B illustrates
the colony shape and cell state composition at 121 hours.
In our data-driven simulation, we observe three distinct
regions in which the different cell states are concentrated.
The cells in glucose state are present mainly close to the
agar, the cells growing on ethanol are located in the middle
of the colony, and, in the upper part the colony, we see a
high concentration of cells in quiescent state.

A more detailed view on the spatial organization within
the colony is given in Fig. 3C which shows the simu-
lated cell state and nutrient distributions for wild type
and petite strains in the middle of the colony at time
121 hours. The nutrient distributions show that glucose
is mainly present close to the agar and this indicates that
most of the glucose growth and consumption occur in this
region. Further, the ethanol distributions show that the
ethanol level is much higher in case of the petite strain
due to lacking consumption. The snapshot distributions
for wild type and petite strains look quite similar but
essential differences become visible when we observe the
time-evolution of model components at different spatial
locations (Fig. 3D). Besides the differing ethanol dynamics
for wild type and petite strains, also the cell state dynam-
ics differ notably at many spatial locations. The driver for
these differences is the growth in the ethanol state which
on its behalf affect the switching between the different
metabolic states.

Discussion

We introduced here a novel coarse-grained multiscale
model for yeast colony formation demonstrated how com-
putational modeling can be used to integrate experimental
information across scales. In particular, we used here
growth measurements in homogenous fluid medium to
first infer statistically the growth and cell state transition
dynamics. For this purpose, we constructed 3 alterna-
tive microenvironment models with respect to cell state
transitions (Fig. 1C) and implemented rather simple mass
action like behavior allowing for efficient model identifi-
cation. Interestingly, our unbiased approach supports the
current biological perspective of the diauxic shift which
assumes that cells reach quiescence through the ethanol
state [7, 18] by the identification of model Hj.

We subsequently used the microenvironment model
in our spatially coarse-grained framework to investigate
the impact of metabolic coupling on colony formation.
Our coarse-grain approximation can be considered as a
compromise between agent based modeling of individ-
ual cells typically based on many unknown parameters
and continuum strategies by computational expensive
partial differential equations. In particular, the coarse-



Intosalmi et al. BMC Molecular and Cell Biology (2019) 20:59

Page 8 0of 13

B

40 .
Glucose state Ethanol state Quiescent state
.30
<
£
E20
«
o
< 10
0 | | |
0 100 200
. 0 01 02 03 04 05 06 07 0 01 02 03 04 0 01 02 03 04 05 06 07
Time (h)
m Glucose Ethanol
Q 0.4 02
> 02 05 0.1 :
fa -
- 0.05 0.1
g . ——
s 0 0 0 0
1
] 0.1
L 02 08 05
® 0.05
-9 | — —
0 0 0 0
D my me my Glucose Ethanol Total cell mass
1 05 1 1 15
, ‘
5 s Petite
Zos 05 05 - 05
0 0 0 0 0 0
Total cell mass 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
at time 189 hours 1 0% ! ! ' 1
D Q 05_4 § " 05_:
0 0 0 0 0 0
0 100 200 0 100 20 0 100 200 0 100 200 0 100 200 0 100 200
1 05 1 1 15 |
:
05 05 i 05 05 S 05
0 0 0 0 S —— 0 (]
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
3 05 1 1 15 ;
1 fr——————
0 0 0 0 0 0
0 100 200 0 100 20 0 100 200 0 100 200 0 100 200 0 100 200

Time (h) Time (h)

Fig. 3 The calibration of the spatial framework and predictions on the colony morphology and colony composition. The colony composition is
illustrated for a quarter colony which contains full information of the symmetric colony. a Simulated colony footprint areas for wild type and petite
strain are plotted using black and red dashed lines, respectively. Experimental data from wild type and petite strains (three replicates from both
strains) are plotted using black and red solid lines, respectively. The black arrow indicates the wild type replicate which was used to calibrate the
model. The data from the petite strain is used only for validation purposes. b Isosurface illustration of the simulated colony shape and cell state
composition at time 121 hours. € Simulated cell state and nutrient distributions for wild type and petite strains at time 121 hours illustrated using
heatmaps. The shown vertical slice is located in the middle of the colony. d Simulated time-evolution of all model component all total cell mass at
different spatial locations. The exact coornitates (in mm) for illustrated point are (1,1, 1), (0.1,0.1,1.0), (0.1,1.5,0.2), and (0.1,0.1,0.1) (starting from
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grained cubes allowed the direct incorporation of the
inferred microenvironment model and information flux
based coupling between neighboring cubes enabled effi-
cient parameter calibration by Bayesian optimization in
a data-driven manner. While data-driven model param-
eterization would be also possible for the other spatial
modeling strategies by means of exhaustive parameters
sweeps, our approach can save a notable amount of com-
putational resources and increase accuracy by Bayesian
optimization. The role of this efficient optimization tech-
nique will become even more important when rich data
across the scales becomes available and a larger fraction
of model parameters can be calibrated together with the
spatial parameters.

Here, we applied our modeling strategy to yeast struc-
ture formation and could predict how metabolic cou-
pling is shaping the resulting multicellular entity in terms
of cell state and nutrient distributions in a dynamical
manner (Fig. 3D). Given the available data, our model

cannot explicitly discriminate between dead and quies-
cence cells and therefore does not include growth on
dead cell material. As a consequence our predictions do
not directly match reported colony organization [24] but
correspond to experimental results on yeast biofilm struc-
tures where quiescent cells are located at the periphery [9].
This discrepancy indicates the potential consequence of
metabolic coupling on multicellular development and dis-
tinct regulatory mechanisms. In the current version, our
model does also not include the effect of the extracellular
matrix (ECM) that can induce intra-colony chambers and
channels for nutrient transport to different spatial loca-
tions and may support growth under nutrient limited con-
ditions [10]. In this context, our finding on pronounced
ethanol and quiescent states within the middle of the
colony suggests a preferred interaction of these cells with
the ECM and will be investigated in future work. In a sim-
ilar way, the current version of the model does not include
agar invasion of the yeast cells which would induce spatial
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nutrient gradients leading to structural inhomogeneities.
These aspects will be investigated in an extended version
of the model by incorporating corresponding data on cell
death and agar invasion.

Even though our computational framework is presented
in the context of yeast colony modeling, our approach is
fully general and can be applied to model any multicellular
system. For instance, an interesting future application for
our method could be to study the role of metabolic cou-
pling and cellular heterogeneity during human glioblas-
toma tumor growth [25]. Our ultimate goal is to develop a
spatial framework that would allow simultaneous calibra-
tion of local and global parameters. Careful formulation of
the related statistical inference problem would also enable
at least semi-automatic experimental design planning. In
other words, the model calibration could be carried out
iteratively so that every iteration would not only provide
information about the parameters but also probabilistic
predictions on the most beneficial future measurements
in terms of quantities and time points.

Conclusions

In this study, we present a data-driven spatial frame-
work to computationally investigate the development
of multicellular yeast structure. Throughout the model
development process, we used state-of-the-art statistical
techniques to handle the uncertainty of model structure
and parameterization. Using our unbiased approach, we
could validate the underlying mechanism of the diauxic
shift and validated the model predictions against inde-
pendent experimental data illustrating the importance of
metabolic coupling in colony formation.

Methods

Growth curve data

The experimental procedures are detailed elsewhere [10].
In brief, growth curves in suspension of the FY4 (YAD145)
strain and its petite version YAD479 (that is unable to
metabolise non-fermentable carbon sources like ethanol)
were measured on a TECAN Sunrise (Tecan). Initially,
200 uL. were seeded from running cultures at 5 x 10°
cells/mL and cell number was monitored by optical den-
sity (OD) every 15 min for 88 hours in YPD medium con-
taining 2% glucose at 30°C. The growth data are provided
in a machine readable format as a part of the compu-
tational implementation and details about preprocessing
can be found in Additional file 1: Figure S1.

Colony footprint area data

Colony formation was measured by our custom built
colony imaging system (Scott and Dudley, unpublished
results). Colonies from single cells were grown on YPD-
agar plates with 5% glucose for 7.5 days in an incubator
at 30 °C, and photographed every 20 minutes. Typical
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distances of colonies at the end point measurements were
around 1 cm. Colony areas were extracted from each
image by a script for NIH Image] [26]. (See Additional
file 1 for details on image capture and analysis.)

Bayesian techniques for ODE model calibration

The parameters and structure of ODE models are
calibrated within the Bayesian framework (see e.g.
[27]). In brief, we link the model output with time-
course data D via the likelihood function 7 (DI|0y;, H;)
where 6y, is the parameter vector under the hypoth-
esis H; about the model structure (( = 1,...,n).
A Bayesian statistical model can be constructed by
combining the likelihood function with a prior dis-
tribution over the parameters, w(0y,|H;) [28]. Bayes’
theorem yields the parameter posterior distribution
7 (0m;|D, Hy) = n(DI0;, H)m (0p;|H;) /7 (DIH;), where
w(D|H;) is the marginal likelihood. The marginal like-
lihoods 7(D|H;) can be used to compute the poste-
rior distribution over the hypotheses, ie. w(H;|D) =
7w (D|Hy)7(H;)/ >} w(DIH;)7 (H;), where m(M;) is the
prior distribution over the alternative models. In this
study, the prior distribution over the alternative hypothe-
ses is assumed to be uniform.

Population-based Markov chain Monte Carlo sampling
Neither the posterior distributions nor the marginal likeli-
hoods can be analytically solved for our models and, con-
sequently, the posterior analysis needs to be carried out
using numerical techniques. For this purpose, we use the
population-based Markov chain Monte Carlo (MCMC)
sampling and thermodynamic integration [29, 30].

To implement a population-based Markov chain Monte
Carlo sampler, we consider a product form of the target
density

Ng

7" (05 - : O, IDH) = [ T 01D 1), ®
i=1

where 75, (0|D,H) n(D|OH)Pi(6|H) is the power
posterior for fixed temperatures 0 = f; < -+ <
Bny = 1 [29, 30]. The distributions mg;, including the
posterior distribution 7 (D6, H)r (0|H), are marginal dis-
tributions of the product form of the target density. By
means of population-based MCMC sampling, we draw
samples from the individual marginal distributions as well
as allow global moves between neighboring temperatures
(for details, see [29, 30]).

In this study, we select the temperatures according to
the formula

i—1

5
;= , i=1,...
pi <Nﬂ_1> l

»Ng, )
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and use altogether 30 temperatures (Ng = 30). Before
running the sampler, we use local gradient-based deter-
ministic multistart optimization to determine the highest
peak in each temperature and the corresponding points
are then used as an initial state for the sampler. For the
multistart optimization, we use our own optimization
routine which is implemented in Matlab according to the
guidelines given in references [31, 32]. The actual sam-
pling is run in two parts. First, 10° samples are drawn
so that the normal proposal distributions are adaptively
tuned based on the estimated covariance of the previous
7500 samples. After this burn-in and adaption period, the
proposal distributions are fixed and every 1000th sam-
ple is collected until 2500 samples are obtained. We run
four independent samplers under each alternative hypoth-
esis and the convergence of the chains is monitored by
means of the potential scale reduction factors [33] and
visual inspection over all temperatures. After checking the
convergence, the samples from four independent runs are
combined and the posterior analysis is carried out using
all 10* samples.

Bayesian optimization
The parameters of the spatial model are optimized by
using the Bayesian optimization technique which is tai-
lored for global optimization of cost functions [23, 34].
To calibrate the spatial model, we need to minimize a
target function y(x) : R? — R with respect to the param-
eters x (we note here that this notation applies only to this
subsection). The evaluation of the target function is com-
putationally costly and, to be able to find the minimum
using as few as possible function evaluations, we approxi-
mate y(x) by means of a Gaussian process f(x). Formally,
we can write

fx) ~ GP (0,k(x,x,0)), (10
where
4 (g — x>
k(x,x',0) =0, 1exp | — Z 72]‘ (11)
P 29k

is the squared exponential kernel function and # € R4+ is
a parameter vector (for details about Gaussian processes,
see e.g. [35]). We assume that the approximation error is
normally distributed i.e.

y(x) =f(x) +e, e~N (01 0‘ezrror) .

Based on the above definitions, the prior distribution for
the approximated function valuesf,, = f(x,),n =1,...,N
is the zero-mean multivariate normal distribution, i.e.

f1X ~ N(0, Zx x), (13)

where f = V(xl)rf(XZ): cee ;f(xN)]/r X :[XIyXZ; cee ;xn];
and {Zxx}; = k(x;,x;,0),i,j = 1,...,N. It follows also
that

(12)
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Y|x ~ N (0; EX,X + Uezr.rorl) ) (14)

where we have wused the above notation,
y= [y(xl),y(xz), .. ,y(xN)]/, and I is the identity matrix.
The marginal likelihood is p (y|X,0,02,,,) where we
have explicitly added the kernel parameters 6 and error
variance 02,,, to emphasize that the distribution and the
marginal likelihood depend on this parameterization.
Given a set of evaluated function values at certain points
given by y = [y(xl),y(xz), ... ,y(xN)]/, we can generate a
probabilistic prediction on the function value y(x*) at an
arbitrary point x* in the domain. The prediction about the
function value y(x*) can be generated in form of a random
variable y* which follows the joint distribution in Eq. 14.

By conditioning y* on the evaluated values, we obtain

-1
y*IX, Y, x* ~ N(ZX*,X (EX,X + Ue2rrorl) Y; (15)
(S +02100) — 2o X (EXX 02 10,D T Zxx),

where Xy x = [k(x*,x1,0), k(x*,x3,0), ..., k(X*,xn,0)],
Exxt = E;*,X, and Xy = k(x*,x*,0). The proba-
bilistic nature of the prediction makes it also possible to
predict the next point at which it is most beneficial to eval-
uate the function value in the context of a minimization
problem [23]. The optimal evaluation point can be cho-
sen by finding the point x* which maximizes the expected
improvement function

E[I(x")] = E [max(ymin —
where ymin is the minimum of the so far evaluated func-
tion values and Y = y*|X, y, x* (see e.g. [23] for details and

illustrative examples). The expected improvement (Eq. 16)
can be expressed in the closed form

E[Ix)] = O/min—) @ (ymms_y) ts¢ (ymms—y)
(17)

Y,0)], (16)

where ¢ and ® are the standard normal density and distri-
bution function, respectively, and y and s are the mean and
standard deviation of the normal distribution in Eq. 15,
respectively [23].

The actual optimization routine consists of two steps: (i)
fitting the response surface by maximizing p(y|X) (Eq. 14)
with respect to the hyperparameters (6,02,,,) and (ii)
finding the optimal point for next function evaluation by
maximizing the expected improvement (Eq. 16). The steps
are carried out sequentially and the response surface is
always fitted using a set of evaluated function values which
are standardized to have a zero mean and standard devia-
tion of one. In our implementation, the hyperparameters
of the Gaussian process model and the next evaluation
point with respect to the expected improvement are opti-
mized using fminunc and fmincon optimization routines
in Matlab, respectively. The hyperparameter optimization
is initialized using parameter values 6; = 6y = 603 =
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1,0error = 0.1 which correspond to a smooth Gaus-
sian process response surface. In the context of expected
improvement optimization, we utilize a multistart opti-
mization strategy for which the initial points are obtained
by means of Latin hypercube sampling (lhsdesign function
in Matlab). The sequential procedure is repeated until the
expected improvement goes under a threshold (1074 in
this study) or the maximum number of iteration steps (i)
and (ii) is reached.

Formal definition of the spatial framework

We discretize the space by dividing it into finite size ele-
mentary cubes each having a constant volume (see Fig. 2
for illustration). The cubes are indexed by their location
in a 3D array i.e. mass in different metabolic states at
different spatial locations can be expressed by writing

M i=1..,Ny j=1...,N, k=1..,Ng
where {n} € {g,e,q} denotes the metabolic state. The total
mass at each location can be computed by summing the

cell masses in distinct metabolic states, i.e.

k—i—mq‘

e
i ik’

mijk = m,g,,‘,k + ml,j,
The cubes interact through their fill levels and the cell
mass is flowing from a high concentration to a low con-
centration once a certain threshold is exceeded. The
amount of mass exceeding the threshold can be inter-
preted as pressure that pushes the cell mass onwards. This
pressure is computed based on a thresholded total mass
distribution over the space. The thresholded total mass at
a certain spatial location is defined by

th
;i = max(mjjx — th,0),

where th is the threshold parameter.

Mass movement
For mass movement modeling, the moving cell mass has
to reflect the fractions of cells in different metabolic states.
The fractions carried along can be taken to be propor-
tional to the cell state fractions in the source cubes (the
cubes from which the mass is moved). Consequently, the
mass movement is modled by
e
dt

_ » o {n} {n}
= )\m [F(mz,},kr ml—l,],k’ mi*l,j,k’ mi,j,k)
{n}
ik
{n} {n}
+F(mi,j,k) Mij—1k> mi,j—l,k’ mi,j,k
{n} {n}
FE (Mg M1 jor M iy g Py

B . {n} {n}
+F(mjj i Miji—1, m;ik—1 mi,j,k)

{n}
FE(Mijes Mg 1k My o 1

+F(mi,j,k’ mi,j,k+1’ mg;l'}k+11 ml[;l’]k)]i (18)
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where A, is the mass movement rate parameter,
F(m, m, m"™, m' "y =
5 g(m) = g(m')
(g(m) —g(m))%, gm) > g(m")
(g(m') —g(m) " ~, g(m) < g(m")

(19)

and g(m) = max(m — th, 0) is a function which takes care
of the thresholding with the parameter th. At the agar-
cell mass interface, the mass movement into the agar is
prevented by mapping the corresponding values of the
function F to zero.

To show that the mass is conserved through the move-
ment, we can consider mass movement between two ele-
mentary cubes m to . Based on our model structure, we
have

(20)
(21)

m = m®+ m® + m1

m/ — m/g+m/e+m/q
and the thresholded total cell masses in these two cubes
are

th

m"™ = max(m — th,0) (22)
m'™ = max(m’ — th, 0). (23)
Without losing any generality, we can assume mt > m'th,
Now
{n} {n}
dm"" = A E(m, 1t m{”}, m/{n}) = m'" (m’th—mth)
dt m
(24)
and
{n}
dm’ " 3 F (Wl/, ", m/{n}’ m{n})
dt
(25)
)
= Ay — (mth _ m/th) '
m
From Eqs. 24 and 25, we can deduce
dm dm't

e dt
which proofs mass conservation during the movement.
Since the net mass movement defined in Eq. 18 is a sum
of six pairwise movements, the mass is conserved also for
the net movement.

Nutrient transfer

The nutrient transfer can be described in a similar man-
ner as the mass movement but, in this context, we do
not need to threshold the distribution because nutrient
diffusion occurs freely in the media. Furthermore, nutri-
ent transfer can be simply defined by fluxes between the
neighboring cubes whereas in the context of mass move-
ment we had to take the fractions of different cell types
into account. If we consider the nutrient concentrations
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ni,j,k,i =1...,N;, j= 1,...,]\[,’, k=1,...,Ng, the

nutrient transfer can be described by
dl’li,/,k
7 = f(ni,j,k: ni—1,jk )Lagam Aco) (m1;— l,j,k)
+f(”i,j,k: Hit1,j,k> Magars Aco)L (Mg 1j,k)
+f (i ko ij—1,k Magars Aol (M1j-1,k)
+f (Mij o Mij1,k0 Magars Aol (M111,k)
+f(ni,j,kr jjk—1> *agars Acol) (M k1)
+f (ko> i k41 hagars AeoDd (M 1) (27)

Here,

/
f(ni,j,kr My y ks )Lagar: Acol) =

Aol —n), ifk >h+1lork=h+ Lk =k+1,
Aagar(n' — n), otherwise
(28)

where Aol and Aagyr are the nutrient transfer rate param-
eters within the colony and agar, respectively, and / is the
height of the agar given as the number of elementary cube
layers. The domain in which the nutrient transfer occurs
is determined by the indicator function

1, ifm >0

0, otherwise. (29)

I(m) = {
In other words, the mass distribution dependent domain
for the nutrient transfer consists of the cubes which have
a positive cell mass concentration.

Computational implementation

Mathematical models, population-based MCMC sampler,
and Bayesian optimization were implemented in Matlab
(The MathWorks Inc., Natick, MA, USA). ODE systems
were solved using the odel5s solver and the full multiscale
model was simulated using the Euler method with a time-
step of 0.0025 h.
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https://doi.org/s12860-019-0234-z.
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