Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B: Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. Embo J. 1988, 7 (7): 2089-2095.
PubMed Central
CAS
PubMed
Google Scholar
Danielson KG, Oborn CJ, Durban EM, Butel JS, Medina D: Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc Natl Acad Sci U S A. 1984, 81 (12): 3756-3760. 10.1073/pnas.81.12.3756.
Article
PubMed Central
CAS
PubMed
Google Scholar
Humphreys RC, Rosen JM: Stably transfected HC11 cells provide an in vitro and in vivo model system for studying Wnt gene function. Cell Growth Differ. 1997, 8 (8): 839-849.
CAS
PubMed
Google Scholar
Blatchford DR, Quarrie LH, Tonner E, McCarthy C, Flint DJ, Wilde CJ: Influence of microenvironment on mammary epithelial cell survival in primary culture. J Cell Physiol. 1999, 181 (2): 304-311. 10.1002/(SICI)1097-4652(199911)181:2<304::AID-JCP12>3.0.CO;2-5.
Article
CAS
PubMed
Google Scholar
Yamashita H, Nevalainen MT, Xu J, LeBaron MJ, Wagner KU, Erwin RA, Harmon JM, Hennighausen L, Kirken RA, Rui H: Role of serine phosphorylation of Stat5a in prolactin-stimulated beta-casein gene expression. Mol Cell Endocrinol. 2001, 183 (1-2): 151-163. 10.1016/S0303-7207(01)00546-9.
Article
CAS
PubMed
Google Scholar
Cerrito MG, Galbaugh T, Wang W, Chopp T, Salomon D, Cutler ML: Dominant negative Ras enhances lactogenic hormone-induced differentiation by blocking activation of the Raf-Mek-Erk signal transduction pathway. J Cell Physiol. 2004, 201 (2): 244-258. 10.1002/jcp.20077.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marte BM, Meyer T, Stabel S, Standke GJ, Jaken S, Fabbro D, Hynes NE: Protein kinase C and mammary cell differentiation: involvement of protein kinase C alpha in the induction of beta-casein expression. Cell Growth Differ. 1994, 5 (3): 239-247.
CAS
PubMed
Google Scholar
Merlo GR, Graus-Porta D, Cella N, Marte BM, Taverna D, Hynes NE: Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur J Cell Biol. 1996, 70 (2): 97-105.
CAS
PubMed
Google Scholar
Hynes NE, Taverna D, Harwerth IM, Ciardiello F, Salomon DS, Yamamoto T, Groner B: Epidermal growth factor receptor, but not c-erbB-2, activation prevents lactogenic hormone induction of the beta-casein gene in mouse mammary epithelial cells. Mol Cell Biol. 1990, 10 (8): 4027-4034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marte BM, Jeschke M, Graus-Porta D, Taverna D, Hofer P, Groner B, Yarden Y, Hynes NE: Neu differentiation factor/heregulin modulates growth and differentiation of HC11 mammary epithelial cells. Mol Endocrinol. 1995, 9 (1): 14-23. 10.1210/me.9.1.14.
CAS
PubMed
Google Scholar
Petersen H, Haldosen LA: EGF modulates expression of STAT5 in mammary epithelial cells. Exp Cell Res. 1998, 243 (2): 347-358. 10.1006/excr.1998.4160.
Article
CAS
PubMed
Google Scholar
De Santis ML, Kannan S, Smith GH, Seno M, Bianco C, Kim N, Martinez-Lacaci I, Wallace-Jones B, Salomon DS: Cripto-1 inhibits beta-casein expression in mammary epithelial cells through a p21ras-and phosphatidylinositol 3'-kinase-dependent pathway. Cell Growth Differ. 1997, 8 (12): 1257-1266.
CAS
PubMed
Google Scholar
Carpenter CL, Cantley LC: Phosphoinositide 3-kinase and the regulation of cell growth. Biochim Biophys Acta. 1996, 1288 (1): M11-6.
PubMed
Google Scholar
Cantley LC: The phosphoinositide 3-kinase pathway. Science. 2002, 296 (5573): 1655-1657. 10.1126/science.296.5573.1655.
Article
CAS
PubMed
Google Scholar
Fruman DA, Meyers RE, Cantley LC: Phosphoinositide kinases. Annu Rev Biochem. 1998, 67: 481-507. 10.1146/annurev.biochem.67.1.481.
Article
CAS
PubMed
Google Scholar
Vanhaesebroeck B, Waterfield MD: Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999, 253 (1): 239-254. 10.1006/excr.1999.4701.
Article
CAS
PubMed
Google Scholar
Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J: Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994, 370 (6490): 527-532. 10.1038/370527a0.
Article
CAS
PubMed
Google Scholar
Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J: Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. Embo J. 1996, 15 (10): 2442-2451.
PubMed Central
CAS
PubMed
Google Scholar
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J. 1996, 15 (23): 6541-6551.
PubMed Central
CAS
PubMed
Google Scholar
Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC: Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999, 96 (13): 7421-7426. 10.1073/pnas.96.13.7421.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999, 96 (6): 857-868. 10.1016/S0092-8674(00)80595-4.
Article
CAS
PubMed
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 378 (6559): 785-789. 10.1038/378785a0.
Article
CAS
PubMed
Google Scholar
Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM: Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999, 398 (6728): 630-634. 10.1038/19328.
Article
CAS
PubMed
Google Scholar
Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB: NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999, 401 (6748): 82-85. 10.1038/43466.
Article
CAS
PubMed
Google Scholar
Romashkova JA, Makarov SS: NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999, 401 (6748): 86-90. 10.1038/43474.
Article
CAS
PubMed
Google Scholar
Takaishi H, Konishi H, Matsuzaki H, Ono Y, Shirai Y, Saito N, Kitamura T, Ogawa W, Kasuga M, Kikkawa U, Nishizuka Y: Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci U S A. 1999, 96 (21): 11836-11841. 10.1073/pnas.96.21.11836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang ED, Nunez G, Barr FG, Guan KL: Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem. 1999, 274 (24): 16741-16746. 10.1074/jbc.274.24.16741.
Article
CAS
PubMed
Google Scholar
Inoki K, Li Y, Xu T, Guan KL: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003, 17 (15): 1829-1834. 10.1101/gad.1110003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manning BD, Cantley LC: Rheb fills a GAP between TSC and TOR. Trends Biochem Sci. 2003, 28 (11): 573-576. 10.1016/j.tibs.2003.09.003.
Article
CAS
PubMed
Google Scholar
Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60 (13): 3504-3513.
CAS
PubMed
Google Scholar
Shamji AF, Nghiem P, Schreiber SL: Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell. 2003, 12 (2): 271-280. 10.1016/j.molcel.2003.08.016.
Article
CAS
PubMed
Google Scholar
Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18 (16): 1926-1945. 10.1101/gad.1212704.
Article
CAS
PubMed
Google Scholar
Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, Peters BA, Velculescu VE, Park BH: The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004, 3 (8): 772-775.
Article
CAS
PubMed
Google Scholar
Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA: Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004, 64 (21): 7678-7681. 10.1158/0008-5472.CAN-04-2933.
Article
CAS
PubMed
Google Scholar
Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH: PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005, 24 (8): 1477-1480. 10.1038/sj.onc.1208304.
Article
CAS
PubMed
Google Scholar
Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI, Boyd J: Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res. 2005, 11 (8): 2875-2878. 10.1158/1078-0432.CCR-04-2142.
Article
CAS
PubMed
Google Scholar
Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS, Malmstrom PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg A, Parsons R: PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005, 65 (7): 2554-2559. 10.1158/0008-5472-CAN-04-3913.
Article
CAS
PubMed
Google Scholar
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE: High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004, 304 (5670): 554-10.1126/science.1096502.
Article
CAS
PubMed
Google Scholar
Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS: The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 2002, 111 (1): 29-40. 10.1016/S0092-8674(02)01001-2.
Article
CAS
PubMed
Google Scholar
Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30 (3): 256-268. 10.1016/S1046-2023(03)00032-X.
Article
CAS
PubMed
Google Scholar
Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV: Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature. 1997, 390 (6660): 632-636. 10.1038/37656.
Article
CAS
PubMed
Google Scholar
Bailey JP, Nieport KM, Herbst MP, Srivastava S, Serra RA, Horseman ND: Prolactin and transforming growth factor-beta signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt-forkhead pathway. Mol Endocrinol. 2004, 18 (5): 1171-1184. 10.1210/me.2003-0345.
Article
CAS
PubMed
Google Scholar
Doppler W, Groner B, Ball RK: Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc Natl Acad Sci U S A. 1989, 86 (1): 104-108. 10.1073/pnas.86.1.104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doppler W, Hock W, Hofer P, Groner B, Ball RK: Prolactin and glucocorticoid hormones control transcription of the beta-casein gene by kinetically distinct mechanisms. Mol Endocrinol. 1990, 4 (6): 912-919.
Article
CAS
PubMed
Google Scholar
Mieth M, Boehmer FD, Ball R, Groner B, Grosse R: Transforming growth factor-beta inhibits lactogenic hormone induction of beta-casein expression in HC11 mouse mammary epithelial cells. Growth Factors. 1990, 4 (1): 9-15.
Article
CAS
PubMed
Google Scholar
Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JCJ, Roth RA: Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem. 1998, 273 (19): 11937-11943. 10.1074/jbc.273.19.11937.
Article
CAS
PubMed
Google Scholar
Fujio Y, Walsh K: Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem. 1999, 274 (23): 16349-16354. 10.1074/jbc.274.23.16349.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parra JL, Buxade M, Proud CG: Features of the catalytic domains and C termini of the MAPK signal-integrating kinases Mnk1 and Mnk2 determine their differing activities and regulatory properties. J Biol Chem. 2005, 280 (45): 37623-37633. 10.1074/jbc.M508356200.
Article
CAS
PubMed
Google Scholar
Dennis PB, Pullen N, Pearson RB, Kozma SC, Thomas G: Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation. J Biol Chem. 1998, 273 (24): 14845-14852. 10.1074/jbc.273.24.14845.
Article
CAS
PubMed
Google Scholar
Shah OJ, Iniguez-Lluhi JA, Romanelli A, Kimball SR, Jefferson LS: The activated glucocorticoid receptor modulates presumptive autoregulation of ribosomal protein S6 protein kinase, p70 S6K. J Biol Chem. 2002, 277 (4): 2525-2533. 10.1074/jbc.M105935200.
Article
CAS
PubMed
Google Scholar
Simpson HW, McArdle CS, George WD, Griffiths K, Turkes A, Pauson AW: Pregnancy postponement and childlessness leads to chronic hypervascularity of the breasts and cancer risk. Br J Cancer. 2002, 87 (11): 1246-1252. 10.1038/sj.bjc.6600600.
Article
PubMed Central
CAS
PubMed
Google Scholar
Navolanic PM, Steelman LS, McCubrey JA: EGFR family signaling and its association with breast cancer development and resistance to chemotherapy (Review). Int J Oncol. 2003, 22 (2): 237-252.
CAS
PubMed
Google Scholar
Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS: Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005, 65 (23): 10992-11000. 10.1158/0008-5472.CAN-05-2612.
Article
CAS
PubMed
Google Scholar
Luo J, Manning BD, Cantley LC: Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003, 4 (4): 257-262. 10.1016/S1535-6108(03)00248-4.
Article
CAS
PubMed
Google Scholar
Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501. 10.1038/nrc839.
Article
CAS
PubMed
Google Scholar
Neve RM, Holbro T, Hynes NE: Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells. Oncogene. 2002, 21 (29): 4567-4576. 10.1038/sj.onc.1205555.
Article
CAS
PubMed
Google Scholar
Zhang G, He B, Weber GF: Growth factor signaling induces metastasis genes in transformed cells: molecular connection between Akt kinase and osteopontin in breast cancer. Mol Cell Biol. 2003, 23 (18): 6507-6519. 10.1128/MCB.23.18.6507-6519.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lechner J, Welte T, Tomasi JK, Bruno P, Cairns C, Gustafsson J, Doppler W: Promoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of beta-casein gene transcription. J Biol Chem. 1997, 272 (33): 20954-20960. 10.1074/jbc.272.33.20954.
Article
CAS
PubMed
Google Scholar
Stoecklin E, Wissler M, Moriggl R, Groner B: Specific DNA binding of Stat5, but not of glucocorticoid receptor, is required for their functional cooperation in the regulation of gene transcription. Mol Cell Biol. 1997, 17 (11): 6708-6716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wyszomierski SL, Yeh J, Rosen JM: Glucocorticoid receptor/signal transducer and activator of transcription 5 (STAT5) interactions enhance STAT5 activation by prolonging STAT5 DNA binding and tyrosine phosphorylation. Mol Endocrinol. 1999, 13 (2): 330-343. 10.1210/me.13.2.330.
Article
CAS
PubMed
Google Scholar
Joosten M, Blazquez-Domingo M, Lindeboom F, Boulme F, Van Hoven-Beijen A, Habermann B, Lowenberg B, Beug H, Mullner EW, Delwel R, Von Lindern M: Translational control of putative protooncogene Nm23-M2 by cytokines via phosphoinositide 3-kinase signaling. J Biol Chem. 2004, 279 (37): 38169-38176. 10.1074/jbc.M401283200.
Article
CAS
PubMed
Google Scholar
Blazquez-Domingo M, Grech G, von Lindern M: Translation initiation factor 4E inhibits differentiation of erythroid progenitors. Mol Cell Biol. 2005, 25 (19): 8496-8506. 10.1128/MCB.25.19.8496-8506.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P, Yang W, Yin G, Hittelman WN, Yu D: ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res. 2006, 66 (4): 2028-2037. 10.1158/0008-5472.CAN-04-4559.
Article
CAS
PubMed
Google Scholar
Gregorieff A, Pyronnet S, Sonenberg N, Veillette A: Regulation of SOCS-1 expression by translational repression. J Biol Chem. 2000, 275 (28): 21596-21604. 10.1074/jbc.M910087199.
Article
CAS
PubMed
Google Scholar
Mahimainathan L, Ghosh-Choudhury N, Venkatesan BA, Danda RS, Choudhury GG: EGF stimulates mesangial cell mitogenesis via PI3-kinase-mediated MAPK-dependent and AKT kinase-independent manner: involvement of c-fos and p27Kip1. Am J Physiol Renal Physiol. 2005, 289 (1): F72-82. 10.1152/ajprenal.00277.2004.
Article
CAS
PubMed
Google Scholar
Qiao M, Shapiro P, Kumar R, Passaniti A: Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent signaling pathway. J Biol Chem. 2004, 279 (41): 42709-42718. 10.1074/jbc.M404480200.
Article
CAS
PubMed
Google Scholar
Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G: Phosphorylation and activation of p70s6k by PDK1. Science. 1998, 279 (5351): 707-710. 10.1126/science.279.5351.707.
Article
CAS
PubMed
Google Scholar
Xie Z, Zeng X, Waldman T, Glazer RI: Transformation of mammary epithelial cells by 3-phosphoinositide- dependent protein kinase-1 activates beta-catenin and c-Myc, and down-regulates caveolin-1. Cancer Res. 2003, 63 (17): 5370-5375.
CAS
PubMed
Google Scholar
Zeng X, Xu H, Glazer RI: Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with the induction of protein kinase Calpha. Cancer Res. 2002, 62 (12): 3538-3543.
CAS
PubMed
Google Scholar
Chodosh LA, Gardner HP, Rajan JV, Stairs DB, Marquis ST, Leder PA: Protein kinase expression during murine mammary development. Dev Biol. 2000, 219 (2): 259-276. 10.1006/dbio.2000.9614.
Article
CAS
PubMed
Google Scholar
Ackler S, Ahmad S, Tobias C, Johnson MD, Glazer RI: Delayed mammary gland involution in MMTV-AKT1 transgenic mice. Oncogene. 2002, 21 (2): 198-206. 10.1038/sj.onc.1205052.
Article
CAS
PubMed
Google Scholar
Schwertfeger KL, Richert MM, Anderson SM: Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol. 2001, 15 (6): 867-881. 10.1210/me.15.6.867.
Article
CAS
PubMed
Google Scholar
Jankiewicz M, Groner B, Desrivieres S: mTOR regulates the growth of mammary epithelial cells through the inhibitor of DNA binding Id1 and their functional differentiation through Id2. Mol Endocrinol. 2006
Google Scholar
Taverna D, Groner B, Hynes NE: Epidermal growth factor receptor, platelet-derived growth factor receptor, and c-erbB-2 receptor activation all promote growth but have distinctive effects upon mouse mammary epithelial cell differentiation. Cell Growth Differ. 1991, 2 (3): 145-154.
CAS
PubMed
Google Scholar
Wartmann M, Cella N, Hofer P, Groner B, Liu X, Hennighausen L, Hynes NE: Lactogenic hormone activation of Stat5 and transcription of the beta-casein gene in mammary epithelial cells is independent of p42 ERK2 mitogen-activated protein kinase activity. J Biol Chem. 1996, 271 (50): 31863-31868. 10.1074/jbc.271.50.31863.
Article
CAS
PubMed
Google Scholar
Xie J, LeBaron MJ, Nevalainen MT, Rui H: Role of tyrosine kinase Jak2 in prolactin-induced differentiation and growth of mammary epithelial cells. J Biol Chem. 2002, 277 (16): 14020-14030. 10.1074/jbc.M112399200.
Article
CAS
PubMed
Google Scholar