Suzuki K, Suzuki Y: Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci USA. 1970, 66 (2): 302-309. 10.1073/pnas.66.2.302.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rafi MA, Zhi Rao H, Passini MA, Curtis M, Vanier MT, Zaka M, Luzi P, Wolfe JH, Wenger DA: AAV-mediated expression of galactocerebrosidase in brain results in attenuated symptoms and extended life span in murine models of globoid cell leukodystrophy. Mol Ther. 2005, 11 (5): 734-744. 10.1016/j.ymthe.2004.12.020.
Article
CAS
PubMed
Google Scholar
Svennerholm L, Vanier MT, Månsson JE: Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res. 1980, 21 (1): 53-64.
CAS
PubMed
Google Scholar
Sakai N: Pathogenesis of leukodystrophy for Krabbe disease: molecular mechanism and clinical treatment. Brain Dev. 2009, 31 (7): 485-487. 10.1016/j.braindev.2009.03.001.
Article
PubMed
Google Scholar
Suzuki K: Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem Res. 1998, 23 (3): 251-259. 10.1023/A:1022436928925.
Article
CAS
PubMed
Google Scholar
Pannuzzo G, Cardile V, Costantino-Ceccarini E, Alvares E, Mazzone D, Perciavalle V: A galactose-free diet enriched in soy isoflavones and antioxidants results in delayed onset of symptoms of Krabbe disease in twitcher mice. Mol Genet Metab. 2010, 100 (3): 234-240. 10.1016/j.ymgme.2010.03.021.
Article
CAS
PubMed
Google Scholar
Duffner PK, Caggana M, Orsini JJ, Wenger DA, Patterson MC, Crosley CJ, Kurtzberg J, Arnold GL, Escolar ML, Adams DJ: Newborn screening for krabbe disease: the New york state model. Pediatr Neurol. 2009, 40 (4): 245-252. 10.1016/j.pediatrneurol.2008.11.010. discussion 253–245
Article
PubMed
Google Scholar
Wenger DA, Rafi MA, Luzi P, Datto J, Costantino-Ceccarini E: Krabbe disease: genetic aspects and progress toward therapy. Mol Genet Metab. 2000, 70 (1): 1-9. 10.1006/mgme.2000.2990.
Article
CAS
PubMed
Google Scholar
Lin D, Donsante A, Macauley S, Levy B, Vogler C, Sands MS: Central nervous system-directed AAV2/5-mediated gene therapy synergizes with bone marrow transplantation in the murine model of globoid-cell leukodystrophy. Mol Ther. 2007, 15 (1): 44-52. 10.1038/sj.mt.6300026.
Article
CAS
PubMed
Google Scholar
Borda JT, Alvarez X, Mohan M, Ratterree MS, Phillippi-Falkenstein K, Lackner AA, Bunnell BA: Clinical and immunopathologic alterations in rhesus macaques affected with globoid cell leukodystrophy. Am J Pathol. 2008, 172 (1): 98-111. 10.2353/ajpath.2008.070404.
Article
PubMed Central
CAS
PubMed
Google Scholar
Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, Wenger DA, Pietryga D, Wall D, Champagne M: Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005, 352 (20): 2069-2081. 10.1056/NEJMoa042604.
Article
CAS
PubMed
Google Scholar
Duffner PK, Caviness VS, Erbe RW, Patterson MC, Schultz KR, Wenger DA, Whitley C: The long-term outcomes of presymptomatic infants transplanted for Krabbe disease: report of the workshop held on July 11 and 12, 2008, Holiday Valley. New York. Genet Med. 2009, 11 (6): 450-454.
Article
PubMed
Google Scholar
McGraw P, Liang L, Escolar M, Mukundan S, Kurtzberg J, Provenzale JM: Krabbe disease treated with hematopoietic stem cell transplantation: serial assessment of anisotropy measurements–initial experience. Radiology. 2005, 236 (1): 221-230. 10.1148/radiol.2353040716.
Article
PubMed
Google Scholar
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N: Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008, 26 (1): 212-222. 10.1634/stemcells.2007-0554.
Article
CAS
PubMed
Google Scholar
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006, 24 (5): 1294-1301. 10.1634/stemcells.2005-0342.
Article
CAS
PubMed
Google Scholar
Gimble JM, Guilak F, Bunnell BA: Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010, 1 (2): 19-10.1186/scrt19.
Article
PubMed Central
PubMed
Google Scholar
Halvorsen YC, Wilkison WO, Gimble JM: Adipose-derived stromal cells–their utility and potential in bone formation. Int J Obes Relat Metab Disord. 2000, 24 (Suppl 4): S41-S44.
Article
CAS
PubMed
Google Scholar
Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M: Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004, 109 (5): 656-663. 10.1161/01.CIR.0000114522.38265.61.
Article
PubMed
Google Scholar
Rangappa S, Fen C, Lee EH, Bongso A, Sim EK, Wei EK: Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003, 75 (3): 775-779. 10.1016/S0003-4975(02)04568-X.
Article
PubMed
Google Scholar
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001, 7 (2): 211-228. 10.1089/107632701300062859.
Article
CAS
PubMed
Google Scholar
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13 (12): 4279-4295. 10.1091/mbc.E02-02-0105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim JM, Lee ST, Chu K, Jung KH, Song EC, Kim SJ, Sinn DI, Kim JH, Park DK, Kang KM: Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 2007, 1183: 43-50.
Article
CAS
PubMed
Google Scholar
Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, Büscher D, Delgado M: Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010, 69 (1): 241-248. 10.1136/ard.2008.101881.
Article
CAS
PubMed
Google Scholar
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004, 109 (10): 1292-1298. 10.1161/01.CIR.0000121425.42966.F1.
Article
PubMed
Google Scholar
Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T: Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005, 25 (12): 2542-2547. 10.1161/01.ATV.0000190701.92007.6d.
Article
CAS
PubMed
Google Scholar
Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for regenerative medicine. Circ Res. 2007, 100 (9): 1249-1260. 10.1161/01.RES.0000265074.83288.09.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Yamanaka T, Jacobs JM, Teixeira F, Suzuki K: The Twitcher mouse: an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). Brain Res. 1980, 202 (2): 479-483. 10.1016/0006-8993(80)90159-6.
Article
CAS
PubMed
Google Scholar
Wenger DA: Murine, canine and non-human primate models of Krabbe disease. Mol Med Today. 2000, 6 (11): 449-451. 10.1016/S1357-4310(00)01800-1.
Article
CAS
PubMed
Google Scholar
Golub EE, Boesze-Battaglia K: The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007, 18: 444-448. 10.1097/BCO.0b013e3282630851.
Article
Google Scholar
Kwun IS, Cho YE, Lomeda RA, Shin HI, Choi JY, Kang YH, Beattie JH: Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010, 46 (3): 732-741. 10.1016/j.bone.2009.11.003.
Article
CAS
PubMed
Google Scholar
Lee AJ, Hodges S, Eastell R: Measurement of osteocalcin. Ann Clin Biochem. 2000, 37 (Pt 4): 432-446.
Article
PubMed
Google Scholar
Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL: A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008, 102 (1): 77-85. 10.1161/CIRCRESAHA.107.159475.
Article
CAS
PubMed
Google Scholar
Marom R, Shur I, Solomon R, Benayahu D: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol. 2005, 202 (1): 41-48. 10.1002/jcp.20109.
Article
CAS
PubMed
Google Scholar
Contreras MA, Ries WL, Shanmugarajan S, Arboleda G, Singh I, Singh AK: Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease. Biochim Biophys Acta. 2010, 1802 (7–8): 601-608.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F: Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005, 105 (7): 2821-2827. 10.1182/blood-2004-09-3696.
Article
CAS
PubMed
Google Scholar
Chamberlain G, Fox J, Ashton B, Middleton J: Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007, 25 (11): 2739-2749. 10.1634/stemcells.2007-0197.
Article
CAS
PubMed
Google Scholar
Nauta AJ, Fibbe WE: Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007, 110 (10): 3499-3506. 10.1182/blood-2007-02-069716.
Article
CAS
PubMed
Google Scholar
Uccelli A, Moretta L, Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008, 8 (9): 726-736. 10.1038/nri2395.
Article
CAS
PubMed
Google Scholar
Kim J, Hematti P: Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009, 37 (12): 1445-1453. 10.1016/j.exphem.2009.09.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009, 15 (1): 42-49. 10.1038/nm.1905.
Article
PubMed Central
PubMed
Google Scholar
Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A: Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol. 2011, 106 (6): 1299-1310. 10.1007/s00395-011-0221-9.
Article
CAS
PubMed
Google Scholar
Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M: Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One. 2010, 5 (2): e9252-10.1371/journal.pone.0009252.
Article
PubMed Central
PubMed
Google Scholar
Terrell KA, Rasmussen TA, Trygg C, Bunnell BA, Buck WR: Molecular beacon genotyping for globoid cell leukodystrophy from hair roots in the twitcher mouse and rhesus macaque. J Neurosci Methods. 2007, 163 (1): 60-66. 10.1016/j.jneumeth.2007.02.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kumar S, Mahendra G, Ponnazhagan S: Determination of osteoprogenitor-specific promoter activity in mouse mesenchymal stem cells by recombinant adeno-associated virus transduction. Biochim Biophys Acta. 2005, 1731 (2): 95-103. 10.1016/j.bbaexp.2005.08.007.
Article
CAS
PubMed
Google Scholar
Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008, 3 (6): 1101-1108. 10.1038/nprot.2008.73.
Article
CAS
PubMed
Google Scholar