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Abstract

Background: Toll-like receptor 9 is a key innate immune receptor involved in detecting infectious diseases and
cancer. TLR9 activates the innate immune system following the recognition of single-stranded DNA
oligonucleotides (ODN) containing unmethylated cytosine-guanine (CpG) motifs. Due to the considerable number
of rotatable bonds in ODNs, high-throughput in silico screening for potential TLR9 activity via traditional structure-
based virtual screening approaches of CpG ODNs is challenging. In the current study, we present a machine
learning based method for predicting novel mouse TLR9 (mTLR9) agonists based on features including count and
position of motifs, the distance between the motifs and graphically derived features such as the radius of gyration
and moment of Inertia. We employed an in-house experimentally validated dataset of 396 single-stranded synthetic
ODNs, to compare the results of five machine learning algorithms. Since the dataset was highly imbalanced, we
used an ensemble learning approach based on repeated random down-sampling.

Results: Using in-house experimental TLR9 activity data we found that random forest algorithm outperformed
other algorithms for our dataset for TLR9 activity prediction. Therefore, we developed a cross-validated ensemble
classifier of 20 random forest models. The average Matthews correlation coefficient and balanced accuracy of our
ensemble classifier in test samples was 0.61 and 80.0%, respectively, with the maximum balanced accuracy and
Matthews correlation coefficient of 87.0% and 0.75, respectively. We confirmed common sequence motifs including
‘CC’, ‘GG’,‘AG’, ‘CCCG’ and ‘CGGC’ were overrepresented in mTLR9 agonists. Predictions on 6000 randomly generated
ODNs were ranked and the top 100 ODNs were synthesized and experimentally tested for activity in a mTLR9
reporter cell assay, with 91 of the 100 selected ODNs showing high activity, confirming the accuracy of the model
in predicting mTLR9 activity.

Conclusion: We combined repeated random down-sampling with random forest to overcome the class imbalance
problem and achieved promising results. Overall, we showed that the random forest algorithm outperformed other
machine learning algorithms including support vector machines, shrinkage discriminant analysis, gradient boosting
machine and neural networks. Due to its predictive performance and simplicity, the random forest technique is a
useful method for prediction of mTLR9 ODN agonists.
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Background
Toll-like receptors (TLRs) represent an ancient evolution-
ary host immune defense system. There are 13 expressed
TLR genes in mice (10 in humans), and each is devoted to
recognizing a distinct set of pathogen associated molecu-
lar patterns (PAMPs) that are not found in healthy verte-
brate cells, making them an important tool to help fight
infections [1]. TLRs 1, 2, 4, 5 and 6 are extracellular and
are situated in the plasma membrane where they bind
bacterial cell wall components such as lipoteichoic acids,
lipopolysaccharides, lipoproteins, and flagella. TLRs 3, 7,
8, 9 are located in endosomes where they recognize spe-
cific nucleic acid sequences expressed by various patho-
gens [2]. The extracellular signaling domain of TLR9
forms a horseshoe shaped dimer that forms a sandwich
that clasps two CpG oligonucleotides (ODN) resulting in
the cytoplasmic domains coming into close proximity
thereby triggering downstream signaling [2]. Upon activa-
tion, TLR9 triggers an innate immune response character-
ized by the production of pro-inflammatory cytokines
such as TNF-α, IL-1, IL-6, and IL-12.
Some synthetic single-stranded ODNs that contain

unmethylated CpG motifs mimic bacterial DNA and can
bind and activate TLR9 leading to cytokine secretion
and enhancement of adaptive immune responses. Syn-
thetic TLR9-active ODNs have shown utility as vaccine
adjuvants and anti-cancer immunotherapeutic agents.
To identify a good TLR9 ligand, typically a large library
of ODNs needs to be synthesized and screened on cell
lines, which is a time consuming and expensive task. We
hypothesized that modern in silico high-throughput
screening (HTS) methods may improve the ability to
identify novel highly active TLR9 ligands. In silico
screening, also known as virtual screening (VS), has been
widely used to enrich datasets with compounds that
have a higher probability of binding to the target of
interest [3–5], and has an advantage over traditional
screening or physical HTS due to its massively parallel
processing ability; hence millions of compounds can be
assessed economically in parallel. This is particularly im-
portant when the search space for potential ODNs TLR9
ligands is taken into consideration. A typical single-
stranded ODN TLR9 agonist is 24 nucleotides in length,
which amounts to 424 total number of possible ODNs.
VS methods are of two major classes based on the

availability of structural information. If the 3D structure
of a receptor is known, structure-based virtual screening
(SBVS) [6] techniques such as homology modeling, mo-
lecular docking and molecular dynamics can be used.
However, if the structural information of the receptor is
lacking, then ligand-based virtual screening (LBVS) [7]
techniques such as quantitative structure-activity rela-
tionship and machine learning are more appropriate.
SBVS involves molecular complex optimization to find

the most favorable 3D binding conformation of the
ligand. Consequently, SBVS is unsuitable for high-
throughput screening of ligands like 24-mer ODNs,
which have over 100 rotatable bonds. On the other
hand, LBVS is computationally inexpensive, easy to use
and might therefore be useful in the screening of TLR9
activating ODNs.
In a recent review, Murgueitio et al. [8] discussed the

use of various computational approaches to investigate
the structure and function of TLR receptors. To dis-
cover potential TLR ligands. Zatsepin et al. [9] screened
a library of 1.8 million commercially available com-
pounds to discover TLR9 antagonists by using compu-
tational chemistry and cell-based assays. The authors
reported 21 potential TLR9 antagonists with IC50
lower than 10 μM, with five of them having IC50 values
below 1 μM. Zhou et al. [10] constructed a 3D structure
of human TLR9 ectodomains, complexed with CpG
ODNs using homology modeling, then used molecular
docking to study the interactions between TLR9 and
the ODNs. They reported that leucine rich region
(LRR)-11 was the main region in TLR9 responsible for
ODN binding. The authors further reported that five
positively charged residues within LRR11 were specific-
ally involved in the ODN binding to TLR9. Nagpal
et al. [11] reported a support vector machine model to
predict ODNs with TLR9 activity with the model
achieving a maximum Matthews Correlation Coeffi-
cient of 0.75 with an accuracy of 87%.
TLR9 ligand prediction tools require availability of

well-annotated ODN datasets with experimentally deter-
mined TLR9 activity data. Machine learning (ML) based
techniques such as decision trees, random forest, sup-
port vector machines and neural networks can then be
applied to such ODN datasets. ML is an umbrella term
for statistical models built to discover patterns in exist-
ing data to explain unseen data. ML models are very
powerful tools that have been used in the past to predict
and classify the pharmacokinetics or toxicological pro-
files of compounds [12], predict biological activities or
toxicity [13] and assist in screening and optimization of
compounds [5].
To our knowledge, this is the first report on the use of

random forest-based approaches to predict novel
mTLR9 ligands based on an in-house experimentally val-
idated ODN dataset, with 91% prediction accuracy
shown by experimental validation.

Results
The main goal of this study was to build a ML model
that could distinguish ODNs that have high activity for
mTLR9 from ODNs with low activity. We used 117
ODNs with known high mTLR9 activity, as positive
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examples while 274 ODNs with low activity were used
as negative examples.

Motif analysis
We first analysed the dataset to understand the occur-
rence of sequence motifs in mTLR9 activating ODNs.
We observed an uneven distribution of motifs with a
few motifs such as ‘GG’ or ‘CC’ present in 57% of the
ODNs in the high activity group compared to only 13%
of the ODNs in the low activity group. Figure 1 shows
the percentage of ODNs in the top 20 motifs arrange in
a clockwise manner, based on the absolute difference in

the percentage of occurrence in high and low mTLR9
activity groups of ODNs. All motifs having an absolute
difference above 10% are shown in Additional file 1.
We further analyzed the effect of motif occurrence on

the mTLR9 activity score in the high and low activity
groups of ODNs in the dataset. Using the Mann-
Whitney U test we compared the median mTLR9 activ-
ity score of ODNs with a motif to those without the
motif for the two classes and calculated the p values.
The significance threshold was set at 0.05. Figure 2
shows the effect of top 20 motifs occurrence in high
(Fig. 2a) and low (Fig. 2b) mTLR9 active group of

Fig. 1 Top 20 motifs in mTLR9 active ODN arranged in clockwise manner based on the absolute difference in the percentage of occurrence in
high and low activity groups of ODNs. The width of the ribbon shows average percent composition of the motifs in each group
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ODNs. The darker colored bars stand for a significant
difference in the median mTRL9 activity score (p < 0.05)
due to the presence of the motif in the ODNs. The dot-
ted line is the median mTLR9 score of 0.53 and 0.18 for
the high and low activity groups of ODNs, respectively.
Within the low activity group (Additional file 2), we
found that presence of motifs such as ‘CC’, ‘GG’, ‘GGC’,
‘GCC’, ‘CCCG’ and ‘CGGC’ significantly increases the
median mTLR9 activity score, while the presence of mo-
tifs e.g. ‘TGT’, ‘CGCGT’ and ‘TCT’ further lowers the
activity of ODNs. In contrast, we found presence of
‘CGTT’ motif to significantly improve while ‘AG’ motif
to significantly decrease the median mTLR9 activity
score of the ODNs in the high activity group (Add-
itional file 3). Since there was no single motif that could
account for the mTLR9 activity score of the ODNs, we
surmised that the combination of motifs and their inter-
action with the TLR9 receptor was responsible for deter-
mining overall mTLR9 activity.

Model selection
Mean classification levels achieved by all algorithms in
different k-fold cross validation schemes when applied to
20 bootstrap test samples obtained using the down-sam-
pling technique are shown in Fig. 3. We found that over-
all RF model either outperformed or was on par with the
other prediction algorithms in all four cross validation
schemes. In five-fold cross validation the best rates were

achieved by the RF and SVM model with a maximum
balanced accuracy of 95.65% and mcc of 0.91 (Add-
itional file 4). The mean balanced accuracy and mean
MCC for RF model in five-fold cross validation was
77.8% and 0.57, respectively, with standard deviations of
0.08 and 0.15, respectively (Table 1). In ten-fold cross
validation, RF and GBM achieved the best results with
the maximum balanced accuracy and mcc of 89.13% and
0.78, respectively (Additional file 5). The mean balanced
accuracy and mcc for the RF model in ten-fold cross val-
idation was 78.9% and 0.60, respectively, with standard
deviations of 0.06 and 0.11, respectively (Table 1). In 15-
fold cross validation the best results were achieved by
RF and SVM with the maximum balanced accuracy and
mcc of 86.9% and 0.74, respectively (Additional file 6).
The mean balanced accuracy and mcc for the RF model
in 15-fold was 77.0% and 0.55, respectively with standard
deviations of 0.06 and 0.11, respectively (Table 1). In 20-
fold cross validation random forest achieved the best re-
sult with the maximum balanced accuracy and mcc of
87.0% and 0.75, respectively (Additional file 7). The
mean balanced accuracy and mcc of RF model was
79.7% and 0.61, respectively, with standard deviations of
0.05 and 0.09, respectively (Table 1). Overall, the RF al-
gorithm outperformed in all other ML methods, for dif-
ferent cross-validation values. We therefore selected RF
with the 20-fold cross-validation scheme, having max-
imum mean balanced accuracy and MCC and minimum
standard deviation on both measures, to perform the

Fig. 2 The effect of top 20 motifs in the high (a) and low (b) mTLR9 activity group of ODNs in the dataset. The darker bars represent a significant
difference in the median mTLR9 activity score due to the presence of motif in the ODNs. The dotted line shows the median mTLR9 activity of
0.53 and 0.18 for the ODNs in the high and low activity groups, respectively, in the dataset
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mTLR9 activity predictions for the randomly generated
ODN dataset.

External validation
External validation is the final step to evaluate the realis-
tic performance of any prediction model. In this tech-
nique, the performance of the model is evaluated on a
new dataset not used in training or testing the model.
To rigorously evaluate the performance of our model,
we randomly generated 6000 24-mer ODN sequences
using an in-house written Python script and then
screened and ranked these randomly generated ODN for
mTLR9 activity using our RF model. These ODNs were
not present in our original dataset of 396 ODNs used
for model building or training, and as they were virtual
we had no prior knowledge of their likely mTLR9 activ-
ity at the time of model prediction. Our RF model pre-
dicted 545 of these 6000 random ODNs to be of high
activity and we selected the top 100 for chemical synthe-
sis, and then experimental tested them for mTLR9 activ-
ity using the RAW-Blue reporter cell line that expresses
mTLR. Ninety-one (91%) of the predicted high activity

ODNs had a mTLR9 activity value above 0.4, confirming
the high accuracy of the model in predicting ODN
sequences with positive mTLR9 activity (Fig. 4). This
demonstrates that our mTLR9-specific RF prediction
model is rigorous, with a strong performance on making
predictions on a completely independent dataset.

Discussion
In this study we demonstrated the feasibility of using an
RF model for in silico screening of synthetic ODNs to
detect high activity mTLR9 agonists. Multiple sequence
features such as simple counts of nucleotides, the dis-
tance between motifs and graphically derived features
like the moment of inertia were calculated before build-
ing the RF model. We observed higher occurrence of
several motifs such as ‘CGGC’, ‘CCCG’, ‘GCC’, ‘CGG’,
‘GGC’, ‘CCG’, ‘CCC’, ‘GG’ and ‘CC’ in high activity as
compared to low activity ODNs. This means that these
cytosine and guanine rich motifs along with the key
unmethylated CpG dinucleotide contribute to strong
mouse TLR9 activation. Interestingly, this is in contrast
with the thymine rich motifs reported for TLR9

Fig. 3 Mean and standard deviation of Balanced Accuracy rates of the five classifiers on the twenty bootstrap test samples using k-fold cross-
validation scheme. Mean balanced accuracy rate of RF model was greater than all five algorithms in all the folds
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stimulatory ODNs by Nagpal et al. [11]. This may be
due the fact that our ODN training set was mouse spe-
cific whereas the dataset used by Nagpal et al. [11] was
not specific to any organism. On further analysis we
found 15 and 4 motifs which significantly increased, or
decreased, respectively, mTLR9 activity in the low activ-
ity group (Additional file 2), whereas, we found only 3
and 4 motifs in the high activity ODNs which signifi-
cantly (p value < 0.05) increased or decreased, respect-
ively, mTLR9 activity (Additional file 3). Furthermore,
we discovered motifs which significantly decreased
mTLR9 activity in both low and high groups. For ex-
ample, ‘CGCGTG’ and sub motifs like ‘GCGTG’ and
‘CGCGT’, decreased the activity of ODNs in both the
high and low groups. However, we were unable to iden-
tify motifs that increased mTLR9 activity for both
groups of ODNs. This suggests that a combination of
motifs might be required to increase activity of ODNs in
the high group whereas the activity of low ODNs can be
improved even by inclusion of a single motif. Co-
occurrence of motifs and their effect on mouse TLR9 ac-
tivity can be analyzed in the future to discover combina-
tions of motifs responsible for the increase in the activity
of ODNs in both groups.
The performance of the RF model was compared to

other methods, which were trained on the same data.

The average classification accuracy achieved by all the
methods when applied to 20 bootstrap test samples in
four different cross-validation schemes is shown in Fig.
3. The results demonstrated that the RF model had the
superior performance on the test datasets in most of the
scenarios. The GBM and SVM classifiers also had rea-
sonable classification accuracy rates, however, RF out-
performed them in 20-fold cross validation scheme.
The selected RF model on average correctly classi-

fied 79.1% of the ODNs in the training set with high
activity for mTLR9 and 80.2% of ODNs with low ac-
tivity. The RF thereby achieved an overall balanced
accuracy of 79.7%.
Finally, the RF model was used to virtually screen

6000 randomly generated ODNs from which it predicted
545 ODNs to have high activity for mTLR9. Due to large
number of predicted positive hits, the top 100 ODNs
were selected for synthesis and testing for mTLR9 activ-
ity in vitro. Ninety one out of the 100 synthesized ODNs
were found to have mTLR9 activity above the cutoff of
0.4 for high activity ODNs confirming the prediction po-
tential of the RF model. However, Fig. 4 shows that the
majority of predicted ligands had an activity value ran-
ging from 0.5 to 0.7, which indicates that the model
might need to be further fine-tuned to get even higher
activity ligands, with a much larger dataset than the

Table 1 Mean and standard deviation (SD) values of the balanced accuracy and Matthews Correlation Coefficient (MCC) for all five
learning algorithms in 20 bootstrap test samples. The best values in each fold category are underlined with the overall best in bold

Algorithm Cross-validation Mean balanced accuracy SD balanced accuracy Mean MCC SD MCC

RF 5-fold 77.8% 0.08 0.57 0.15

GBM 5-fold 76.8% 0.07 0.55 0.12

SDA 5-fold 74.6% 0.08 0.50 0.14

SVM 5-fold 77.1% 0.08 0.55 0.16

NN 5-fold 74.1% 0.07 0.50 0.13

RF 10-fold 78.9% 0.06 0.60 0.11

GBM 10-fold 77.7% 0.05 0.57 0.10

SDA 10-fold 75.8% 0.06 0.53 0.11

SVM 10-fold 78.4% 0.05 0.58 0.11

NN 10-fold 72.9% 0.05 0.48 0.10

RF 15-fold 77.0% 0.06 0.55 0.11

GBM 15-fold 76.9% 0.06 0.55 0.11

SDA 15-fold 73.5% 0.06 0.49 0.11

SVM 15-fold 76.3% 0.05 0.53 0.11

NN 15-fold 72.6% 0.07 0.47 0.15

RF 20-fold 79.7% 0.05 0.61 0.09

GBM 20-fold 78.5% 0.07 0.58 0.12

SDA 20-fold 76.1% 0.08 0.54 0.14

SVM 20-fold 75.4% 0.05 0.52 0.09

NN 20-fold 74.9% 0.07 0.52 0.13
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randomly generated 6000 oligonucleotides screened to
find high activity ligands.

Conclusions
In this study we found several sequence motifs that help
explain the mTLR9 activity of CpG ODNs. Motifs in-
cluding ‘CGTT’, ‘GGC’, ‘GCC’ and ‘CCCG’ significantly
improved, whereas motifs such as ‘AG’, ‘TCT’ and
‘CGCGT’ significantly decreased, the activity of mTLR9
ODNs. Further, we developed and validated an RF
model for predicting ODNs with mTLR9 activity. The
results showed that the RF method was well suited for
predicting high activity mTLR9 specific ODNs and out-
performed various other learning algorithms such as
SVM, SDA, NN and GBM. The model was used to
screen a random library of 6000 ODNs and correctly
identified 91 out of 100 ODNs that were subsequently
confirmed to have mTLR9 activity. This shows the
power of machine learning models for discovering novel
TLR9 agonists. The lead mTLR9 active ODN candidates
from the above studies are now being tested as vaccine
adjuvants and anti-cancer agents in relevant mouse
models.

Materials and methods
Preparation of the dataset
The quality of the training dataset determines the qual-
ity of the resulting machine learning model. Missing or
insufficient data, mislabeling of the target variable, and
irrelevant features may complicate the learning task
and hinder the performance of the trained model. The
sequences of ODNs with experimentally determined
mTLR9 activity were obtained from in-house data we
generated on synthesized ODNs that were character-
ized using a mouse TLR9 expressing reporter cell line
(RAW-Blue cells, Invivogen, USA). The dataset con-
sisted of 396 ODNs with mTLR9 activity values ranging
from 0.0 (no activity) to 1.14 (high activity). The ODNs
were grouped into two classes (Fig. 5) based on their
respective activity value (i.e. 0.4 and above: high activity
and below 0.4: low activity), resulting in a high activity
group (count 117) and a low activity group (count 279).
To ensure data quality, it is customary to check and re-
move any outliers, impute the missing data, check, and
assign the variables the correct datatype. Our dataset
had neither missing values nor outliers and therefore,
no further action was required in cleaning the dataset.
However, to avoid overtraining the model with similar

Fig. 4 Measured mTRL9 activity values of the 100 top predicted TLR9 active ODNs. The dotted black line is the cutoff value for the ODNs in the
high activity group used in building the model
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ODNs, the diversity of the dataset was increased by
limiting the similarity within the group. This was
achieved by clustering the ODNs within a group using
the binary fingerprint features we developed during this
study and applying a clustering cutoff of 0.85 to remove
similar ODNs. This resulted in the removal of five
ODNs from the low activity group with 274 remaining.
All ODNs in the high group (count 117) were dissimilar
enough not to breach the similarity cutoff and were
retained.
In our training dataset, the number of ODNs with

low mTLR9 activity was approximately 2.5 times
more than the number of ODNs with high mTLR9
activity. Therefore, we used the down-sampling tech-
nique to balance the dataset, so that 50% of the sam-
ples were derived from the set of ODNs with high
activity and 50% from the set of ODNs with low
activity. Subsequently, the down-sampled dataset was
subdivided into training (80%) and testing (also
known as validation) sets (20%), using a random sam-
pling technique and the ODNs in the test set were
excluded from model training. In order to choose the
best classifier with k-fold cross validation, the

performance of our models were measured using 20
down-sampled test sets. The overall methodology
adopted in the study is shown in Fig. 6.
In Table 2, we present the composition of the

dataset used in this study. For each instance, the
training dataset was composed of 188 ODNs (derived
from 94 ODNs with high and low mTLR9 activity
each). The test dataset used to evaluate the perform-
ance of a model was composed of 46 ODNs (23 each
from the two groups of high and low mTLR9 activ-
ity). For the prediction set, we used an in-house py-
thon script to randomly generate 6000 24-mer
ODNs, to capture the diversity of the 24-mer CpG-
ODN universe. Every ODN in the prediction set was
classified using the selected model and cross-
validation scheme in a loop. For the final prediction,
a consensus of the 20 predictions were taken for
each ODN in the prediction set. Finally, the top 100
high activity predicted ODNs were selected for syn-
thesis and experimental testing using the RAW-Blue
reporter cell line assay. The training and test set
ODNs along with experimental activity information
are available in Additional file 8.

Fig. 5 The measured mTLR9 activity value of all the synthesized 24-mer ODNs in the dataset. The ODNs were divided into two groups of high
(shown in purple) and low (shown in green) activity using a cutoff score of 0.4, based on the optimal density (OD) results from the Raw-blue
reporter cell assay
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Molecular feature calculation and selection
It is possible to generate a large number of features for
the ODN sequence data that can be used to construct
machine learning models. However, there are several
problems in using all the possible features as (i) some of
the features may be highly correlated (ii) some may not
be relevant and may contribute to the noise in the model
and (iii) using a large number of features may lead to
overfitting. Additionally, constructing models with many
features is computationally demanding [14]. Therefore,
one of the most important aspects of creating a good
ML model is the choice of appropriate features that can
help explain the behavior of interest based on Occam’s
Razor principle (i.e. simple models are more likely to be
closer to reality than complex models.) [15]. While there
are a variety of features used in bioinformatics for se-
quence data, we used the binary fingerprint features and
numerical features, including count and position of mo-
tifs, distance of the motifs with respect to the start pos-
ition and graphically derived features such as the
moment of inertia and radius of gyration, to train the
model [16].

Fingerprint features
To generate fingerprint features, a fasta formatted file
containing all high activity ODN sequences was analysed
using an in-house Perl subroutine, to chop each se-
quence into motifs of increasing length from two to six
nucleotides and record the start positions of the motifs.
For example, with a small hypothetical ODN ‘TCG’ of
three nucleotides, two dinucleotides motifs TC1, CG2
and a trinucleotide TCG1 motif were generated. Finally,
a dictionary of the motifs with at least 10% difference in
the occurrence rate in low and high group of ODNs
(count 67) was prepared. Subsequently, the dictionary
was used to generate the binary fingerprint pattern for
each sequence, where 1 showed the presence of a motif
while 0 indicated its absence.

Count of nucleotides
Different patterns of nucleotide usage in ODNs may lead
to varied mTLR9 activity. Therefore, all nucleotide char-
acters (A, T, G, C) were counted in a sequence and the
Perl built-in dictionary data structure, hash, was used to
store the count of each nucleotide. Ambiguous nucleo-
tide characters or gaps were ignored if present.

Calculating the distance between motifs with respect to
their start positions
The most commonly occurring motifs were used to cal-
culate the distance between motif features along with
their specific location. To map the position of a motif in
the ODNs, the sequence of each ODN was scanned for
the presence of a motif and all the positions where each
motif occurs were recorded. Using eqs. (1)–(3), the

Fig. 6 Flowchart of methodology adopted

Table 2 Composition of the training and test sets at any
instance

Dataset Training set Testing set Total

High 94 23 117

Low 94 23 117

Total 188 46 234

Prediction set _ _ 6000
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distance between the second and first, third and first
and the third and second occurrence of the motifs were
calculated for all the motifs.

d motif 2 1 ¼ p2� p1þ n ð1Þ
d motif 3 1 ¼ p3� p1þ n ð2Þ
d motif 3 2 ¼ p3� p2þ n ð3Þ

where d_motif is the distance, p3, p2 and p1 are the pos-
ition 3, position 2 and position 1 of the motif respect-
ively, and ‘n’ is the number of nucleotides before the
latter motif. In the case of the absence of a motif, 0 was
substituted in the equation. It is important to keep ‘n’ in
the equation to provide the specific location of the
motifs within an ODN, because the calculated dis-
tance between motifs could be same in several ODNs.
For example, in a sequence S1 = TATGCGTTCG-
TACTTGATCTGAC, the distance between CG motifs
is 9–5 = 4. Similarly, for another sequence S2 =
TGCTTTCTTGTCGTGCGGGCTGT, the distance be-
tween the CG motifs is 16–12 = 4, again. However,
the descriptor d_CG2_1 value for S1 and S2 are 12
and 19, respectively, with the addition of n to the
simple distance formula of d_motif.

Graphically derived features
The graphical representation of DNA sequences have
been used for many applications including assessing
phylogenetic relationships [17], characterization of
neuraminidase gene in H5N1 avian flu [18] and for de-
scribing similarity/dissimilarity of DNA sequences [4].
In order to derive features, the 24-mer ODN sequences
were represented as a 2D-graph, as previously described
[16]. Briefly, each base in the sequence is represented
as a material point on the graph which is treated as a
rigid body and follows the rules of Newtonian dynam-
ics. Numerical features such as the center of mass (μx,
μy), the principal moment of inertia(I11, I22) and radius
of gyration (Rg) were calculated for each sequence as
described in [16].

Feature selection
There are several feature selection methods used in
machine learning to remove redundant or irrelevant
features. These can be broadly divided into filter
methods (e.g. correlation matrix, information gain,
Chi-square score, principal component analysis,
regression coefficients, variable importance) and wrap-
per methods (e.g. forward/backward selection, ran-
domized methods that combine PLS with the genetic
algorithm or Monte Carlo algorithm) [19–21]. Filter
methods are easy to implement because there is no
learning involved and depend only on the application

of a cut-off value to reject features due to the low
importance in the model construction. In the wrapper
methods, the performance of a learning algorithm is
evaluated to select the optimum subset of features
therefore, it is a very computationally expensive
process [19] and is best suited for a limited number
of features. Furthermore, filter methods work well for
text mining [19], and are applicable for ODN features,
which are essentially nucleotide “words.”
Due to the large number of fingerprint features avail-

able (67 in total), we first filtered out the constant and
near-constant features (features with < 0.3 standard de-
viation) also known as zero and near zero variance fea-
tures using the caret package in R. Constant or near
constant features take a unique value across samples
and are uninformative. This resulted in the removal of
26 features. Since these features are binary in nature,
we also checked and removed any linear combinations
of features if present. This resulted in the removal of
31 features. To understand the distribution in the high
and low group of ODNs we created a Cricos plot using
the circlize package in R [22]. For all numerical fea-
tures in addition to removing zero and near zero vari-
ance features we also calculated the correlation matrix
and filtered out features that were highly correlated.
The correlation coefficient was set at 0.85 and features
with correlation above the cutoff value were removed.
We then normalized the remaining features using cen-
tering and scaling techniques to make them unit inde-
pendent. Subsequently, we merged the fingerprint and
numerical features to give us a merged set of 40 fea-
tures, listed in Table 3.

Learning algorithms
In the current study, five ML algorithms, i.e. random
forest, gradient boosting machine, shrinkage discrimin-
ant analysis, support vector machine and neural network
were compared, and the best performing model was
chosen for the prediction of novel mTLR9 active ODNs.
To have a non-biased assessment of the performance, k-
fold cross-validation was followed where one instance of
the down-sampled training data was further divided into
k partitions. The value of k varies from 5, 10, 15 to 20.
For each partition, ODNs not included in the training
were considered part of the testing dataset. Finally, the
testing data of the instance was used to evaluate the
classification accuracy of the model, with the best model
selected for prediction on an independent validation
dataset. A graphic representation of the general proced-
ure is given in Fig. 6.

Random Forest algorithm
The Random Forest (RF) algorithm was introduced by
Breiman in 2001 [23] and is one of the most powerful
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ensemble machine learning technique that make predic-
tions by averaging over several independent base
learners in order to identify the class label for unknown

instances. The base learners are usually the Classification
and Regression Trees (CART) constructed using a sam-
ple with replacement from the training data with the

Table 3 Features used in this study

S.no Feature Description Type

1 A Count of A nucleotides Numerical

2 T Count of T nucleotides Numerical

3 G Count of G nucleotides Numerical

4 C Count of C nucleotides Numerical

5 d_CG2_1 Distance between occurrences 2 and 1 of CG motif Numerical

6 d_CG3_1 Distance between occurrences 3 and 1 of CG motif Numerical

7 d_CG3_2 Distance between occurrences 3 and 2 of CG motif Numerical

8 d_AG2_1 Distance between occurrences 2 and 1 of AG motif Numerical

9 d_AG3_1 Distance between occurrences 3 and 1 of AG motif Numerical

10 d_AG3_2 Distance between occurrences 3 and 2 of AG motif Numerical

11 d_GG2_1 Distance between occurrences 2 and 1 of GG motif Numerical

12 d_GG3_1 Distance between occurrences 3 and 1 of GG motif Numerical

13 d_GG3_2 Distance between occurrences 3 and 2 of GG motif Numerical

14 d_CC2_1 Distance between occurrences 2 and 1 of CC motif Numerical

15 d_CC3_1 Distance between occurrences 3 and 1 of CC motif Numerical

16 d_CC3_2 Distance between occurrences 3 and 2 of CC motif Numerical

17 d_TCT2_1 Distance between occurrences 2 and 1 of TCT motif Numerical

18 d_TCT3_1 Distance between occurrences 3 and 1 of TCT motif Numerical

19 d_TCT3_2 Distance between occurrences 3 and 2 of TCT motif Numerical

20 d_TTC2_1 Distance between occurrences 2 and 1 of TTC motif Numerical

21 d_TTC3_1 Distance between occurrences 3 and 1 of TTC motif Numerical

22 d_TTC3_2 Distance between occurrences 3 and 2 of TTC motif Numerical

23 d_TGT2_1 Distance between occurrences 2 and 1 of TGT motif Numerical

24 d_TGT3_1 Distance between occurrences 3 and 1 of TGT motif Numerical

25 d_TGT3_2 Distance between occurrences 3 and 2 of TGT motif Numerical

26 PMI1 Principal Moment of Inertia 1 Numerical

27 PMI2 Principal Moment of Inertia 2 Numerical

28 Mu_x Center of mass in x direction Numerical

29 Mu_y Center of mass in y direction Numerical

30 CG1 Presence of CG at position 1 Fingerprint

31 GC1 Presence of GC at position 1 Fingerprint

32 GT1 Presence of GT at position 1 Fingerprint

33 GT18 Presence of GT at position 18 Fingerprint

34 GCG6 Presence of GCG at position 6 Fingerprint

35 GT22 Presence of GT at position 22 Fingerprint

36 GT21 Presence of GT at position 21 Fingerprint

37 CGCG5 Presence of CGCG at position 5 Fingerprint

38 GC5 Presence of GC at position 5 Fingerprint

39 GT12 Presence of GT at position 12 Fingerprint

40 TC9 Presence of TC at position 9 Fingerprint
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controlled variation. RF can be used for both classifica-
tion and regression tasks. It can manage missing values,
outliers efficiently and perform well with imbalanced
datasets. The detailed account of RF methodology is
present in the literature [23, 24]. Briefly RF takes advan-
tage of two powerful statistical techniques, bagging and
random feature selection. In bagging each tree is trained
on a bootstrap sample (sampling with replacement) and
the predictions are made by the majority vote of the
trees. Furthermore, in RF instead of using all the fea-
tures, RF randomly selects a set of features to split at
each node when growing a tree. To assess the perform-
ance of the RF algorithm, RF performs a type of cross-
validation using the out-of-bag (OOB) samples (samples
which are not included in the training set). The concept
of variable importance is inbuilt in the RF algorithm and
the importance is measured by the Gini impurity criter-
ion index [25]. We used the caret package in R to evalu-
ate the performance and developed an ensemble of 20
different RF models for final prediction. The mtry par-
ameter was tuned using the tuneGrid argument in the
train function.

Performance metrics
The accuracy of the five ML algorithms was measured
by presenting the prediction results in the form of a con-
fusion matrix and the variety of performance measures
were calculated based on the following statistical
measures:

� TP, true positives – the total number of correctly
classified high activity ODNs.

� TN, true negatives – the total number of correctly
classified low activity ODNs.

� FP, false positives – the total number of low activity
ODNs incorrectly classified as high activity ODNs.

� FN, false negatives – the total number of high
activity ODNs incorrectly classified as low activity
ODNs.

Using the measures above, a series of statistical met-
rics were computed including sensitivity (Se), specificity
(Sp), Balanced Accuracy (Ba), Matthews correlation co-
efficient (MCC) and precision.
The recall rate for the members of the positive class

(high activity ODNs) is given by sensitivity, in eq. (4):

senstivity ¼ TP
TP þ FN

ð4Þ

Similarly, the recall rate for the members of the
negative class (low activity ODNs) is given by specifi-
city, in eq. (5):

specificity ¼ TN
TN þ FP

ð5Þ

The balanced accuracy of the model was calculated
based on the eq. (6):

balanced accuracy ¼ senstivityþ specificity
2

ð6Þ

We then calculated the MCC from eq. (7); the coeffi-
cient returns a value between + 1 and − 1. The higher
the value of the coefficient, the better the classification
result.

mcc ¼ TP�TNð Þ− FP�FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð7Þ
Finally, the precision was computed to measure the

reproducibility of the results, in eq. (8):

precision ¼ TP
TP þ FP

ð8Þ

Mouse RAW-blue TLR9 reporter cell assay
RAW-Blue™ cells are derived from the murine RAW 264.7
macrophage cell line with chromosomal integration of a
secreted embryonic alkaline phosphatase (SEAP) reporter
construct inducible by NF-κB and AP-1 and were ac-
quired from InvivoGen. The presence of agonists of
mouse TLR9 activates downstream signaling pathways
leading to the activation of NF-κB and AP-1, and the sub-
sequent secretion by the RAW cells of SEAP. Levels of
SEAP in the culture supernatant are measured chromato-
graphically using the detection medium QUANTI-Blue™.
RAW-Blue cells were cultured in DMEM supplemented
with 10% (v/v) heat-inactivated fetal bovine serum,
penicillin-streptomycin 10,000 U/mL (Gibco), and Nor-
mocin 100 μg/mL (InvivoGen). Subsequently, RAW-Blue
cells were seeded at a density of approximately 1 × 105
cells/well in a volume of 180 μL/well in a flat-bottom 96-
well culture plate (Greiner-One). ODNs were diluted in
saline and added to the culture plate containing RAW-
Blue cells to the total volume of 200 μL. After culturing
the cells for 3 h, the levels of SEAP were determined in
the supernatant with QUANTI-Blue™ Solution (Invivo-
Gen) by reading the absorbance at wavelength of 650 nm.
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1186/s12860-019-0241-0.

Additional file 1. Sequence motifs in mTLR9 active ODNs having an
absolute difference in the occurrences above 10% in high and low
activity groups of ODNs, arranged in a clockwise manner. The width of
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the ribbon shows the average percentage composition of the motifs
each group.

Additional file 2. The effect of ODN motif occurrences on the median
mTLR9 activity in the low activity group. The median RAW-Blue activity
for all the ODNs in the low activity group was 0.18. Increase or decrease
in the median activity values due to the presence of a motif are coloured
green and red, respectively, with statistically significant values in bold.
The significance threshold was set at p-value < 0.05. The motifs are ar-
ranged in alphabetical order.

Additional file 3. The effect of ODN motif occurrences on the median
mTLR9 activity in the high activity group. The median RAW-Blue activity
for all the ODNs in the high activity group was 0.53. Increase or decrease
in the median activity values due to the presence of a motif are coloured
in green and red, respectively, with statistically significant values in bold.
The significance threshold was set at p value < 0.05. The motifs are ar-
ranged in alphabetical order.

Additional file 4. Results of five-fold cross-validation.

Additional file 5. Results of ten-fold cross-validation.

Additional file 6. Results of fifteen-fold cross-validation.

Additional file 7. Results of twenty-fold cross-validation.

Additional file 8. ODNs used as test and training sets for building the
prediction model, along with activity information.
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