
BMC Molecular and
Cell Biology

Bhandari et al. BMC Molecular and Cell Biology           (2020) 21:85 
https://doi.org/10.1186/s12860-020-00331-9
RESEARCH ARTICLE Open Access
Transcriptome and proteome profiling

reveal complementary scavenger and
immune features of rat liver sinusoidal
endothelial cells and liver macrophages
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Abstract

Background: Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the
body’s most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from
modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype
pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping
functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs
in vitro, or species differences. We therefore characterized and quantitatively compared expressed gene products of
freshly isolated, highly pure LSECs (fenestrated SE-1/FcγRIIb2+) and KCs (CD11b/c+) from Sprague Dawley, Crl:CD
(SD), male rats using high throughput mRNA-sequencing and label-free proteomics.

Results: We observed a robust correlation between the proteomes and transcriptomes of the two cell types.
Integrative analysis of the global molecular profile demonstrated the immunological aspects of LSECs. The
constitutive expression of several immune genes and corresponding proteins of LSECs bore some resemblance
with the expression in macrophages. LSECs and KCs both expressed high levels of scavenger receptors (SR) and C-
type lectins. Equivalent expression of SR-A1 (Msr1), mannose receptor (Mrc1), SR-B1 (Scarb1), and SR-B3 (Scarb2)
suggested functional similarity between the two cell types, while functional distinction between the cells was
evidenced by LSEC-specific expression of the SRs stabilin-1 (Stab1) and stabilin-2 (Stab2), and the C-type lectins
LSECtin (Clec4g) and DC-SIGNR (Clec4m). Many immune regulatory factors were differentially expressed in LSECs
and KCs, with one cell predominantly expressing a specific cytokine/chemokine and the other cell the cognate
receptor, illustrating the complex cytokine milieu of the sinusoids. Both cells expressed genes and proteins involved
in antigen processing and presentation, and lymphocyte co-stimulation.
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Conclusions: Our findings support complementary and partly overlapping scavenging and immune functions of
LSECs and KCs. This highlights the importance of including LSECs in studies of liver immunity, and liver clearance
and toxicity of large molecule drugs and nano-formulations.

Keywords: Sprague Dawley rat, Sinusoidal endothelial cells, Kupffer cells, Macrophages, Transcriptomics, Proteomics,
Immune functions, cell markers, Scavenger receptors
Background
The liver has a central role in host defense [1, 2]. Its ex-
tensive capillary network, the sinusoids, houses the
body’s most effective scavenger cell system comprising
the Kupffer cells (KCs; the body’s largest reservoir of
resident macrophages [3]), and liver sinusoidal endothe-
lial cells (LSECs). For decades KCs, facing the sinusoidal
lumen, were believed to be the only liver cell responsible
for the clearance of blood-borne material [4, 5]. This
view was challenged by a series of studies throughout
the 1980s and 1990s showing that a number of physio-
logical macromolecules and colloids were cleared chiefly
by LSECs, but only to a minor extent by KCs [6–15].
Today it is accepted that LSECs and KCs together make
up the hepatic “dual cell principle of waste clearance”,
with LSECs being geared to effective clathrin-mediated
endocytosis of nanoparticles (< 200 nm), colloids, and
macromolecules, and KCs taking up larger material [5].
The discovery that these cells share the task of blood
clearance in this way suggested that LSECs are a highly
specialized endothelium with characteristics in common
with KCs, not only functionally, but at the molecular
level as well. The present study was undertaken to study
the similarities and differences of the two cells, by com-
paring their transcriptomes and proteomes.
The liver receives approximately 25% of cardiac out-

put, exposing the sinusoidal cells to large volumes of
blood, thus placing these cells in a unique position to
monitor blood content. Approximately 80% of the organ
blood supply drains the gut and contains (in addition to
nutrients) toxins, bacterial components, viruses, and
various waste products that are efficiently removed from
blood by uptake in LSECs and KCs [5, 15], thus prevent-
ing deposition and deleterious effects of such compo-
nents elsewhere. LSECs show an extraordinarily high
capacity for uptake of soluble macromolecules and
nanoparticles, including virus [10, 11, 15–23]. For this
purpose, LSECs express several high affinity endocytosis
receptors, some of which are pattern recognition recep-
tors. These include the scavenger receptors (SRs)
stabilin-1 and stabilin-2 [24, 25], the macrophage
mannose receptor (CD206) [17], and the endocytic Fc-
gamma receptor IIb2 (FcγRIIb2, CD32b) [26]. In
addition, LSECs express several Toll-like receptors
(TLRs) [27–29], and in mice, the cells are reported to
possess adaptive immune functions, including cross-
presentation of endocytosed antigens to naïve CD8+ T-
cells contributing to the generation of memory T-cells
important for liver immune tolerance [1, 27, 30–32]. In
contrast to KCs, LSECs are normally not phagocytic but
can take up 1 μm particles if KCs are depleted [33].
Due to the overlapping functions of LSECs and KCs as

scavenger cells [1, 2, 5], the large endothelial cell diver-
sity between different vascular beds [34, 35], and the lack
of standardized methods for LSEC isolation and identifi-
cation between different research groups [36, 37], LSECs
have been described as a cell of controversial and con-
fusing identity [37]. For instance, the pan-leukocyte
marker CD45 is often used as a negative selection criter-
ion for isolation of mouse and human LSECs by immune
based methods but is reported to be expressed in rat
LSECs [36, 38]. Furthermore, LSECs rapidly dedifferenti-
ate in culture [39, 40], which poses a problem for long-
term co-cultures with e.g. lymphocytes in immune as-
says. This highlights the importance of using early pri-
mary cells when exploring cell functions and molecular
expression patterns, and mapping LSEC and KC gene
and protein expression in different species used in bio-
medical research.
In order to resolve some of the discrepancies in the lit-

erature regarding LSEC and KC markers and molecular
phenotypes, we directly compared the transcriptome and
proteome of freshly isolated rat LSECs and KCs. Studies
comparing the gene/protein expression of LSECs and
KCs are rare. To the best of our knowledge only two
studies, both done in C57Bl/6 mice, have compared the
proteome of liver resident cell populations [41, 42], but
without discussing LSEC scavenger or immune func-
tions. Our study represents the first comprehensive mul-
tiomics profiling and comparison of rat KCs and LSECs.
Based on our findings we conclude that LSECs differ
from other types of endothelial cells due to their distinct
immunological features.

Results
Isolation of LSECs and KCs using SE-1 and CD11b/c yields
highly pure cell preparations
An overview of the transcriptomics and proteomics ex-
periments and purity tests of cells used in the experi-
ments is given in Fig. 1. LSECs and KCs were purified
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Fig. 1 Overview of experimental workflows and cell purity tests. a. Schematic overview of the high-throughput transcriptomics and label-free
proteomics workflows. b. Purity of SE-1-MACS-isolated liver sinusoidal endothelial cells (LSECs) and CD11b/c-MACS-isolated Kupffer cells
(KCs). Cell isolates were analyzed by scanning electron microscopy (EM) (LSECs: n = 6, including all cell isolates for proteomics and RNA
sequencing; KCs: n = 4, including all isolates for proteomics), and immune cytochemistry (KC: n = 4, LSEC: n = 3, including all cell isolates for
proteomics). Results are presented as % of total cell count (mean ± standard deviation). Antibodies (Table 1) targeted either stabilin-2 (LSEC
marker), SE-1/FcγRIIb2 (LSEC marker), CD11b/c (KC marker), or glial fibrillar acidic protein (GFAP, stellate cell marker). N.d., not determined. c-d.
Scanning electron micrographs showing the typical morphology of MACS-isolated cells. Insert in c shows LSEC fenestrations (hallmark of LSECs),
which were absent in KCs (d). e. Expression level of marker genes for LSECs, KCs, and hepatic stellate cells (HSC) in the KC and LSEC
transcriptomes and proteomes. Expression values are given as RPKM (RNA-seq), and iBAQ (label-free proteomics), as described in Methods
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by magnetic-activated cell separation (MACS) of non-
parenchymal liver cell (NPC) suspensions generated
from collagenase perfused rat liver, then plated for 0.5 h
(KCs) or 1 h (LSECs) and washed with medium before
RNA and protein extraction (Fig. 1a). For LSEC, we used
the SE-1 monoclonal antibody [43, 44] (Table 1), which
targets FcγRIIb2 [45] and has been previously tested for
Table 1 Antibodies used in the study

Antibody (clone) Target

Flow cytometry antibodies and isotype controls

CD45-PE (OX-1) CD45, PTPRC

PE Mouse IgG1 IgG1 κ isotype control

HSECa antibody (SE-1) -AF488 CD32b, FcγRIIb2

Mouse IgG2a AF488 (MG2a-53) IgG2a κ isotype control

CD31-eFluor 660 (TLD-3A12) CD31, PECAM-1

Mouse IgG1k- eFluor 660
(P3.6.2.8.1)

IgG1 κ isotype control

Immune staining of cells and tissues

HSECa antibody (SE-1) CD32b, FcγRIIb2

CD11b/c Biotin (OX-42) CD11b/c, CR3

CD163 (ED2) CD163

CD68 (ED-1) CD68 antigen, macrosialin

GFAP Glial fibrillary acidic protein

Human MMR/CD206 CD206, macrophage mannose
receptor

SR-A1/MSR Macrophage scavenger receptor A1

SR-B1 Scavenger receptor B1

Rabbit anti-rat HA/SR serumb Stabilin-2, STAB2

CD45 (OX-1) CD45, PTPRC

CD31 (TLD-3A12) CD31, PECAM-1

Magnetic-activated cell sorting

HSECa antibody (SE-1) CD32b, FcγRIIb2

CD11b/c Biotin (OX-42) CD11b/c, CR3

Anti-Mouse IgG2a + b MicroBeads IgG2a + b
aHSEC, hepatic sinusoidal endothelial cell
bStabilin-2 was named the hyaluronan-scavenger receptor (HA/SR) in reference [24]
Secondary antibodies used for immune labeling of cells and tissues were all species
MACS-based purification of rat LSECs [43]. The isolated
cells were > 97% LSECs (i.e. fenestrated endothelial cells),
as examined by scanning electron microscopy (SEM),
and 96.6% were stabilin-2 positive by immune staining
(Fig. 1b-d). The few contaminating cells were KCs and
stellate cells. A monoclonal antibody to CD11b/c (Table
1), targeting complement receptor 3 (CR3) was used to
Company/
Reference

Catalog # Working
concentration

Novus Biologicals NB100–64895PE 0.85 μg/ million cells

BD Pharmingen 555749 0.2 μg/ million cells

Novus Biologicals NB110–
68095AF488

1 μg/ million cells

Novus Biologicals NB600-986AF488 0.65 μg/ million cells

eBioscience 50–0310-82 0.2 μg/ million cells

eBioscience 50–4714 0.2 μg/ million cells

Novus Biologicals NB110–68095 10 μg/ml

Cedarlane CL042B 2 μg/ml

AbD Serotec MCA342GA 10 μg/ml

Abcam ab31630 20 μg/ml

Dako Z0334 15 μg/ml

R&D Systems AF2534 2 μg/ml

Novus Biologicals NBP1–00092 12 μg/ml

Novus Biologicals NB400–104 10 μg/ml

(24) 1:200

Novus Biologicals NB100–64895 10 μg/ml

Invitrogen MA1–81051 10 μg/ml

Novus Biologicals NB110–68095 0.2 μg/million NPCs

Cedarlane CL042B 0.1 μg/million NPCs

Miltenyi 130–047-201 2 μl/million NPCs

-matched AlexaFluor antibodies from Invitrogen (ThermFischer)
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purify KCs. This yielded 94.9% KCs - contaminating cells
were 3.1% LSECs and 1.6% stellate cells (Fig. 1b).
Quantitative expression of marker genes used for cross

validation of the transcriptomics and proteomics data
are listed in Fig. 1e. Consistent with SEM and immuno-
cytochemistry analysis of MACS-isolated cells, expres-
sion of macrophage and stellate cell markers were low in
the LSEC transcriptomes and proteomes, whereas ex-
pression of LSEC and stellate cell markers were low in
the KC transcriptomes and proteomes.
To check the hepatic intralobular distribution of cells

expressing SE-1 (i.e. FcγRIIb2), and CD11b/c, frozen rat
liver sections were stained with the same antibodies used
for MACS-isolation of cells (Fig. 2). The SE-1 antibody
showed a strict sinusoidal staining pattern, colocalizing
with the LSEC marker stabilin-2 [24, 46, 47] in all sinu-
soids (Fig. 2a, b). Most CD11b/c positive cells were
Fig. 2 Immune histochemistry of acetone-fixed frozen rat liver sections. Th
against a-b) stabilin-2 (STAB2; green fluorescence), and FcγRIIb2 (SE-1; red f
CD11b/c (red fluorescence). Antibodies are listed in Table 1. Pv, portal vein
located in the periportal region and showed a different
staining pattern than stabilin-2 (Fig. 2c).

Global information generated from omics data profiling
In the RNA-seq experiment 10,306 genome features
were deemed expressed and included in the subsequent
analyses, while in the label-free proteomics experiment
2996 non-redundant protein IDs were deemed expressed
and included in the further analyses. Principal compo-
nent analysis (Fig. 3a) segregated the LSEC and KC sam-
ples into disparate clusters coherent with the distinct
biology of the cells.
Figure 3b illustrates the total number of gene products

identified with the respective techniques, and their over-
lap, in the LSEC and KC groups. The proteome covered
26–27% of the transcriptome. Notably, most proteins
(90.8–91.5%) identified in the proteome had valid
e sections were double immune-labeled with primary antibodies
luorescence), or against c) stabilin-2 (STAB2; green fluorescence), and
. Nuclei were stained with DAPI (blue fluorescence in overlay images)



Fig. 3 Global characterization and comparison of the LSEC and KC transcriptome and proteome datasets. a. Principal component analysis (PCA)
plot displaying distinct clusters of the LSEC and KC samples in transcriptome and proteome datasets created by high-throughput mRNA
sequencing (RNA-seq), and label-free proteomics (LFP). PCA plots are generated from normalized log2 expression values (RPKM for RNA-seq, and
iBAQ for LFP). b. Venn diagrams illustrating the number of gene products identified in the respective experiments (RNA-seq, LFP), and their
overlap. c. Scatter plots illustrating the global correlation between the RNA-seq data and the LFP data. Results for LSECs and KCs are shown
separately. d. Volcano-plot illustrating differently expressed genes. Blue dots: significantly higher expression in LSECs; red dots: significantly higher
expression in KCs; gray dots: not significantly different between LSECs and KCs. Significance level: FDR≤ 0.05 and |log2 fold change|≥ 1. e. Scatter
plot showing correlation of KC vs. LSEC log2 fold change values for all features expressed in both the transcriptome and proteome datasets. The r
value of 0.74 indicates that approximately two thirds of the gene products are consistently significantly differentially expressed between LSECs
and KCs with respect to mRNA and protein expression (FDR≤ 0.05 and |log2 fold change|≥ 1)
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corresponding mRNA in the transcriptome. To evaluate
the coherence between the transcriptome and proteome,
we calculated the global Pearson correlation coefficient r
using the expression data between the omics datasets for
each cell type. The global correlation r value was 0.57
for LSECs, and 0.63 for KCs (Fig. 3c) which are in the
upper end of the previously reported range of 0.4–0.6
[41, 48] supporting the reliability of the data.
Differentially expressed gene products are key to un-

derstanding phenotypic and functional variation between
cell types. The results of the differential expression ana-
lyses of the RNA-seq data, and the proteomics data are
summarized in Fig. 3d. We identified 2109 gene prod-
ucts in the transcriptome (20.5%) as significantly differ-
entially expressed (with cutoff of FDR (false discovery
rate) ≤ 0.05 and |log2 fold change| ≥ 1) in LSECs and
KCs. Similarly, in the proteome, 886 proteins (~ 30%)
were significantly differently expressed in the two cells
(with cutoff of FDR ≤ 0.05 and |log2 fold change| ≥1).
Despite differences in percentage of differentially
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expressed gene products in the RNA-seq and proteomics
experiments, the log2 fold changes for the unique gene
products identified in both datasets showed high correl-
ation (r = 0.74 [95% CI: 0.72–0.75]) (Fig. 3e), suggesting
good congruence between the two techniques.

LSECs and KCs show enrichment of terms reflecting their
ontogeny
We used ranked gene lists based on expression level
from the RNA-seq experiment as input for gene set en-
richment analysis (GSEA) [49, 50] to identify the intrin-
sic functional characteristics of LSECs and KCs. GSEA
showed enrichment of 268 biological processes in LSECs
and 121 biological processes in KCs with FDR q-value
≤0.05 corresponding to Gene Ontology (GO) terms [51,
52] in the Molecular Signatures Database [49, 53] that
concur with the generic role of these cells (Add-
itional file 1; Fig. 4). Like other endothelial cells, LSECs
are involved in development, morphogenesis, patterning
and maintenance of blood vessels, and displayed enrich-
ment of gene sets associated with response to vascular
endothelial growth factor and regulation of WNT, BMP,
and TGFβ signalling pathways. KCs, being macrophages,
displayed enrichment of terms related to adaptive and
innate immune responses.
Expression of genes associated with endocytic func-

tion, cytoskeleton organization, and positive regulators
of endocytosis, such as 1-phosphatidylinositol-4-phos-
phate 5-kinase (Pip5klc), phospholipase D1/2 (Pld2), in-
tegrin subunit beta1 (Itgb1), GTPase Hras, clathrin
adaptor protein (Dab2), caveolin1 (Cav1), and E3 ligase
NEDD4 (Nedd4) were higher in LSECs than in KCs
(Additional file 2). Moreover, LSECs showed higher ex-
pression of transport-related proteins such as EH
domain-containing protein 3 (Ehd3), which is suggested
to be involved in transport of stabilin-1-positive vesicles
[39], adaptor-related protein complex 1 beta 1 subunit
(Ap1b1), and sorting nexin (Snx) 8 and 33, which are as-
sociated with vesicular transport (Additional file 2).
Interestingly, RNA-seq of LSECs revealed high expres-
sion of genes coding for connective tissue components
such as Sparc, Col4a1, Col4a2, Egfl7, and Mfge8, indicat-
ing a significant role of these cells in extracellular matrix
maintenance and remodeling of liver (Additional file 2).
Transcription factor Gata4, which is essential for LSEC
differentiation [39, 47] was specifically expressed in the
LSEC transcriptome (Additional file 2).

Most gene products involved in KC immune functions are
also expressed in LSECs
Genes associated with the term immune system pro-
cesses (GO:0002376) include 2645 annotated objects in
the rat genome database (December 13, 2019). Of these,
we found 1466 expressed genes in the RNA-seq data,
and 554 expressed genes in the label-free proteomics ex-
periments that were associated with the term (Fig. 5a;
Additional file 3). Both cells expressed numerous im-
mune genes - the majority of which were expressed at
low density but more abundant in KCs compared to
LSECs. To ascertain the immunological role of expressed
genes we performed functional enrichment analysis
(DAVID 6.8 [54, 55]) of genes with expression values
≥10 RPKM (reads per kilobase of exon model per mil-
lion mapped reads [56]) separately in the LSEC and KC
RNA-seq datasets. The threshold 10 RPKM was set to
increase the confidence of the results. The immune
terms that were significantly enriched (FDR ≤ 0.05) in
KC and LSEC transcriptomes were similar, and each
term contained almost similar number of expressed
genes in the two cells (Fig. 5b).

Both cell types show high expression of scavenger
receptors and immune lectins
LSECs and KCs express a variety of SRs, C-type lectins,
and TLRs [16, 17, 27–29]. We found that both cells
expressed many SRs and immune lectin gene products
at high densities, of which some were cell type specific
(Fig. 6a; Additional file 4), providing the capacity of
rapid sensing and clearance of various danger molecules.
Among these were the macrophage mannose receptor
(Mrc1) and macrophage SR-A1 (Msr1) which were
abundantly expressed both in the LSEC and KC tran-
scriptomes and proteomes (Fig. 6a) and confirmed by
immune cytochemistry (Fig. 6c). The high-density lipo-
protein receptor SR-B1 (Scarb1) was also equally
expressed in the rat LSEC and KC transcriptomes, but at
low density, and were not identified in the cell pro-
teomes. However, immune labelling experiments vali-
dated SR-B1 protein expression in both LSECs and KCs
(Fig. 6c), in accordance with [57]. Of note, CD36, a reli-
able LSEC marker in human liver [58] was evidently
expressed in rat KCs but was very low in rat LSECs (Fig.
6a). Same receptor was previously reported to be absent
from Sprague Dawley rat LSECs in western blot and im-
mune fluorescence experiments [59].
Stabilin-1 (Stab1) and stabilin-2 (Stab2) were

expressed at much higher densities in the LSECs than in
KCs (Fig. 6a-b). Immune labeling of NPCs (Fig. 6c) and
frozen rat liver sections (Fig. 2) for stabilin-2 confirmed
LSEC specific expression and a typical LSEC distribution
pattern in all hepatic zones of this protein, in accordance
with [60] supporting the use of stabilin-2 as a specific
pan-LSEC marker. Furthermore, rat LSECs showed high
mRNA and protein expression of Clec4g (LSECtin) and
Clec4m (DC-SIGNR) (Fig. 6a, b), as was also reported in
a study of human LSECs [61], where Clec4g was used as
a specific LSEC marker in liver single cell transcriptome
studies [62].



Fig. 4 (See legend on next page.)
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Fig. 4 Dot plot showing selected enriched terms in KC and LSEC transcriptomes, belonging to GO biological processes in the Molecular
Signatures Database (MSigDB) [53]. The Normalized Enrichment Score reflects the degree of overrepresentation of the genes in a gene set across
the entire ranked list of genes after adjusting for differences in gene set size, and correlation between the gene sets and the RNA-seq expression
data. Dot size represents the number of genes assigned to the specific process, and dot colour represents the associated FDR q-value generated
from the GSEA analysis
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Some of the receptors reported in the literature to dis-
criminate KCs from other liver cells, were also expressed
in the LSEC transcriptome. These included Marco, Cd5l,
Clec4f, Cd163, lgals3, and Cd68 (Fig. 6a, b). However,
their transcript level in KCs were significantly higher
compared to LSECs, and their abundance in the LSEC
proteome was low. Immune labeling of NPCs for CD163
(not shown) and CD68 showed staining of KCs only
(Fig. 6c) and labeling of rat liver sections for CD68
together with the LSEC marker stabilin-2 showed a
staining pattern of CD68 that is typical for KCs (Add-
itional file 5), supporting the proteomic results.
Several TLRs were detected in LSECs and KCs tran-

scriptomes (Additional file 3). The abundance of Tlr4, 5,
6, 7, 8, 10, 11, and 12 mRNA was significantly higher
(FDR ≤ 0.05) in KCs, whereas Tlr2, 3, and 13 were not
significantly different. The only TLR identified by prote-
omics at steady state was TLR3 which was identified in
both cells.

Immune regulatory factors expressed by LSECs and KCs
When reviewing genes annotated with cytokine receptor
binding (GO:0005126), cytokine receptor activity (GO:
0004896), complement activation (GO:0006956), and
complement receptor activity (GO:0004875), we identi-
fied 209 genes in the transcriptome (out of 551 objects
associated under the terms), and 54 proteins in the
proteome (Additional file 6). Low protein identification
may be due to the fact that these genes are normally
expressed at low levels in non-stimulated cells from
healthy animals (as analyzed in this study), and many
gene products associated with the terms represent se-
creted proteins, mostly found extracellularly. Thus, the
bulk of gene products affiliated with the terms were only
detected in the transcriptome, and at low level. Many
were also differently expressed in the LSEC and KC
transcriptomes (Fig. 7a).
Figure 7b-c reflects the complex cytokine milieu of the

sinusoids. LSECs showed significantly higher expression
of the cytokine receptors Tgfbr3, Il6st, Osmr, Il1r1 and
Lifr (Fig. 7b) enabling them to sense and respond to the
cytokines Tgfb3, Osm, Il1b and Lif in paracrine and
autocrine manners. Tgfb3, Osm, and Il18 were more
abundantly expressed by KCs (Fig. 7c). LSECs also
expressed high levels of Ackr3 (Fig. 7b) which is in-
volved in scavenging and degradation of chemokines,
thus regulating their levels in the hepatic sinusoids. KCs
showed significantly higher expression of the cytokine
receptors Il6r and Csf3r, and chemokine receptor Cxcr4
(Fig. 7b), which allow KCs to respond to Ccl24, Cxcl12,
Ccl2, Ccl6, and Ccl7 in an autocrine or paracrine man-
ner (Fig. 7c).
The expression of colony stimulating factor receptors

Csf1r, Csf2ra and Csf3r were also higher in KCs (Fig.
7b). Of these, Csf1r and Csf2ra were detected by proteo-
mics, being significantly higher in KCs (Additional file
6). Interaction of colony stimulating factor receptors
with their ligands, e.g. Csf1 and Csf2 which were abun-
dantly expressed in LSECs (Fig. 7c), affects KC matur-
ation [63], underlining the importance of LSECs for
proper KC function.
The complement system is an important part of the

innate immune system. Hepatocytes are major producers
of complement proteins, whereas NPCs regulate comple-
ment activation [42]. Gene products representing com-
plement receptors (Fig. 7d), and triggers of complement
activation (C1qa, C1qb, C1qc; Fig. 7e) were significantly
more abundant in the KC transcriptome and proteome
datasets, whereas the expression of the C1 inhibitors
C1qbp and Serping1 was similar in the two cells (de-
tected only in the transcriptome; Fig. 7e).

LSECs express the machinery needed for antigen
presentation and lymphocyte activation
A series of studies in mouse models suggest that LSEC
cross-presentation of exogenous soluble antigens to
naïve T cells is central to maintaining liver immune tol-
erance (reviewed in [1]). However, there are some con-
troversies [37]. As LSECs rapidly dedifferentiate in
culture [39, 40] and cells are cultured for several days in
lymphocyte stimulation experiments, the in vivo contri-
bution of LSECs in adaptive immunity may be difficult
to extrapolate from in vitro experiments. There may also
be species differences. We therefore investigated the
basal expression of gene products associated with anti-
gen processing and presentation (GO:0019882), and
lymphocyte co-stimulation (GO:0031294) in rat LSECs
and KCs (Additional file 7). The expression of tap-
transporters, immunoproteases, and lysosomal enzymes
involved in processing and intracellular traffic of anti-
gens, were similar in the transcriptomes and proteomes
of both cells except for Ctse (cathepsin E) and Ctss



Fig. 5 (See legend on next page.)
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Fig. 5 Expression of immune genes in rat LSECs and KCs. a. Unscaled heatmaps of normalized log2 expression values (log2 (RPKM+ 1), and log2
(iBAQ+ 1)) for all gene products associated with the term immune system processes (GO:0002376) in the KC and LSEC transcriptome and
proteome. b. The figure shows significantly enriched GO terms (FDR≤ 0.05) associated with immune functions, and the density of corresponding
genes with expression ≥10 RPKM in the LSEC and KC transcriptomes
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(cathepsin S) which were significantly more abundant
in the KCs (Fig. 8a-b). Expression of MHC class II
genes was detected in both cells, but significantly
higher in KCs (Fig. 8c). Concerning co-stimulatory
molecules, LSECs expressed significantly higher levels
of some gene products involved in activation of T-
cells (Cav-1, Dpp4, Cd40, Cd320, and Efnb1), while
KCs showed an abundance of gene products from
the B7/CD28 superfamily (Cd80, Cd86, Btla, Icoslg)
(Fig. 8d). Btla, Icoslg, and Cd4 were expressed in
both cells, but significantly higher in KCs. BTLA
[64], and CD4 [65] are also reported in human
LSECs.
A minor subset of rat LSECs expresses the pan leukocyte
marker CD45
CD45 is reported to be widely expressed in rat LSECs,
with high expression in periportally located LSECs, and
low expression in mid-zonal LSECs [38, 66]. We here re-
port low expression of CD45 in the LSEC transcriptome,
and an even lower expression in the LSEC proteome
compared to KCs (Fig. 9a). In order to explore this fur-
ther, we did flow cytometry of NPCs, and CD45 and
stabilin-2 double immune labelling of rat liver sections
(Additional file 8). We did not observe a clear co-
localization of CD45 with the LSEC marker stabilin-2 in
the sinusoids, suggesting either absence or low expres-
sion of CD45 in rat LSECs in general or expression in a
small subpopulation of these cells. We then performed
multicolor flow cytometry (Fig. 9b-f) of rat liver NPCs
labeled with antibodies to CD45, SE-1/FcγRIIb2 (specific
LSEC marker), and CD31 (pan endothelial cell marker;
Additional file 8). NPCs from the 25–45% Percoll gradi-
ent interface were used instead of SE-1-MACS-isolated
LSECs to eliminate any selection bias. Using strict gating
(Additional file 8), we found that 4.0% (±1.06, n = 4) of
small, low complex, live-gated SE-1+ cells were
CD31+CD45+ (Fig. 9g), suggesting expression of CD45
in a small subpopulation of LSECs.
LSECs from normal liver have been reported to not

express CD31on the cell surface [67] but in our flow cy-
tometry experiments (Fig. 9g) this marker was shown to
be expressed in 97.4% (±1.80, n = 4) of SE-1 positive
cells. Immune staining of liver sections showed positive
staining in all vasculature, albeit weaker in LSECs than
in other endothelia (Additional file 8).
Discussion
The liver cells facing the blood are represented almost
entirely by KCs and LSECs. These two cells make up the
most important clearance system for removal of blood
borne macromolecules and particles that are incompat-
ible with blood homeostasis [5]. This avid scavenger ac-
tivity thus fulfills a central role in liver immunity [1, 2]
but at the same time poses a serious challenge, namely
unwanted uptake of large molecule drug compounds
[23]. Curiously, few studies have been undertaken to de-
termine similarities and differences between LSECs and
KCs on gene expression and/or proteome levels. Only
two comprehensive studies, both done in the inbred
C57Bl/6 mouse, have compared liver resident cell popu-
lations at the proteome level [41, 42]. The study by Azi-
mifar et al. [41] focused on the distinct functional roles
of various hepatic cell types in cholesterol flux, cellular
trafficking, and growth receptor signaling, whereas Ding
et al. [42] presented an integrated omics analysis focus-
ing on communication and co-ordination between hepa-
tocytes and NPCs, in particular KCs. Against this
background we found it timely to carry out a high-
throughput mRNA transcriptome and proteome expres-
sion study of the two types of specialised hepatic scaven-
ger cells in rat, and focus on the analysis of immune
function genes. We chose the outbred Sprague Dawley
rat to cover a wide number of genotypes. This rat strain
has been widely used in LSEC blood clearance and hep-
atotoxicity studies [16].
Our omics analysis revealed expression of a great

number of genes related to immune functions in both
cells. As expected in non-stimulated cells, most of these
genes were expressed at low density; however, the great
number of expressed immune genes supports the central
role for both cells in liver immunity. LSECs seem to be
unique among endothelial cells in this respect. Nolan
et al. [35] used microarray profiling to compare primary
microvascular endothelial cells isolated from liver and
several other organs in C57BL/6 mice, and found signifi-
cant heterogeneity between transcriptomes of the differ-
ent endothelial cell populations. We did DAVID
enrichment analysis [54, 55] on the liver specific gene
list (Additional file 9) obtained by pairwise comparison
of their LSEC gene expression data (GEO public
database-Series GSE47067 [35]) with expression data for
other organ-specific endothelial cells included in their
study, and found enrichment of terms associated with
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Fig. 6 Expression of scavenger receptors and immune lectins in rat LSECs and KCs. a. Unscaled heatmaps of normalized log2 expression values
(log2 (RPKM+ 1), and log2 (iBAQ+ 1)) for scavenger receptors (SR) and C-type lectins in the KC and LSEC transcriptomes and proteomes.
Underlined: Genes expressed in the transcriptome that were also present in the proteome. b. Absolute abundance of selected SR gene products
in the KC and LSEC transcriptomes and proteomes. The bar height reflects good correlation between the transcriptome and proteome data for
gene products of Clec4g, Clec4m, Stab1, and Stab2 in both cell types. The abundance of gene products of Marco and Cd5l were well correlated
between the KC transcriptome and proteome, while LSECs showed high abundance of these gene products only at mRNA level. c. Immune
labeling of non-parenchymal liver cell (NPC) cultures for selected SRs and C-type lectins. NPCs from the 25–45% interface on the Percoll gradient
were incubated for 1 h, then fixed 15min in 4% paraformaldehyde, and double immune-labeled with antibodies to FcγRIIb2 (SE-1; red
fluorescence; left column), or CD68 (red fluorescence; right column), and to either stabilin-2 (STAB2; green), mannose receptor (MRC1; green), SR-
A1 (green), or SR-B1 (green). Overlap of green and red fluorescence is seen as yellow staining in the overlay images. Antibodies are listed in Table
1. Cell nuclei were stained with DAPI (blue). Arrow heads point to CD68 positive KCs. Antibodies to stabilin-2 and FcγRIIb2 (SE-1) specifically
labeled LSECs and the CD68-antibody specifically labeled KCs, whereas positive labeling for the mannose receptor, SR-A1, and SR-B1 was
observed in both LSECs and KCs
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immune functions in the LSECs (Additional file 9). Nei-
ther this mouse study [35], nor our present study in rat
address the possibility of the existence of functionally
different LSEC subpopulations. A recent single-cell tran-
scriptomics analysis of human liver cells grouped the
LSECs into two populations, of which the group
enriched in LSECs from the acinar midzone and central
venous zone displayed highly enriched immune path-
ways [68]. This supports the existence of functionally
distinct LSEC subpopulations.
Reliable omics studies of isolated cell populations re-

quire access to highly pure cell preparations. Several
popular markers used to identify LSECs have been asso-
ciated with controversies regarding their sensitivity, spe-
cificity, selection bias, or lack proper validation [36, 37].
Here, we used SE-1-based MACS [43] to purify rat
LSECs. This method utilizes the specific targeting of
FcγRIIb2 [45], and has been previously reported to yield
highly pure LSEC preparations [43]. The SE-1-MACS
isolated cells in our experiments consisted of > 97% cells
displaying the highly characteristic fenestration which is
the structural hallmark of LSECs [16]. Moreover, the cell
yield was relatively high (30–40 million LSECs per liver),
and immune staining of liver sections using this anti-
body showed continuous staining along all sinusoids,
similar to the LSEC specific endocytosis receptor
stabilin-2, further validating SE-1/FcγRIIb2 as a reliable
LSEC marker in rat. The same co-distribution of SE-1
and stabilin-2 in rat liver was reported by [46]. More-
over, flow cytometry of rat NPCs showed that 97.4% of
SE-1/FcγRIIb2 positive cells were also CD31 positive,
supporting their endothelial identity. Rat LSEC expres-
sion of CD31 was confirmed by positive staining in rat
liver sections, albeit more weakly than in endothelial
cells in other vessels, consistent with [69]. Of note,
CD31 is upregulated in LSECs in liver inflammation [36,
69, 70]. CD31 has been reported in KCs. However, a re-
cent study employing macrophage and endothelial re-
porter mice concluded that what seemed to be a
population of CD31 positive KCs after FACS were in-
stead contaminating endothelial cells [71]. CD31 is regu-
larly used as endothelial marker in studies of KC
functions in mice [72]. In the present study CD31 stain-
ing was only observed along vessel structures in the liver
tissue, and co-localized with stabilin-2 in the sinusoids.
The expression level and intralobular distribution of

FcγRIIb2, and other LSEC markers may vary between
species. Recently, the lack of periportal expression of
FcγRIIb, and LYVE-1, another commonly used LSEC
marker, was reported on immune stained human liver
sections [58], suggesting that isolating LSECs from hu-
man liver using these receptors as targets may introduce
selection bias [36]. Notably, we found that CD36, a rec-
ommended LSEC marker in human liver [58], showed
low gene and protein expression in rat LSECs, and high
expression in KCs, consistent with a previous report in
Sprague Dawley rat showing positive immune labeling
for CD36 in KCs, but not in LSECs [59]. This shows a
clear difference in the cellular distribution of CD36 in
rat and human liver.
Interestingly, liver inflammation and fibrosis further

affect the LSEC molecular phenotype, leading to down-
regulation of LYVE-1 in liver cancer and cirrhosis [73],
and of FcγRIIb in non-alcoholic steatohepatitis [74].
These studies show that the optimal choice of markers
of LSECs and KCs depends on animal species and the
health condition of the liver.
Lack of consensus markers and heterogeneity in KCs

pose challenges for rat KC isolation. As rat KCs univer-
sally express complement receptors for inactivated com-
plement component 3b [75], we used anti-rat-CD11b/c
to isolate KCs by MACS with good cell yields. Staining
of liver sections showed a scattered distribution with the
majority of positive cells located in the periportal region
where most KCs reside [76]. However, selection bias to-
wards subpopulations of KCs cannot be excluded, as we
found that CD68 positive cells showed a wider distribu-
tion within the hepatic lobule than CD11b/c positive



Fig. 7 Expression of immune regulatory factor genes in the rat LSEC and KC transcriptomes. The genes were associated with the terms cytokine
receptor activity (GO:0004896), cytokine receptor binding (GO:0005126), complement receptor activity (GO:0004875), and complement activation
(GO:0006956). a. Volcano-plot illustrating differently expressed genes. Blue dots: significantly higher expression in LSECs; red dots: significantly
higher expression in KCs; gray dots: not significantly different between LSECs and KCs. Significance level: FDR ≤ 0.05 and |log2 fold change|≥ 1. b-
e. Expression of selected genes in LSECs and KCs transcriptome associated with cytokine receptor activity (b), cytokine activity (c), complement
receptor activity (d), and regulators of complement activation (e). Each blue dot represents abundance, corresponding to log2 expression values
(RPKM+ 1), in an LSEC sample and each red dot represents abundance in a KC sample. *Significantly higher in LSECs, #significantly higher in KCs.
Significance level: FDR≤ 0.05 and |log2 fold change|≥ 1
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cells. Nonetheless, both markers showed the highest
density of positive cells in the periportal region. Com-
pared to the extensive literature in mice on the origin of
KCs and differences in cell marker expression in
subpopulations of liver macrophages [77], little is known
about rat liver macrophage subpopulations and markers.
In mouse, liver resident macrophages are reported to
have the CD11b low, or CD11b negative phenotype, and
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Fig. 8 Expression of selected gene products associated with antigen processing and presentation (GO:0019882), and lymphocyte co-stimulation
(GO:0031294) in the rat LSECs and KCs transcriptome and proteome. Each blue dot represents abundance of gene products in an LSEC sample
and each red dot represents abundance in a KC sample. The dot plots on the left illustrate the abundance of mRNA (log2 (RPKM+ 1)) in the
transcriptome, and the right plots illustrate the corresponding gene expression value in the proteome (log2 (iBAQ+ 1)). *Significantly higher in
LSECs, #significantly higher in KCs. Significance level: FDR≤ 0.05 and |log2 fold change|≥ 1. a. Gene products involved in antigen processing
(immune proteases: Psme1, Psme2), transport of processed peptide into the endosome for loading into MHC molecules (Tap1, Tap2, Tapbp),
accessory proteins in loading and sorting of MHC molecules to endolysosome (Ifi30, Pdia3), and the invariant chain (Cd74). b. Lysosomal
hydrolases annotated to be associated with MHC class II antigen processing. c. MHC class II gene products. d. Co-stimulatory factors involved in
lymphocyte activation
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the CD11hi phenotype includes bone marrow macro-
phages that have migrated to the liver [78]. The CD11b/c
MACS-purified liver macrophages in our study
expressed high levels of CRIg (VSig4), CD68 and
CD163, which are validated markers of resident KCs
[79–81], indicating that they are KCs, but our study
cannot confirm whether some have been recruited from
bone marrow. However, the cells were isolated from
young, healthy rats with normal livers, and the livers
were perfused free of blood with perfusion buffer before
starting the recirculation system with collagenase buffer
Fig. 9 Expression of the leukocyte marker PTPRC/CD45 in rat LSECs. a: Ptpr
RNA-seq (log2 RPKM) and label-free proteomics (log2 iBAQ) in KCs (red dot
during flow cytometry analysis of rat non-parenchymal liver cells (n = 4). Ce
(listed in Table 1). b: Gating based on the FSC-A vs FSC-H profile to exclud
the SSC-A vs FSC-A profile to select small cells with limited complexity (enr
e-f: LSECs were then identified as SE-1-Alexa488+ cells (e), and the biexpon
the CD45+ CD31+ subsets of LSECs. FMOs (used for gating), and single anti
percentage of viable parent populations observed in 4 biological replicates
in order to disperse the cells, which minimizes the risk
of isolating blood monocytes. The source of macro-
phages in liver has been reported to affect expression
levels of enzymes and receptors [82]. Interestingly, two
recent studies in mice showed that bone marrow-
derived resident liver macrophages, and KCs of yolk sac
origin have highly similar gene expression profiles, that
is different from that of monocytes [72, 83].
CD45 is used as a negative selection criterion for isola-

tion of human and mouse LSECs [36], whereas the same
marker has been reported to be expressed in rat LSECs
c/Cd45 mRNA and PTPRC/CD45 protein expression as obtained from
s) and LSECs (blue triangles). b-f: Representative sequential gating
lls were labeled with antibodies to SE-1/FcγRIIb2, CD31, and CD45
e duplets and aggregates from the subsequent analysis. c: Gating on
iched in endothelial cells). d: Gating to select DAPI negative live cells.
ential CD45-PE/CD31-APC of events (f) were used to display and select
body staining controls are shown in Additional file 8. g: Average of the
(±standard deviation, SD)
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[38, 84]. In our study we observed a low expression of
this marker in the LSEC transcriptomes and proteome
compared to KCs, and flow cytometry showed that 4%
of SE-1 positive small NPCs with limited complexity
were CD31+CD45+ cells, which indicates CD45 expres-
sion in a small subpopulation of rat LSECs. Expression
of CD45 in rat LSECs has been linked to recruitment of
LSECs from bone marrow [66, 84].
Several SRs and C-type lectins were expressed at high

density in the rat LSECs and KCs. This enables the two
cells to recognize a wide variety of foreign and endogen-
ous, modified substances, thus maintaining homeostasis
[5]. In LSECs, the very high expression of stabilin-1,
stabilin-2, FcγRIIb2, and the macrophage mannose recep-
tor suggests that these are the crucial receptors contribut-
ing to the remarkably high endocytic capacity of LSECs [5,
16, 18]. In contrast to stabilin-1/-2 and the FcγRIIb2
which are LSEC specific in liver, the mannose receptor is
also abundant in KCs. This receptor has traditionally been
associated with M2 polarized macrophages but is present
in LSECs of all mammalian species examined (rat, mouse,
pig, human), while its expression in KCs varies between
studies [5]. Interestingly, the macrophage mannose recep-
tor has been reported to be absent in human KCs [85].
Functional studies in rat show that after intravenous injec-
tion of soluble ligands for this receptor, such as lysosomal
enzymes [86–88], C-terminal procollagen propeptides
[13], or ovalbumin [89], much of the ligand is rapidly
cleared from blood by uptake in LSECs, which show a
higher uptake per cell than in KCs. This points to LSECs
as more efficient pinocytic cells.
We also observed mRNA expression in LSEC of some

SRs not previously reported in these cells at steady state -
including members of SR-class A (Marco), SR-class D
(Cd68, Ackr3), SR-class G (Lgals3bp, Cxcl16) and SR-class
I (Cd5l, Cd163 and Dmbt1). However, these SRs were ei-
ther not detected or showed low expression in the LSEC
proteome. This may be due to post-transcriptional, trans-
lational, and/or protein degradation regulation, and/or the
effect of the isolation procedure which may affect the ex-
pression. A previous microarray study [39] indicated
changes in rat LSEC gene expression already after 2 h in
culture. Importantly, proteomics is biased towards identi-
fication of highly abundant proteins. Despite high LSEC
and KC purity in our experiments we cannot exclude that
a low level in the other cell type might result from minute
numbers of contaminating cells for some of the genes.
Nonetheless, the expression pattern of these SRs was simi-
lar to that of LRP1, which has been functionally validated
in LSECs [90], and CD45, which we showed by flow cy-
tometry to be expressed in 4% of the LSECs. This suggests
that a minor subset of LSECs may express these markers.
However, this needs to be further explored in single cell
experiments in rat liver cells.
Immune regulatory factors are important in maintain-
ing liver homeostasis, and their dysregulation causes sus-
tained inflammation. In the present study of cells at
steady state we found that LSECs predominantly
expressed Csf1, Ccl24 and Cxcl12, which affect recruit-
ing, maintenance and homeostasis of other immune cells
[63, 91, 92]. Our observation that LSECs express the
chemokine scavenger receptor Ackr3 suggests a role for
these cells in creating chemokine gradients and thus
regulating the overall immune milieu of the sinusoids.
KCs on the other hand, more abundantly expressed cy-
tokines such as Il1b and TNF-α known to affect LSEC
endocytic functions [93]. In accordance with a proteo-
mics study in mice [42], rat KCs were also more tuned
to positive regulation of complement activation by
higher expression of triggers of complement activation.
Interestingly, rat LSECs and KCs respond to inflamma-
tory mediators in a generally similar manner, developing
into pro- and anti-inflammatory subpopulations, indicat-
ing that both cells contribute to innate immune re-
sponses in liver [94].
Furthermore, we found that rat LSECs express gene

products associated with processing and presentation of
antigen required for activation of naïve (CD4+ and CD8+)
T cells. Most of these genes were significantly lower
expressed in LSECs than in KCs and their function in rat
LSECs will need further validation. This finding neverthe-
less supports functional studies in mouse models conclud-
ing that LSECs are antigen presenting cells [1, 32, 95–98].
In physiological conditions, LSECs contribute to gener-
ation of T regulatory cells and induction of immune toler-
ance. However, after fibrotic liver injury due to
hepatotoxins, mouse LSECs become proinflammatory,
and induce an immunogenic T cell phenotype [99].

Conclusions
Good resolution was achieved between rat LSECs and
KCs, enabling reliable and comprehensive molecular
characterization of the cells at steady state. The study
showed complementarity of scavenging and immune
functions in LSECs and KCs. Both cells expressed high
levels of SRs and immune lectins, of which some were
present in both cells. Of note, inter-species expression
differences for some receptors, as evident from the lit-
erature, highlight the need for thorough studies on gene
expression in different animal models. We propose that
the many common phenotypic and functional traits
shared between LSECs and KCs is a consequence of the
specialized sinusoidal environment along with the func-
tional demand of the sinusoid, causing the cells to de-
velop complementary and overlapping functions. Our
study underlines the importance of taking both cells into
consideration in studies of liver immunity. Furthermore,
LSECs and KCs play a major role in the, often unwanted,



Bhandari et al. BMC Molecular and Cell Biology           (2020) 21:85 Page 18 of 25
liver uptake of large molecule biopharmaceuticals and
nano-formulations [23] preventing drugs from reaching
their intended targets. Of note, major off-target drug ac-
cumulation in these cells may cause LSEC toxicity,
which subsequently may result in liver toxicity. Our re-
sults contribute to understanding these uptake mecha-
nisms to a greater detail, which is a prerequisite to
develop remedies to reduce unwanted liver uptake.

Methods
Animals and ethics statement
Sprague Dawley, Crl:CD (SD), male rats, aged 6–11
weeks were used in the experiments. The animals were
obtained directly from Charles River Laboratories (Sulz-
feld, Germany). The rats were group housed (3 rats per
cage) in 1354G Eurostandard type III conventional cages
(Tecniplast, Italy) with aspen bedding (Scanbur,
Norway), and with nesting material, houses, and aspen
bricks (all from Datasand Ltd., Manchester, UK) as en-
vironmental enrichment. The rats were housed under
controlled conditions (21 °C ± 1 °C, relative humidity
55% ± 10%, and 12 h light/12 h dark cycle) at the specific
pathogen free animal research facility at the University
of Tromsø (UiT) – The Arctic University of Norway.
The rats had free access to water and standard chow
(RM1-E, Special Diet Service, UK), and were acclima-
tized for at least one week before experiments. Prior to
the experiment and during acclimation period, animal
health was assessed daily by experienced animal techni-
cians. The experimental protocols and animal handling
were approved by the competent institutional authority
and the National Animal Research Authority at the Nor-
wegian Food Safety Authority (Mattilsynet; Approval
IDs: 4001, 8455, and 0817), and experiments were per-
formed in compliance with the European Convention
for the protection of Vertebrate Animals used for Ex-
perimental and Other Scientific Purposes. A total of 25
rats were used in this study. All animals were eutha-
nized. While in deep surgical anesthesia (for anesthesia
protocol see Method section “Rat liver perfusion, LSEC
and KC isolation, and cell purity evaluation”), the vena
cava was cut causing exsanguination. For liver tissue
sampling for immune histochemistry, the animal was eu-
thanized by CO2 according to the requirement in Direct-
ive 2010/63/EU in a pre-set system ensuring gradual fill
and appropriate exposure time (“Automatic CO2 Deliv-
ery System”, Vet Tech Ltd., UK), and organs were sam-
pled from the dead animal.

Rat liver perfusion, LSEC and KC isolation, and cell purity
evaluation
Non-parenchymal liver cells (NPCs) were isolated essen-
tially as described in [100], with some modifications.
The surgical procedure was performed in the morning
(between 8 a.m. and 10 a.m.) in the animal research facil-
ity at UiT - The Arctic University of Norway. The rats
(body weight 200-320 g) were anesthetized with either 1)
a combination of ketamine hydrochloride (Ketalar 50
mg/mL; Pfizer, Norway) and medetomidine hydrochlor-
ide (Domitor vet 1 mg/mL, Orion Corporation, Finland);
dose of mixture: 0.15 mL Ketalar/100 g BW and 0.05 mL
Domitor /100 g BW, administered subcutaneously; or 2)
with a mixture (ZRF-mix) of zolazepam /tiletamine
hydrochloride 12.9/12.9 mg/mL (Zoletil forte vet, Virbac,
Norway), xylazine 1.8 mg/mL (Rompun, Bayer Nordic,
Norway) and fentanyl 10.3 μg/mL (Actavis, Norway);
dose of mixture: 2 mL/kg BW, administered intraperito-
neally. Anesthetic depth was assessed prior to and dur-
ing the operation procedure to ensure deep surgical
anesthesia. The abdomen was opened in the midline,
and the intestines gently pushed to the side in order to
expose the liver and portal vein. A catheter connected to
a peristaltic pump driven perfusion system was inserted
into the portal vein and fixed to the vein by a suture,
and the caudal vena cava was cut to allow outflow of
buffer from the liver and exsanguination of the animal.
The liver was then separated from the surrounding tis-
sues by cutting all ligaments and placed on a mesh on
the top of a cylinder, where run-through buffer was col-
lected. The liver lobes were perfused free of blood with
250 ml of a calcium-free HEPES-based buffer [100], then
perfused for 10 min (flow rate 30 ml/min) in a recircula-
tion system, with 50 ml of a calcium-containing HEPES-
based buffer [100] with 0.6 mg/ml collagenase
(Worthington, Lot: X4B7108, Worthington Biochemical
Corp., Lakewood, NJ). Hepatocytes were sedimented by
low speed differential centrifugation (50 g, 2 minx3) leav-
ing mainly NPCs in the supernatant which was decanted
and centrifuged (300 g, 10 min). The resulting pellet was
resuspended, loaded onto a two-step Percoll gradient
(GE Healthcare, Uppsala, Sweden), and centrifuged at
1350 g for 30 min. Cells at the 25–45% Percoll interface,
enriched in KCs and LSECs, were collected. To purify
LSECs, NPCs were incubated with the M-rSE-1 antibody
targeting FcγRIIb2 (CD32b) [45] (Table 1) for 30 min at
4 °C in autoMACS rinsing solution with 1% BSA (Milte-
nyi Biotec Norden AB, Lund, Sweden), washed, and in-
cubated with anti-mouse IgG2a + b MicroBeads for 30
min at 4 °C. To purify KCs, NPCs were incubated with a
biotinylated-CD11b/c antibody (Table 1) followed by in-
cubation with Streptavidin MicroBeads. Labeled NPCs
were eluted through an LS-column in a MidiMACS Sep-
arator (Miltenyi) according to the manufacturer’s proto-
col. Typical cell yields were 30–40 million LSECs, and
10 million KCs per rat liver. LSECs and KCs were har-
vested from separate animals to maximize cell yields.
LSECs (0.25 million cells/cm2) were seeded in 100 mm

tissue culture dishes (RNA-seq: Nunclon, ThermoFisher
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Scientific, Waltham, MA; Proteomics: Sarstedt, Nüm-
brecht, Germany) coated with 2.9 μg/ml bovine collagen
type I (Advanced BioMatrix, San Diego, CA, Cat.#5005),
in RPMI-1640 cell culture medium supplemented with 20
mM sodium bicarbonate, 0.0006% penicillin, and 0.01%
streptomycin (Sigma-Aldrich, St. Louis, MO, Cat.#R8758),
and allowed to attach for 1 h. KCs (0.17 million cells/cm2)
were seeded on uncoated 100mm dishes, and incubated
for 30min. The cells were then gently washed with pre-
warmed (37 °C) medium before extraction of RNA for
high throughput RNA-sequencing, or protein for non-
label quantitative proteomics.
The purity and morphology of MACS-isolated cells

were assessed by phase contrast microscopy (all cul-
tures), scanning electron microscopy (SEM; LSECs for
transcriptomic and proteomic analyses, and KCs for
proteomic analyses), and immune cytochemistry (LSECs
and KCs for proteomic analyses) using antibodies against
glial fibrillary acidic protein (GFAP; stellate cell marker),
stabilin-2 (LSEC marker) [24, 25], CD11b/c, and SE-1/
FcγRIIb2 (Table 1). The cells for purity assessment by
SEM and immune cytochemistry were from the same
preparations and cultured in parallel to the cells used for
omics experiments, and were seeded in similar density,
incubated and washed as for the omics experiments.
LSEC and KC mRNA transcriptome sequencing
Total RNA was extracted with the RNeasy Mini Kit
(Qiagen, Hilden, Germany, Cat.#74,104). PolyA-enriched
RNA from LSECs was then purified by MicroPoly(A)-
Purist™ Kit (Life Technologies, ThermoFisher Scientific),
whereas Dynabeads® mRNA DIRECT™ Micro Kit
(Ambion, ThermoFisher, Cat.#61,021) was used to purify
mRNA from KCs. Quality and quantity of mRNA were
measured with Agilent RNA 6000 Pico Kit (Agilent
Technologies, Santa Clara, CA, Cat.#5067–1513). The
mRNAs were fragmented and reverse transcribed by Ion
Total RNA-Seq Kit v2 (Life Technologies) according the
manufacturer’s instructions. Three LSEC transcriptome
libraries representing 3 biological replicates, each from
one individual rat, and three KC transcriptome libraries
(3 biological replicates; each from the pooled KC mRNA
from 2 rats) were constructed. Templates were prepared
by Ion OneTouch™ 200 Template Kit v2 DL and Ion
PGM™ Sequencing 300 Kit, loaded on Ion 316 chips, and
sequenced with the Ion Torrent Personal Genome
Machine (Life Technologies). We generated 1.09 billion
nucleotide sequence data from the LSEC pool, corre-
sponding to approximately 8.2 million mapped reads,
and 0.93 billion nucleotide sequence data from the KS
pool, corresponding to 6.5 million mapped reads.
Additional file 10 lists the information on number of
raw reads, reads after trimming, average length of the
trimmed sequences and the number of reads mapped to
the reference genome for each biological replicate.

Transcriptomic data analyses
Bioinformatics analyses were performed with the CLC
Genomics Workbench 8.0.2 (Qiagen® Bioinformatics),
and the Bioconductor project. Raw sequencing reads
were subjected to adaptor trimming, followed by quality
trimming (Ambiguous limit = 2 and Quality limit = 0.05).
Based on quality reports the reads were filtered based on
length (minimum 15 and maximum 300 nucleotides);
then 10 nucleotides from the 5′ end, and 20 nucleotides
from the 3′ end were removed. All samples from the 6
experiments (LSECs, n = 3; KCs, n = 3) were included in
the analysis as they were deemed homogenous with re-
spect to 5-mer analysis and GC contents, and were free
of ambiguous bases. RNA-seq analysis was performed
with CLC Genomics Grid Worker 7.0.1. The reads were
mapped to Rattus norvegicus reference genome (Rnor_
6.0 [101], which generated the gene expression counts
and RPKM (reads per kilobase of exon model per mil-
lion mapped reads [56]) values. Other parameter values
used in mapping were: mismatch cost = 2, insertion
cost = 3, deletion cost = 3, length and similarity fraction =
0.8 each, allowed maximum number of hits for a read =
10, and map to inter-genic regions. We used the edgeR
(3.28.0)-limma (3.42.0) workflow as described in [102] to
analyze the gene-level count data, using the following
criteria: genes with low expression were filtered out
using the filterByExpr function, and the remaining genes
were considered to be expressed and were used in subse-
quent data analyses. Heteroscedasticity of the data was
removed with voomWithQualityWeights function avail-
able in the limma package [103], after trimmed mean of
M-values (TMM) normalization.

Preparation of samples for quantitative proteomics, and
tandem mass spectrometry (LC-MS/MS)
MACS-isolated cells were allowed to adhere for 30 min
(KC, n = 4 biological replicates, each from one individual
rat) or 1 h (LSECs, n = 3 biological replicates, each from
one individual rat) to 100 mm petri dishes as described
under “Rat liver perfusion, LSEC and KC isolation, and
cell purity evaluation”. The cells were washed with
RPMI-1640 (37 °C) to remove non-adherent cells, then
immediately scraped out in triethylammonium bicarbon-
ate (TEAB) solution (ThermoFisher) to collect protein
lysate, which was centrifuged to remove cellular debris.
Protein pellets were resuspended in 2M urea and 50
mM TEAB. Samples of 20 μg protein were digested for
6 h in 1:100 (w/w) Lysyl Endopeptidase® (Fujifilm Wako
Chemicals Europe GmBH, Neuss, Germany), then di-
luted to 1M urea and digested overnight with 1/20 (w/
w) trypsin (V511A, Promega Corporation, Madison,
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WI). OMIX C18 tips (Varian Inc., Palo Alto, CA) were
used for sample cleanup and concentration. Peptide
mixtures containing 0.1% formic acid were loaded onto
the Thermo Fisher Scientific EASY-nLC1000 system and
EASY-Spray column (C18, 2 μm, 100 Å, 50 μm, 50 cm).
Peptides were fractionated using a 2–100% acetonitrile
gradient in 0.1% formic acid over 50 min at a flow rate
of 250 nl/min. Separated peptides were analyzed using
Thermo Scientific Q-Exactive mass spectrometer. Data
was collected in data dependent mode using a Top10
method.

Label-free proteomics analyses
Raw files from the Q-Exactive MS/MS were analysed
using the quantitative proteomics software MaxQuant
[104] (version 1.5.6.0). Proteins were identified using the
built in Andromeda search engine using the UniProtKB
Rattus norvegicus database (Jan 2017). Main search pep-
tide tolerance was set to 4.5 ppm and MS/MS mass tol-
erance was set to 20 ppm. An FDR ratio of 0.01 was
needed to give a protein identification. At least 2 pep-
tides had to be quantified to give a quantitation value.
To estimate protein abundance, iBAQ values (i.e. the

sum of peak intensities of all tryptic peptides matching
to a specific protein divided by the number of theoretic-
ally observable peptides [105]) were generated with
MaxQuant, and used for downstream quantitative prote-
omic analysis with Perseus (version 1.6.02). Perseus, R
statistical computing (version 3.4.1), and Bioconductor
(version 3.5) environments were used for bioinformatics
and statistical analyses. The generated list of proteins
was filtered to remove protein hits that were annotated
as only identified by site, contaminants and reverse hits
in Perseus. All samples for proteomics were run twice
on LC-MS/MS and the median of the iBAQ values of
the two runs was considered as the expressed iBAQ
value. The annotation of the protein IDs and the corre-
sponding genes were carefully curated. The iBAQ values
of all protein IDs corresponding to a specific gene were
added to remove redundancy in gene annotation. The
resulting iBAQ values were then scaled to make an equal
column sum. Protein with low expression were filtered
using the filterByExpr function in edgeR-limma. The fil-
tered data were rescaled to per million using the cpm
function, followed by TMM normalization. The term
“iBAQ” in figures and text refers to these normalized
values and were used in the subsequent analyses. The
same edge-R-limma workflow as used in the RNA-seq
data analysis was used for the subsequent differential
analysis of the proteomics data.

Data integration and visualization
In order to compare RNA-seq data with proteomics data
the expression of gene products in the RNA-seq dataset
that corresponded to protein IDs in the proteomics data
were reevaluated by summing up the counts of all rele-
vant genes. Log2 transformed expression values with
prior addition of an offset of 1 were used in the
visualization, unless mentioned otherwise.

Immune labeling of cells and liver tissue
MACS isolated LSECs and KCs (parallel cultures to pro-
teomics experiments) were seeded on collagen coated
glass coverslips (LSECs) or uncoated glass coverslips
(KCs) at similar density as with the omics experiments,
and incubated and washed in the same way, before fix-
ation 15min in 4% paraformaldehyde (PFA) in PBS, pH
7.2. NPCs from the 25–45% interface of the Percoll gra-
dient were seeded on collagen-coated glass coverslips,
incubated for 1 h, washed and fixed 15 min in 4% PFA.
Liver samples were embedded in TissueTek OCT com-
pound (Sakura Finetek, Zoeterwoude, Netherlands), snap
frozen in liquid nitrogen, and stored at − 70 °C. Cryosec-
tions, 8–10 μm, were fixed in cold acetone for 10 min,
then incubated in blocking buffer for 1 h, and immune
labeled. All antibodies (Table 1) were diluted in blocking
buffer, which was 1% BSA and 2% goat serum in PHEM
buffer (w/v: 1.81% PIPES, 0.65% HEPES, 0.38% EGTA,
0.1% MgSO4), pH 7, when labeling cryosections, and 1%
BSA in tris buffered saline, 0.05% Tween 20, pH 8.4,
when labeling cells. Sections and cells were incubated
with primary antibody at 4 °C overnight, then washed
and labeled with secondary antibody for 1 h at room
temperature. Isotype controls or non-immune IgG con-
trols were used in all immune staining experiments. Nu-
clei were stained with DAPI (1:1000 in PBS; Sigma-
Aldrich). Confocal microscopy was performed using a
Zeiss LSM780 system (Carl Zeiss, Oberkochen,
Germany). For purity assessment by differential counting
of immune labeled MACS isolated cells, images were
taken from 5 different areas of the cultures, including at
least 350 cells from each CD11b/c-MACS isolation, and
700 cells from each SE-1-MACS isolation in the differ-
ential cell count.

Scanning Electron Microscopy (SEM)
SE-1-MACS-isolated LSECs (parallel cultures to proteo-
mics experiments) were seeded on collagen coated 24-
well tissue culture plates for 1 h, whereas CD11b/c
MACS-isolated KCs were seeded for 30 min on uncoated
24-well plates. Cells were gently washed with medium
before fixation in McDowell’s fixative (4% PFA, 1% glu-
taraldehyde, in phosphate buffer, pH 7.2). Fixed cultures
were stamped out from the plate and cells processed for
SEM using the following protocol: 1) 3x wash in PHEM
buffer, pH 7; 2) 1 h incubation with 1% tannic acid in
PHEM; 3) 3x wash in PHEM; 4) 30 min in 1% osmium
tetroxide in H2O; 5) 3x wash in PHEM; 6) dehydration
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in graded ethanol (30–100%); 7) drying in hexamethyldi-
silazane (Sigma-Aldrich). Specimens coated with 10 nm
gold/palladium were scanned and imaged in a Zeiss
Sigma Field Emission Scanning electron microscope
(Carl Zeiss) at 2 kV. For cell purity assessment, high
resolution overview images were taken at random from
at least 5 different areas per cell culture (LSEC and KC
samples for proteomics experiments), or at least 3 areas
per culture (LSEC samples for RNA-seq experiments).
Cells from all areas were included in the differential cell
count, including at least 600 cells per KC sample, and
800 cells per LSEC sample in the cell purity assessment
for proteomics, and 280–470 cells per LSEC sample in
the cell purity assessment for RNA-seq.

Flow cytometry
Samples of 0.5-1 × 106 NPCs collected from the 25–45%
interface of the Percoll gradient were stained with anti-
bodies to CD45, CD31, and SE-1/FcγRIIb2 (Table 1) at
4 °C in dark for 20 min. Data acquisition and analysis
were performed in a BD LSRFortessa™ Cell Analyzer
(BD Biosciences, San Jose, CA) with BD FACSDiva Soft-
ware version 8.0.1. The laser configuration and the PTM
voltage were calibrated prior running the samples. The
PTM voltage was adjusted during the experiments using
the single stained controls. The data were further quality
checked and analyzed with FlowJo V10.7.1 software (BD
Biosciences). The AutoSpill/AutoSpread spillover algo-
rithm available in FlowJo 10.7.1 was used to address the
compensation issue using single stained controls post
acquisitions. Isotype controls, single antibody controls,
and FMO controls were used to properly interpret the
acquired data. DAPI staining was performed to discrim-
inate between live and dead NPCs. An excess of 100,000
events were recorded and analyzed in every test within
each biological replicate (n = 4), each representing one
individual rat.

Statistical tests
The descriptive and inferential statistical analyses and
graphical plots of the transcriptomics and proteomics
data were performed either in the R/Bioconductor or the
Perseus environment. RNA-seq analysis was performed
with CLC Genomics Grid Worker 7.0.1. The genes/pro-
teins retained after filtering of low expressed gene/pro-
tein using filterByExpr function were deemed to be
expressed and were used in subsequent data analyses.
Heteroscedasticity of the data was removed with voom-
WithQualityWeights function available in the limma
package [103], after trimmed mean of M-values (TMM)
normalization. Differential expression analysis of the
transcriptomics and the proteomics data was tested with
edgeR (3.28.0)-limma (3.42.0) workflow as described in
[102], with FDR multiple correction [103], as described
under “Transcriptomic data analyses” and “Label-free
proteomics analyses”. The genes/proteins were identified
as differentially expressed when the |log2 fold change|
≥1 and FDR ≤ 0.05. All samples were included in the
omics analyses. LSECs and KCs were compared at func-
tional level using gene set enrichment analysis (GSEA)
[49, 50] on gene lists ranked based on expression level
with priori defined collection of annotated gene sets
from Molecular Signatures Database. The gene sets were
considered significantly enriched if FDR q-value ≤0.05.
Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12860-020-00331-9.

Additional file 1. Gene set enrichment analysis. The Excel file (.xls)
shows the output of gene set enrichment analysis (GSEA) [49, 50] of pre-
ranked gene lists from the rat LSEC and KC RNA-seq datasets, associated
with Gene Ontology (GO) biological processes (BP). The genes were pre-
ranked based on expression. We have used the C5 collection of anno-
tated gene sets in the Molecular Signatures Database (release 6.2; BP) [53]
which consists of gene sets derived from GO [51, 52]. Name of work-
sheets: “GSEA_plot”, “GSEA_RNAseq_LSEC_BP”, and “GSEA_RNA-
seq_KC_BP”. The worksheet named “GSEA_Plot” contains the selected
enriched BPs shown in Fig. 4.

Additional file 2. List of all expressed genes in the RNA-seq and proteo-
mics datasets. Excel file (.xls) with all genes and proteins that were
deemed expressed, as defined in Methods, and used in the downstream
analysis and visualization of data. The worksheet named “RNA_seq_whole
expressed” contains the data from the RNA-seq experiments (expression
values in RPKM), and differential expression analysis results. The worksheet
named “Proteomics_whole expressed” contains the data from the label-
free proteomic experiments (expression values in iBAQ), and differential
expression analysis results.

Additional file 3. Genes and proteins associated with immune system
processes. Excel file (.xls) with the list of genes and proteins associated
with the term immune system processes (GO:0002376) presented in the
two heatmaps in Fig. 5a, along with their associated expression values
(RPKM, or iBAQ). The two worksheets are named “Immune
genes_RPKM_RNAseq”, and “Immune genes_iBAQ_proteomics”. Of note,
for visualization, log2(RPKM+ 1) and log2(iBAQ+ 1) were used in the
heatmaps in Fig. 5a.

Additional file 4. Scavenger receptors and C-type lectins. Excel file (.xls)
with the list of genes and proteins presented in the two heatmaps in Fig.
6a, along with their associated expression values (RPKM, or iBAQ). The
two worksheets are named “SRs&lections_RPKM_RNAseq) and “SRs&lec-
tins_iBAQ_proteomics”. For visualization, log2(RPKM+ 1) and log2(iBAQ+ 1)
were used in Fig. 6.

Additional file 5. Immune histochemistry for CD68. Immune
histochemistry of acetone-fixed frozen sections of rat liver showing the
distribution pattern of CD68 in the liver lobule. Sections were labeled
with an antibody to CD68 (red fluorescence) and stabilin-2 (Stab2, green
fluorescence) and subjected to confocal laser scanning microscopy. Anti-
bodies are listed in Table 1. Nuclei were stained with DAPI (blue).

Additional file 6. Immune regulatory factors. Excel file (.xls) with the list
of expressed genes annotated to cytokine receptor binding
(GO:0005126), cytokine receptor activity (GO:0004896), complement
activation (GO:0006956), or complement receptor activity (GO:0004875) in
rat LSECs and KCs. The file shows their corresponding abundance in the
RNA-seq datasets (RPKM values; worksheet named “Immunereg.fac-
tors_RPKM_RNAseq”) and label-free proteomics datasets (iBAQ values;
worksheet named “Immunereg.factors_iBAQ_LFP”) along with differential
expression analysis outputs. For visualization of the selected genes shown
in Fig. 7, log2(RPKM+ 1) was used.

https://doi.org/10.1186/s12860-020-00331-9
https://doi.org/10.1186/s12860-020-00331-9
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Additional file 7. Genes annotated to antigen processing and
presentation and lymphocyte co-stimulation. Excel file (.xls) with the list
of expressed genes associated with antigen processing and presentation
(GO:0019882), and lymphocyte co-stimulation (GO:0031294) in LSECs and
KCs. The file shows their corresponding abundance in the RNA-seq data-
sets (RPKM values; worksheet named “Immuneactivation_RPKM_RNAseq”)
and label-free proteomics datasets (iBAQ values; worksheet named
“Immuneactivation_iBAQ_LFP”) along with differential expression analysis
outputs. For visualization of the selected genes and proteins shown in
Fig. 8, log2 (RPKM+ 1), and log2 (iBAQ+ 1) were used.

Additional file 8. Immune histochemistry for CD31 and CD45, and
controls for SE-1, CD31, CD45 flow cytometry experiments. a-b: Immune
histochemistry of acetone-fixed frozen sections of rat liver showing the
distribution pattern of stabilin-2, CD31 and CD45 in the liver lobule. a:
Sections were labeled with antibodies to CD31 (red fluorescence) and
stabilin-2 (Stab2, green fluorescence) and subjected to confocal laser
scanning microscopy. CD31 stained all hepatic endothelia; in the sinu-
soids the CD31 staining overlapped with the stabilin-2 staining (arrows).
b: Sections labeled with antibodies to CD45 (red fluorescence) and
stabilin-2 (Stab2, green fluorescence). a-b: Pv, portal vein/venule. Anti-
bodies are listed in Table 1. Nuclei were stained with DAPI (blue). c: The
figure panel contains the contour profiles (of the singlet, small, low com-
plexity, live-gated non-parenchymal liver cells) of the three single anti-
body staining controls on the different fluorophore channels used during
the acquisition of the data in the flow cytometry experiment presented
in Fig. 9. d: The figure contains the contour profiles of the three FMO
controls and tests used to verify the gating used to interpret the experi-
ment in Fig. 9.

Additional file 9. Analysis of microarray expression data obtained from
Nolan et al. 2013 [35]. Excel file (.xls) with the comparative analysis of
expression data obtained from a microarray profiling study of mouse
(Mus musculus) primary microvascular endothelial cells, published by
Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, et al.
Molecular signatures of tissue-specific microvascular endothelial cell het-
erogeneity in organ maintenance and regeneration [35]. The microarray
data was downloaded from the GEO public database-Series GSE47067.
Title of dataset: In vivo endothelial cell heterogeneity. The first worksheet,
named “Pairwise_DGE (Nolan_2013)”, shows pairwise analysis of the ex-
pression data of endothelial cells from different organs. The second work-
sheet, named “DAVID_ liver specific genes”, presents the DAVID
enrichment analysis [54, 55] output of genes that were consistently sig-
nificantly abundant in mouse liver sinusoidal endothelial cells (LSECs) in
every pairwise comparison of LSECs with other microvascular endothelial
cells in the dataset (Significance level: FDR ≤ 0.05, and log2 fold change
≥1).

Additional file 10. Ion Torrent sequencing results. Excel file (.xls)
summarizing the Ion Torrent PGM sequencing results, including number
of mapped sequences and average lengths.
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