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Abstract

Background: The SARS-CoV-2 virus, the causative agent of COVID-19, consists of an assembly of proteins that
determine its infectious and immunological behavior, as well as its response to therapeutics. Major structural
biology efforts on these proteins have already provided essential insights into the mode of action of the virus, as
well as avenues for structure-based drug design. However, not all of the SARS-CoV-2 proteins, or regions thereof,
have a well-defined three-dimensional structure, and as such might exhibit ambiguous, dynamic behaviour that is
not evident from static structure representations, nor from molecular dynamics simulations using these structures.

Main: We present a website (https://bio2byte.be/sars2/) that provides protein sequence-based predictions of the
backbone and side-chain dynamics and conformational propensities of these proteins, as well as derived early
folding, disorder, β-sheet aggregation, protein-protein interaction and epitope propensities. These predictions
attempt to capture the inherent biophysical propensities encoded in the sequence, rather than context-dependent
behaviour such as the final folded state. In addition, we provide the biophysical variation that is observed in
homologous proteins, which gives an indication of the limits of their functionally relevant biophysical behaviour.

Conclusion: The https://bio2byte.be/sars2/ website provides a range of protein sequence-based predictions for 27
SARS-CoV-2 proteins, enabling researchers to form hypotheses about their possible functional modes of action.
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Background
The SARS-CoV-2 virus, the causative agent of COVID-
19, consists of an assembly of proteins that determine its
infectious and immunological behavior, as well as its re-
sponse to therapeutics. Major structural biology efforts
on these proteins have already provided essential in-
sights into the mode of action of the virus, as well as av-
enues for structure-based drug design [1] . However, not
all of the SARS-CoV-2 proteins, or regions thereof, have
a well-defined three-dimensional structure, and as such

might exhibit ambiguous, dynamic behaviour that is not
evident from static structure representations generated
by structural biology approaches, nor from molecular
dynamics simulations using these structures.
We here present a website [2] that provides extensive

protein sequence-based predictions for the SARS-CoV-2
proteins, which can help to pinpoint previously unidenti-
fied behavior or features of these proteins that might not
be captured by structural biology or molecular dynamics
approaches. The predictions include the DynaMine
backbone [3, 4] and side-chain dynamics [5] as well as
conformational propensities [5], and derived DisoMine
disorder [6], EFoldMine early folding [5], Agmata β-
sheet aggregation [7], SeRenDIP protein-protein inter-
action [8] and SeRenDIP-CE conformational epitope
propensities [9]. These predictions attempt to capture
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the ‘emergent’ properties of the proteins, so the inherent
biophysical propensities encoded in the sequence, rather
than context-dependent behaviour such as the final
folded state. This approach has already shown promise
in, for example, detecting remote homologues by bio-
physical similarity, which gives more accurate results
than directly using amino acid information [10]. We
apply this concept on the SARS-CoV-2 proteins by in-
corporating evolutionary information, so enabling us to
display the biophysical variation observed in homologous
proteins, which indicates likely limits of their function-
ally relevant biophysical behaviour (Fig. 1). The informa-
tion we provide is not directly applicable in, for example,
drug design against SARS-CoV-2 proteins, but might
help explain their mode of action if they act against re-
gions for which we have no direct structural knowledge.
The aim of our website is therefore to provide leads for
researchers with regard to the possible mode of action
of these proteins.

Construction and content
Datasets
The target amino acid sequences of the 27 proteins were
obtained by integrating information from the UniProt
[11] COVID-19 section, after filtering on ‘Other organ-
isms’ by ‘Severe acute respiratory syndrome coronavirus
2’, and the NCBI Sars-CoV-2 website (https://www.ncbi.
nlm.nih.gov/sars-cov-2/). The full UniProt P0DTC1 and
P0DTD1 entries were excluded from this list, as they are
spliced into components included in our list. Multiple
sequence alignments (MSAs) for these sequences were
obtained using the following steps:

1. MSAs for homologous sequences were obtained
using the UniProt BLAST tool against the UniRef90
database, using default parameters and limiting the
number of hits to 250.

2. CD-HIT was applied to each MSA using sequence
identity threshold of 70%, except for P0DTC2,
where an 80% threshold was used to avoid
discarding too many sequences.

3. The representative sequences found by CD-HIT,
with the target sequences added if necessary, were

aligned using the Clustal Omega based online Uni-
Prot Alignment tool.

4. C- and N-terminal regions from homologous pro-
teins extending beyond the target sequence were
removed.

Note that for the 15 non-structural proteins (Nsp), the
full ORF1ab protein sequence was used for the BLAST
search, CD-HIT and alignment (steps 1–3). It was then
split into the component Nsps.

Predictions
On each target sequence, the backbone dynamics (Dyna-
Mine) [3, 4], and related side-chain dynamics and
conformational propensities [5] were predicted at the
per-amino acid level. These methods are based on the
per-residue characteristics (e.g. backbone dynamics) de-
rived from NMR chemical shift values, and use a linear
regression model for the prediction. Early folding prob-
abilities per residue were predicted using EFoldMine [5],
which uses as input features the five previously
mentioned DynaMine values for a 5-residue fragment,
resulting in a 25 dimensional feature vector that was
trained using a Support Vector Machine (SVM) on a set
of high-resolution per-residue hydrogen-deuterium ex-
change (HDX) data from NMR experiments for 30
proteins. Disorder propensities were calculated with
DisoMine [6], which uses a Recurrent Neural Network
(RNN) trained on data of 535 non-redundant proteins
from DisProt [12], with as input features the DynaMine
backbone and side-chain dynamics values, the EFold-
Mine values, and PSIPRED secondary structure
predictions [13]. β-sheet aggregation was predicted with
Agmata [7], which uses logistic regression on the previ-
ously mentioned 5 DynaMine features on a 3-residue
window in a statistical potential model to pinpoint resi-
dues that could lead to β-sheet aggregation. Protein-
protein interactions (SeRenDIP) [8, 14] were predicted
using a random-forest (RF) model trained on a mixed
homo- and heteromeric PPI dataset derived from the
PDB [15] . Epitope propensities were predicted with
SeRenDIP-CE [9], which uses an RF model trained on a
dataset of antigen sequences annotated with antibody-

Fig. 1 Overview of the employed workflow and the incorporated predictions
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binding regions derived from SabDab [9, 16] . Predic-
tions of FUS-like phase separation were performed with
PSPer [17], which employs an HMM-like model to as-
sign domains (e.g. low complexity region) to a protein
sequence, and assesses whether these domains can com-
bine to create FUS-like phase separation behavior. All
predictions, except for Agmata, SeRenDIP, SeRenDIP-
CE and PSPer, were then run on all individual sequences
in the MSAs, with the values mapped back to the MSA,
so obtaining per MSA column a list of prediction values.
A standard box plot approach was then applied to each
per-column list of values to identify the median, first
and third quartile, and outlier range per biophysical fea-
ture per column in each MSA.

Phosphorylation sites
Experimentally validated phosphorylation sites were
obtained from two SARS-CoV-2 phosphoproteome pro-
jects (PXD020183, PXD019113) in the PRIDE repository
[18]. The search files for the projects were downloaded
and processed to extract the phospho-site information.
Since the data processing protocol varies between the
projects depending on the search engine used, we only
considered the phosphor-sites that are seen in more
than one project with a localization probability of > 0.6.

Website
The information is visualized online using the Django
framework, with the ApexCharts JavaScript library
employed for visualization of the predictions and their
MSA distribution.

Utility and discussion
Website description
The home page provides a brief statement on the pur-
pose of the website, and how to proceed. On the ‘Entries’
page (available from the top bar), the 27 available SARS-
CoV-2 proteins are listed in a sortable table containing
their ORF Name, NCBI RefSeq ID, UniProt ID, sequence
length and protein category. For each entry, accessed by
clicking on the ORF Name or any of the other identi-
fiers, the following information is provided on the left-
hand side:

� Link to structure(s) in the PDB [19] via the PDBe-
KB [20] (if available)

� Link to UniProt information (if available)
� Link to NCBI information (if available)
� PSPer predictions about the possible phase-

separation behavior of this protein (if available, only
for proteins of length 130 or more)

� Download all predictions for this protein in JSON
format

� Download of the multiple sequence alignment
(MSA) for this protein

The top plot of the per-protein pages visualises all in-
corporated predictions (y-axis) in function of the protein
sequence (x-axis). Hovering with the pointer over the
graph will display the residue number (below the x-axis)
and the corresponding prediction values (in the legend).
The sequence-based predictions are listed in Table 1,
and reflect ‘emerging’ properties, so what the sequence
is capable of, not necessarily what it will adopt in a final
fold. Each prediction can be toggled on/off by clicking
on the corresponding name in the legend of the plot. All
predictors, due to their underlying methodology, gener-
ate single values per residue without providing an uncer-
tainty range, which limits their interpretability. The use
of sequence information from homologous proteins (see
next paragraph) partially addresses this issue by incorp-
orating information about the likely variation of the pre-
dicted parameters in evolution.
The second plot visualises the MSA-based variation of

a specific predicted feature (like backbone dynamics) for
single-sequence based predictions, again with the predic-
tion value (y-axis) in function of the protein sequence
(x-axis). The type of prediction shown can be selected
using the ‘Select prediction’ selection box, with the plot
showing median (black), first and third quartile (dark
grey) and outlier range (light grey) of the distribution
per column in the MSA, as well as the original predic-
tion for the target protein itself (red), which corresponds
to the prediction in the top graph. These distributions
reflect the ‘evolutionary allowed’ range of the biophysical
features, which as we have previously shown tends to be
only weakly correlated with amino acid sequence-based
MSA measures such as entropy [8, 21]. Values of the red
line outside of the quartile range therefore indicate ra-
ther unusual behaviour for this particular protein com-
pared to its homologues, and might indicate interesting
areas where this SARS-CoV-2 protein differs from other
proteins. Finally, at the bottom of the page links are pro-
vided to the PSPer predictions and the JSON with all the
prediction values, as well as their distributions, for this
protein. Note that only MSA columns for which there is
no gap in the target sequence are shown.
The predictions we provide are limited in the sense

that they provide a single per-residue value that in itself
does not give detailed information on the overall protein
behavior. However, when these values are considered in
relation to each other, or contextualised in relation to
external information such as structural data, these values
can give useful pointers to possible behaviors of the pro-
teins (or regions thereof) for which we do not yet have
much information, as illustrated in the next section
through a use-case example. The aim of our website is
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therefore not to give definitive answers in relation to the
behavior of SARS-CoV-2 proteins, but rather to enable
researchers to explore which possible behavior these
proteins (or regions thereof) might have (e.g. aggregation
tendency), so providing leads on their possible mode of
action.

Use-case example
The UniProt P0DTC9 protein (RefSeq ID YP_
009724397) is a nucleoprotein of 419 amino acids with
both monomeric and oligomeric forms that interact with
RNA, as well as with protein M and NSP3. These
interactions tether the genome to the newly translated
replicase-transcriptase complex at a very early stage of
infection. Structural information is available for
UniProt-numbered residues Gly44-Ser180 (Fig. 2, box A,
based on PDB codes 6yi3, 7act, 7acs), which mediates
RNA binding, and for Thr247-Pro364 (Fig. 2, box B,
based on PDB code 6zco), which are involved in oligo-
merisation (see also [22]). The predictions for this pro-
tein, displayed in Fig. 2 (for an interactive version, please
see [23]), show a high propensity for disorder through-
out the protein, with backbone dynamics also indicating
overall high flexibility (values below 0.69), except for the
previously mentioned Gly44-Ser180 and Thr247-Pro364
regions, which have been observed to fold. The N-
terminal region prior to Gly44 is highly flexible, with
some helix and sheet propensity, and a propensity for
protein-protein interactions, but with no indications of
early folding or aggregation. It also contains multiple

confirmed phosphorylation sites (Ser23 and Ser26), hint-
ing at a possible regulation role.
For the first folded domain (box A), the regions con-

firmed by PBDe-KB to form α-helices (red dotted boxes)
and β-strands (blue dotted boxes) are indicated, which
tend to correspond to rigid areas with strong secondary
structure propensity. Interestingly, the AR region from
Asn153 to Gln 163 (black box) does not have a regular
secondary structure, but corresponds to an extended re-
gion that loops over the outside of the protein. Given
the very high prediction values for rigidity, helix and
sheet propensity (equal) and early folding, combined
with a peak in aggregation, this region could have an im-
portant role in the folding process and overall behavior
of this protein, even though it does not particularly
stand out in the solved crystal structures. There is also
notable aggregation tendency corresponding to the 5th
and 6th β-strands, and a high epitope propensity in the
subsequent region between the 6th β-strand and the AR

region. A confirmed phosphorylation site is Ser79, at the
beginning of the first α-helix.
The subsequent region between Ser180 and Thr247

contains a region with relatively consistent properties
from Ser180-Gly215, indicating a highly flexible linker
that connects the two structured regions, but with an
interestingly elevated PPI propensity. This area also con-
tains multiple confirmed phosphorylation sites (Ser187,
Ser194, Ser197, Ser201, Ser206), indicating a regulatory
role. The region from Asp216-Thr247 (box I), on the
other hand, shows strong peaks in both backbone

Table 1 Overview of the prediction software used

Software Type Color Description

DynaMine Backbone dynamics Black Rigidity of the backbone, higher values mean backbone movements are
more likely to be limited; values > 1.0 indicate membrane spanning regions,
> 0.8 rigid conformations, < 0.69 flexible regions. Residues with 0.80–0.69
values are ‘context’ dependent and capable of being either rigid or flexible.

Sidechain dynamics Grey Rigidity of the sidechain, higher values mean the sidechain is more likely to
be conformationally restricted. These values are highly dependent on the
amino acid type (i.e. a Trp will be rigid, an Asp flexible).

Sheet, helix, coil
propen-sities

Blue, red, purple The propensity of the residue, based on local amino acid context, to adopt
helix, sheet or coil conformations. Higher values indicate higher propensities.

EFoldMine Early folding propensity Green Likelihood that this residue will adopt a persistent conformation based on
only local interactions with other amino acids. Values > 0.169 indicate
residues most likely to start the protein folding process.

DisoMine Disorder Yellow Likelihood that this residue will be disordered (highly dynamic, many
conformations). Values > 0.5 indicate that this is most likely a disordered residue.

Agmata Aggregation propensity Dark green Residues with higher values indicate residues likely to be involved in β-sheet
aggregation. The values displayed in the plots are divided by a factor 20 from
the original.

SeRenDIP Protein-protein interactions Cyan Indicates residues likely to participate in protein-protein interactions (PPIs).
Values > 0.5 indicate residues that are most likely involved in PPIs.

SeRenDIP-CE Conformat-ional epitope
regions

Sea-green Indicates residues likely to be part of a conformational (discontinuous) epitope
(CE) region. Values > 0.5 indicate residues that are most likely involved in CEs.
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rigidity and helical propensity from Asp216-Ser232, with
indications that this region is prone to early folding. To
the best of our knowledge, no structural or functional
information is available for this region, but the predic-
tions again indicate that this area could well play a role
in regulation, for example, by blocking a site when this
helix is formed, or by constraining the distance between
the two domains by adapting the overall linker length.
Noteworthy is also that both the backbone dynamics
and helical propensity, but especially the early folding,
are above the third quartile range observed in homolo-
gous proteins (Additional file 1; Fig. S1, S2), indicating
that this region has a stronger tendency to autono-
mously form a helix in the SARS-CoV-2 protein com-
pared to its close homologues.
The oligomerisation domain (box B) shows a strong

epitope propensity from Ala273-Asn285, and a very

strong PPI propensity from Lys299-Met322, correspond-
ing to the 5th and 6th α-helices (Lys299-Ile304 and
Gln306-Gly316) and 7th β-strand (Met317-Met322), in
line with orientation in the dimer where β-strands 7 and
8 (Val324-Tyr333) form a four-stranded sheet with the
corresponding strands from the other monomer, with α-
helix 6 below the sheet and also part of the homodimer
interface [24]. The conformational preference for helix
formation is already indicated by the predictions, as are
the two β-strand regions.
Finally, the C-terminal region after Pro364 (box II) is

in the ‘context-dependent’ zone of the backbone dynam-
ics predictions between 0.80 and 0.69, indicating it could
fold, in this case likely into a helix as it also has a strong
helical propensity. This again indicates a possible regula-
tory or transient binding role, possibly to a protein as it
has peaks of fairly high PPI propensity. There are also

Fig. 2 Predictions for the P0DTC9 SARS-CoV-2 protein amino acids (x-axis) for a) backbone dynamics (black), helix (red) and sheet (blue)
propensity, and b) early folding (light green), disorder (yellow) β-sheet aggregation (dark green), protein interaction (cyan) and epitopes
(seagreen). The two regions for which structures have been determined are indicated by black boxes (a, b), with annotations for consensus α-
helix (red boxes) and β-strands (blue boxes) based on these structures included. Regional highlights not evident in these structures (AR, I, II) are
discussed in the text. On the interactive plots on the server, predictions can be toggled on and off by clicking on their name
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high peaks of epitope propensity in this region, particu-
larly around Pro365 and Leu395-Gln408. The region
also contains multiple likely phosphorylation sites.

Conclusions
This website provides researchers with information on
possible behaviours of SARS-CoV-2 proteins that are
not evident from the static models generated by struc-
tural biology, nor from molecular dynamics simulations
based on these models. It enables the exploration of
these proteins from a different perspective and should
help further our understanding of the mode of action of
the overall virus.
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Additional file 1: Supplementary data. Contains two additional Figs.
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