Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74: 1124-1136. 10.1161/01.CIR.74.5.1124.
Article
CAS
PubMed
Google Scholar
Yellon DM, Downey JM: Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003, 83: 1113-1151.
Article
CAS
PubMed
Google Scholar
Griffiths EJ, Halestrap AP: Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993, 25: 1461-1469. 10.1006/jmcc.1993.1162.
Article
CAS
PubMed
Google Scholar
Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M: Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005, 38: 367-374. 10.1016/j.yjmcc.2004.12.001.
Article
CAS
PubMed
Google Scholar
Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM: Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol. 2005, 289: H237-H242. 10.1152/ajpheart.01192.2004.
Article
CAS
PubMed
Google Scholar
Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D: Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008, 359: 473-481. 10.1056/NEJMoa071142.
Article
CAS
PubMed
Google Scholar
Lim SY, Davidson SM, Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007, 75: 530-535. 10.1016/j.cardiores.2007.04.022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Halestrap AP, Clarke SJ, Khaliulin I: The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta. 2007, 1767: 1007-1031. 10.1016/j.bbabio.2007.05.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garlid KD, Halestrap AP: The mitochondrial K(ATP) channel-Fact or fiction?. J Mol Cell Cardiol. 2012, 52: 578-583. 10.1016/j.yjmcc.2011.12.011.
Article
PubMed Central
CAS
PubMed
Google Scholar
McLeod CJ, Aziz A, Hoyt RF, McCoy JP, Sack MN: Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem. 2005, 280: 33470-33476. 10.1074/jbc.M505258200.
Article
CAS
PubMed
Google Scholar
Skulachev VP: Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys. 1996, 29: 169-202. 10.1017/S0033583500005795.
Article
CAS
PubMed
Google Scholar
Baines CP: The cardiac mitochondrion: nexus of stress. Annu Rev Physiol. 2010, 72: 61-80. 10.1146/annurev-physiol-021909-135929.
Article
CAS
PubMed
Google Scholar
Sedlic F, Sepac A, Pravdic D, Camara AK, Bienengraeber M, Brzezinska AK, Wakatsuki T, Bosnjak ZJ: Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+. Am J Physiol Cell Physiol. 2010, 299: C506-515. 10.1152/ajpcell.00006.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ: Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006, 72: 313-321. 10.1016/j.cardiores.2006.07.019.
Article
CAS
PubMed
Google Scholar
Ozcan C, Bienengraeber M, Dzeja PP, Terzic A: Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002, 282: H531-539.
Article
CAS
PubMed
Google Scholar
Vanden Hoek T, Becker LB, Shao ZH, Li CQ, Schumacker PT: Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ Res. 2000, 86: 541-548. 10.1161/01.RES.86.5.541.
Article
CAS
PubMed
Google Scholar
Andrukhiv A, Costa AD, West IC, Garlid KD: Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol. 2006, 291: H2067-2074. 10.1152/ajpheart.00272.2006.
Article
CAS
PubMed
Google Scholar
Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD: The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006, 290: H406-415.
Article
CAS
PubMed
Google Scholar
Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD: The mechanism by which the mitochondrial ATP-sensitive K + channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem. 2006, 281: 20801-20808. 10.1074/jbc.M600959200.
Article
CAS
PubMed
Google Scholar
Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD: Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol. 2001, 280: H649-657.
CAS
PubMed
Google Scholar
Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmer E: Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem. 2010, 285: 741-750. 10.1074/jbc.M109.017731.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nohl H, Kozlov AV, Gille L, Staniek K: Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans. 2003, 31: 1308-1311. 10.1042/BST0311308.
Article
CAS
PubMed
Google Scholar
Andreyev AY, Kushnareva YE, Starkov AA: Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005, 70: 200-214. 10.1007/s10541-005-0102-7.
Article
CAS
Google Scholar
Hansson MJ, Mansson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A, Elmer E: Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med. 2008, 45: 284-294. 10.1016/j.freeradbiomed.2008.04.021.
Article
CAS
PubMed
Google Scholar
Holmuhamedov EL, Wang L, Terzic A: ATP-sensitive K + channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol. 1999, 519 (Pt 2): 347-360.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chalmers S, Nicholls DG: The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem. 2003, 278: 19062-19070. 10.1074/jbc.M212661200.
Article
CAS
PubMed
Google Scholar
Hunter DR, Haworth RA: The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys. 1979, 195: 453-459. 10.1016/0003-9861(79)90371-0.
Article
CAS
PubMed
Google Scholar
Bernardi P: Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem. 1992, 267: 8834-8839.
CAS
PubMed
Google Scholar
Halestrap AP: The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta. 1989, 973: 355-382. 10.1016/S0005-2728(89)80378-0.
Article
CAS
PubMed
Google Scholar
Devin A, Espie P, Guerin B, Rigoulet M: Energetics of swelling in isolated hepatocytes: a comprehensive study. Mol Cell Biochem. 1998, 184: 107-121. 10.1023/A:1006847214074.
Article
CAS
PubMed
Google Scholar
Nicholls DG, Lindberg O: Inhibited respiration and ATPase activity of rat liver mitochondria under conditions of matrix condensation. FEBS Lett. 1972, 25: 61-64. 10.1016/0014-5793(72)80454-X.
Article
CAS
PubMed
Google Scholar
Kossekova G, Atanasov B, Bolli R, Azzi A: Ionic-strength-dependence of the oxidation of native and pyridoxal 5′-phosphate-modified cytochromes c by cytochrome c oxidase. Biochem J. 1989, 262: 591-596.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gogvadze V, Robertson JD, Enoksson M, Zhivotovsky B, Orrenius S: Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochem J. 2004, 378: 213-217. 10.1042/BJ20031193.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boveris A, Chance B: The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973, 134: 707-716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Korshunov SS, Skulachev VP, Starkov AA: High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416: 15-18. 10.1016/S0014-5793(97)01159-9.
Article
CAS
PubMed
Google Scholar
Toime LJ, Brand MD: Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med. 2010, 49: 606-611. 10.1016/j.freeradbiomed.2010.05.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP: Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res. 2008, 102: 1082-1090. 10.1161/CIRCRESAHA.107.167072.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown GC, Borutaite V: There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 2012, 12: 1-4. 10.1016/j.mito.2011.02.001.
Article
CAS
PubMed
Google Scholar
Berndt C, Lillig CH, Holmgren A: Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007, 292: H1227-1236.
Article
CAS
PubMed
Google Scholar
Sibbing D, Pfeufer A, Perisic T, Mannes AM, Fritz-Wolf K, Unwin S, Sinner MF, Gieger C, Gloeckner CJ, Wichmann HE: Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J. 2011, 32: 1121-1133. 10.1093/eurheartj/ehq507.
Article
CAS
PubMed
Google Scholar
Horstkotte J, Perisic T, Schneider M, Lange P, Schroeder M, Kiermayer C, Hinkel R, Ziegler T, Mandal PK, David R: Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation. 2011, 124: 2892-2902. 10.1161/CIRCULATIONAHA.111.059253.
Article
CAS
PubMed
Google Scholar
Nagy N, Malik G, Tosaki A, Ho YS, Maulik N, Das DK: Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. J Mol Cell Cardiol. 2008, 44: 252-260. 10.1016/j.yjmcc.2007.08.021.
Article
CAS
PubMed
Google Scholar
Nicholls DG, Budd SL: Mitochondria and neuronal survival. Physiol Rev. 2000, 80: 315-360.
CAS
PubMed
Google Scholar
Wojtovich AP, Brookes PS: The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta. 2008, 1777: 882-889. 10.1016/j.bbabio.2008.03.025.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morota S, Hansson MJ, Ishii N, Kudo Y, Elmer E, Uchino H: Spinal cord mitochondria display lower calcium retention capacity compared with brain mitochondria without inherent differences in sensitivity to cyclophilin D inhibition. J Neurochem. 2007, 103: 2066-2076. 10.1111/j.1471-4159.2007.04912.x.
Article
CAS
PubMed
Google Scholar
Morota S, Manolopoulos T, Eyjolfsson A, Kimblad PO, Wierup P, Metzsch C, Blomquist S, Hansson MJ: Functional and pharmacological characteristics of permeability transition in isolated human heart mitochondria. PLoS One. 2013, 8: e67747-10.1371/journal.pone.0067747.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hickey AJ, Renshaw GM, Speers-Roesch B, Richards JG, Wang Y, Farrell AP, Brauner CJ: A radical approach to beating hypoxia: depressed free radical release from heart fibres of the hypoxia-tolerant epaulette shark (Hemiscyllum ocellatum). J Comp Physiol B. 2012, 182: 91-100. 10.1007/s00360-011-0599-6.
Article
PubMed
Google Scholar