Goodenough DA. The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol. 1992;3:49–58.
Article
CAS
PubMed
Google Scholar
Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis. 2010;16:2007–15.
CAS
PubMed
PubMed Central
Google Scholar
Jiang JX. Gap junctions or hemichannel-dependent and independent roles of connexins in cataractogenesis and lens development. Curr Mol Med. 2010;10:851–63.
Article
CAS
PubMed
Google Scholar
Rao PV. The pulling, pushing and fusing of lens fibers. Cell Adhes Migr. 2008;2:170–3.
Article
Google Scholar
Beyer EC, Kistler J, Paul DL, Goodenough DA. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol. 1989;108:595–605.
Article
CAS
PubMed
Google Scholar
Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, Levy E, Gong X. Disruption of Gja8 (α8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development. 2002;129:167–74.
CAS
PubMed
Google Scholar
Berthoud VM, Minogue PJ, Yu H, Schroeder R, Snabb JI, Beyer EC. Connexin50D47A decreases levels of fiber cell connexins and impairs lens fiber cell differentiation. Invest Ophthalmol Vis Sci. 2013;54:7614–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol. 1991;115:1077–89.
Article
CAS
PubMed
Google Scholar
White TW, Bruzzone R, Goodenough DA, Paul DL. Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell. 1992;3:711–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iovine MK, Gumpert A, Falk M, Mendelson TC. Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett. 2008;582:165–70.
Article
CAS
PubMed
Google Scholar
Gustincich S, Batalov S, Beisel KW, Bono H, Carninci P, Fletcher CF, Grimmond S, Hirokawa N, Jarvis ED, Jegla T, et al. Analysis of the mouse transcriptome for genes involved in the function of the nervous system. Genome Res. 2003;13:1395–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonntag S, Söhl G, Dobrowolski R, Zhang J, Theis M, Winterhager E, Bukauskas FF, Willecke K. Mouse lens connexin23 (Gje1) does not form functional gap junction channels but causes enhanced ATP release from HeLa cells. Eur J Cell Biol. 2009;88:65–77.
Article
CAS
PubMed
Google Scholar
Bassnett S, Wilmarth PA, David LL. The membrane proteome of the mouse lens fiber cell. Mol Vis. 2009;15:2448–63.
CAS
PubMed
PubMed Central
Google Scholar
Berthoud VM, Minogue PJ, Snabb JI, Dzhashiashvili Y, Novak LA, Zoltoski RK, Popko B, Beyer EC. Connexin23 deletion does not affect lens transparency. Exp Eye Res. 2016;146:283–8.
Article
CAS
PubMed
Google Scholar
Mathias RT, Kistler J, Donaldson P. The lens circulation. J Membr Biol. 2007;216:1–16.
Article
CAS
PubMed
Google Scholar
Vaghefi E, Malcolm DT, Jacobs MD, Donaldson PJ. Development of a 3D finite element model of lens microcirculation. Biomed Eng Online. 2012;11:69.
Article
PubMed
PubMed Central
Google Scholar
Slavi N, Rubinos C, Li L, Sellitto C, White TW, Mathias R, Srinivas M. Connexin 46 (Cx46) gap junctions provide a pathway for the delivery of glutathione to the lens nucleus. J Biol Chem. 2014;289:32694–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beyer EC, Ebihara L, Berthoud VM. Connexin mutants and cataracts. Front Pharmacol. 2013;4:43.
CAS
PubMed
PubMed Central
Google Scholar
White TW, Goodenough DA, Paul DL. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol. 1998;143:815–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sellitto C, Li L, White TW. Connexin50 is essential for normal postnatal lens cell proliferation. Invest Opthalmol Vis Sci. 2004;45:3196–202.
Article
Google Scholar
Gao J, Sun X, Martinez-Wittinghan FJ, Gong X, White TW, Mathias RT. Connections between connexins, calcium, and cataracts in the lens. J Gen Physiol. 2004;124:289–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graw J, Löster J, Soewarto D, Fuchs H, Meyer B, Reis A, Wolf E, Balling R, Hrabé de Angelis M. Characterization of a mutation in the lens-specific MP70 encoding gene of the mouse leading to a dominant cataract. Exp Eye Res. 2001;73:867–76.
Article
CAS
PubMed
Google Scholar
Xia C-h, Liu H, Cheung D, Cheng C, Wang E, Du X, Beutler B, Lo W-K, Gong X. Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis. Development. 2006;133:2033–40.
Xia C-h, Chang B, DeRosa AM, Cheng C, White TW, Gong X. Cataracts and microphthalmia caused by a Gja8 mutation in extracellular loop 2. PLoS One. 2012;7:e52894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunia I, Cibert C, Gong X, Xia C-h, Recouvreur M, Levy E, Kumar N, Bloemendal H, Benedetti EL. Structural and immunocytochemical alterations in eye lens fiber cells from Cx46 and Cx50 knockout mice. Eur J Cell Biol. 2006;85:729–52.
Article
CAS
PubMed
Google Scholar
Alapure BV, Stull JK, Firtina Z, Duncan MK. The Unfolded Protein Response is activated in Connexin 50 mutant mouse lenses. Exp Eye Res. 2012;102:28–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
White TW. Unique and redundant connexin contributions to lens development. Science. 2002;295:319–20.
Article
CAS
PubMed
Google Scholar
Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ. Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions. Biophys J. 2009;96:2832–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Zhou Y, Lin X, Wong HC, Xu Q, Jiang J, Wang S, Lurtz MM, Louis CF, Veenstra RD, Yang JJ. Molecular interaction and functional regulation of connexin50 gap junctions by calmodulin. Biochem J. 2011;435:711–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivas M, Costa M, Gao Y, Fort A, Fishman GI, Spray DC. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J Physiol. 1999;517:673–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J. 2000;79:3036–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shakespeare TI, Sellitto C, Li L, Rubinos C, Gong X, Srinivas M, White TW. Interaction between connexin50 and mitogen-activated protein kinase signaling in lens homeostasis. Mol Biol Cell. 2009;20:2582–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chamberlain CG, McAvoy JW. Evidence that fibroblast growth factor promotes lens fibre differentiation. Curr Eye Res. 1987;6:1165–9.
Article
CAS
PubMed
Google Scholar
Chamberlain CG, McAvoy JW. Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors. 1989;1:125–34.
Article
CAS
PubMed
Google Scholar
Gong X, Wang X, Han J, Niesman I, Huang Q, Horwitz J. Development of cataractous macrophthalmia in mice expressing an active MEK1 in the lens. Invest Ophthalmol Vis Sci. 2001;42:539–48.
CAS
PubMed
Google Scholar
Martinez JM, Wang H-Z, Lin RZ, Brink PR, White TW. Differential regulation of Connexin50 and Connexin46 by PI3K signaling. FEBS Lett. 2015;589:1340–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sellitto C, Li L, Gao J, Robinson ML, Lin RZ, Mathias RT, White TW. AKT activation promotes PTEN hamartoma tumor syndrome–associated cataract development. J Clin Invest. 2013;123:5401–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung J, Berthoud VM, Novak L, Zoltoski R, Heilbrunn B, Minogue PJ, Liu X, Ebihara L, Kuszak J, Beyer EC. Transgenic overexpression of connexin50 induces cataracts. Exp Eye Res. 2007;84:513–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta VK, Berthoud VM, Atal N, Jarillo JA, Barrio LC, Beyer EC. Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression. Invest Ophthalmol Vis Sci. 1994;35:3747–58.
CAS
PubMed
Google Scholar
Ebihara L, Berthoud VM, Beyer EC. Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys J. 1995;68:1796–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal JD, Liu X, Mackay D, Shiels A, Berthoud VM, Beyer EC, Ebihara L. Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. Am J Physiol Cell Physiol. 2000;279:C596–602.
CAS
PubMed
Google Scholar
Zampighi GA, Loo DD, Kreman M, Eskandari S, Wright EM. Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol. 1999;113:507–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beahm DL, Hall JE. Hemichannel and junctional properties of connexin 50. Biophys J. 2002;82:2016–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebihara L, Tong J-J, Vertel B, White TW, Chen T-L. Properties of connexin 46 hemichannels in dissociated lens fiber cells. Invest Ophthalmol Vis Sci. 2011;52:882–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebihara L, Korzyukov Y, Kothari S, Tong J-J. Cx46 hemichannels contribute to the sodium leak conductance in lens fiber cells. Am J Physiol Cell Physiol. 2014;306:C506–13.
Article
CAS
PubMed
Google Scholar
Donaldson P, Kistler J, Mathias RT. Molecular solutions to mammalian lens transparency. Physiology. 2001;16:118–23.
CAS
Google Scholar
Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol. 2004;287:C1389–95.
Article
CAS
PubMed
Google Scholar
Minogue PJ, Tong J-J, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, Ebihara L, Beyer EC, Berthoud VM. A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci. 2009;50:5837–45.
Article
PubMed
PubMed Central
Google Scholar
Ren Q, Riquelme MA, Xu J, Yan X, Nicholson BJ, Gu S, Jiang JX. Cataract-causing mutation of human connexin 46 impairs gap junction, but increases hemichannel function and cell death. PLoS One. 2013;8:e74732.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong J-J, Minogue PJ, Kobeszko M, Beyer EC, Berthoud VM, Ebihara L. The connexin46 mutant, Cx46T19M, causes loss of gap junction function and alters hemi-channel gating. J Membr Biol. 2014;248:145–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Qiao C, Wei T, Zheng F, Guo S, Chen Q, Yan M, Zhou X. Mutant connexin 50 (S276F) inhibits channel and hemichannel functions inducing cataract. J Genet. 2015;94:221–9.
Article
CAS
PubMed
Google Scholar
Zhu Y, Yu H, Wang W, Gong X, Yao K. A novel GJA8 mutation (p.V44A) causing autosomal dominant congenital cataract. PLoS One. 2014;9:e115406.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maeda S, Tsukihara T. Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci. 2010;68:1115–29.
Article
PubMed
CAS
Google Scholar
Nakagawa S, Maeda S, Tsukihara T. Structural and functional studies of gap junction channels. Curr Opin Struct Biol. 2010;20:423–30.
Article
CAS
PubMed
Google Scholar
Tong J-J, Sohn BCH, Lam A, Walters DE, Vertel BM, Ebihara L. Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46. Am J Physiol Cell Physiol. 2013;304:C823–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlingmann B, Schadzek P, Busko S, Heisterkamp A, Ngezahayo A. Cataract-associated D3Y mutation of human connexin46 (hCx46) increases the dye coupling of gap junction channels and suppresses the voltage sensitivity of hemichannels. J Bioenerg Biomembr. 2012;44:607–14.
Article
CAS
PubMed
Google Scholar
Schadzek P, Schlingmann B, Schaarschmidt F, Lindner J, Koval M, Heisterkamp A, Preller M, Ngezahayo A. The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels. Biochim Biophys Acta. 2016;1858:57–66.
Article
CAS
PubMed
Google Scholar
Sarkar D, Ray K, Sengupta M. Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. BioMed Res Int. 2014;2014:673895.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin JS, Fitzgerald S, Dong Y, Knight C, Donaldson P, Kistler J. Processing of the gap junction protein connexin50 in the ocular lens is accomplished by calpain. Eur J Cell Biol. 1997;73:141–9.
CAS
PubMed
Google Scholar
Voorter CEM, Kistler J. cAMP-dependent protein kinase phosphorylates gap junction protein in lens cortex but not in lens nucleus. Biochim Biophys Acta. 1989;986:8–10.
Article
CAS
PubMed
Google Scholar
Yin X, Gu S, Jiang JX. Regulation of lens connexin 45.6 by apoptotic protease, caspase-3. Cell Commun Adhes. 2001;8:373–6.
Article
CAS
PubMed
Google Scholar
Wang Z, Han J, Schey KL. Spatial differences in an integral membrane proteome detected in laser capture microdissected samples. J Proteome Res. 2008;7:2696–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Schey KL. Phosphorylation and truncation sites of bovine lens connexin 46 and connexin 50. Exp Eye Res. 2009;89:898–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas SK, Jiang JX, Lo W-K. Gap junction remodeling associated with cholesterol redistribution during fiber cell maturation in the adult chicken lens. Mol Vis. 2009;15:1492–508.
CAS
PubMed
PubMed Central
Google Scholar
Mathias RT, Riquelme G, Rae JL. Cell to cell communication and pH in the frog lens. J Gen Physiol. 1991;98:1085–103.
Article
CAS
PubMed
Google Scholar
Eckert R. pH gating of lens fibre connexins. Pflüg Arch. 2002;443:843–51.
Article
CAS
Google Scholar
Lin JS, Eckert R, Kistler J, Donaldson P. Spatial differences in gap junction gating in the lens are a consequence of connexin cleavage. Eur J Cell Biol. 1998;76:246–50.
Article
CAS
PubMed
Google Scholar
Stergiopoulos K, Alvarado JL, Mastroianni M, Ek-Vitorin JF, Taffet SM, Delmar M. Hetero-domain interactions as a mechanism for the regulation of connexin channels. Circ Res. 1999;84:1144–55.
Article
CAS
PubMed
Google Scholar
Xu X, Berthoud VM, Beyer EC, Ebihara L. Functional role of the carboxyl terminal domain of human connexin 50 in gap junctional channels. J Membr Biol. 2002;186:101–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeRosa AM, Mui R, Srinivas M, White TW. Functional characterization of a naturally occurring Cx50 truncation. Invest Ophthalmol Vis Sci. 2006;47:4474–81.
Article
PubMed
PubMed Central
Google Scholar
Chai Z, Goodenough DA, Paul DL. Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Mol Biol Cell. 2011;22:4503–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlingmann B, Schadzek P, Hemmerling F, Schaarschmidt F, Heisterkamp A, Ngezahayo A. The role of the C-terminus in functional expression and internalization of rat connexin46 (rCx46). J Bioenerg Biomembr. 2012;45:59–70.
Article
PubMed
CAS
Google Scholar
Nielsen PA, Baruch A, Shestopalov VI, Giepmans BN, Dunia I, Benedetti EL, Kumar NM. Lens connexins α3Cx46 and α8Cx50 interact with zonula occludens protein-1 (ZO-1). Mol Biol Cell. 2003;14:2470–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Gu S, Yin X, Weintraub ST, Hua Z, Jiang JX. Developmental truncations of connexin 50 by caspases adaptively regulate gap junctions/hemichannels and protect lens cells against ultraviolet radiation. J Biol Chem. 2012;287:15786–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 2014;588:1423–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shearer D, Ens W, Standing K, Valdimarsson G. Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectrometry. Invest Opthalmol Vis Sci. 2008;49:1553–62.
Article
Google Scholar
Berthoud VM, Cook AJ, Beyer EC. Characterization of the gap junction protein connexin56 in the chicken lens by immunofluorescence and immunoblotting. Invest Ophthalmol Vis Sci. 1994;35:4109–17.
CAS
PubMed
Google Scholar
Berthoud VM, Beyer EC, Kurata WE, Lau AF, Lampe PD. The gap-junction protein connexin 56 is phosphorylated in the intracellular loop and the carboxy-terminal region. Eur J Biochem. 1997;244:89–97.
Article
CAS
PubMed
Google Scholar
Berthoud VM, Bassnett S, Beyer EC. Cultured chicken embryo lens cells resemble differentiating fiber cells in vivo and contain two kinetic pools of connexin56. Exp Eye Res. 1999;68:475–84.
Article
CAS
PubMed
Google Scholar
TenBroek EM, Louis CF, Johnson R. The differential effects of 12-O-tetradecanoylphorbol-13-acetate on the gap junctions and connexins of the developing mammalian lens. Dev Biol. 1997;191:88–102.
Article
CAS
PubMed
Google Scholar
Yin X, Jedrzejewski PT, Jiang JX. Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation. J Biol Chem. 2000;275:6850–6.
Article
CAS
PubMed
Google Scholar
Liu J, Ek Vitorin JF, Weintraub ST, Gu S, Shi Q, Burt JM, Jiang JX. Phosphorylation of connexin 50 by protein kinase A enhances gap junction and hemichannel function. J Biol Chem. 2011;286:16914–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthoud VM, Westphale EM, Grigoryeva A, Beyer EC. PKC isoenzymes in the chicken lens and TPA-induced effects on intercellular communication. Invest Ophthalmol Vis Sci. 2000;41:850–8.
CAS
PubMed
Google Scholar
Saleh SM, Takemoto LJ, Zoukhri D, Takemoto DJ. PKC-γ phosphorylation of connexin 46 in the lens cortex. Mol Vis. 2001;7:240–6.
CAS
PubMed
Google Scholar
Zampighi GA, Planells AM, Lin D, Takemoto D. Regulation of lens cell-to-cell communication by activation of PKCγ and disassembly of Cx50 channels. Invest Ophthalmol Vis Sci. 2005;46:3247–55.
Article
PubMed
Google Scholar
Lin D, Barnett M, Lobell S, Madgwick D, Shanks D, Willard L, Zampighi GA, Takemoto DJ. PKCγ knockout mouse lenses are more susceptible to oxidative stress damage. J Exp Biol. 2006;209:4371–8.
Article
CAS
PubMed
Google Scholar
Das S, Wang H, Molina SA, Martinez-Wittinghan FJ, Jena S, Bossmann LK, Miller KA, Mathias RT, Takemoto DJ. PKCγ, role in lens differentiation and gap junction coupling. Curr Eye Res. 2011;36:620–31.
Article
CAS
PubMed
Google Scholar
Banerjee D, Das S, Molina SA, Madgwick D, Katz MR, Jena S, Bossmann LK, Pal D, Takemoto DJ. Investigation of the reciprocal relationship between the expression of two gap junction connexin proteins, connexin46 and connexin43. J Biol Chem. 2011;286:24519–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laing JG, Beyer EC. The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway. J Biol Chem. 1995;270:26399–403.
Article
CAS
PubMed
Google Scholar
Yin X, Liu J, Jiang JX. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation. Cell Commun Adhes. 2008;15:1–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu K, Lyu L, Chin D, Gao J, Sun X, Shang F, Caceres A, Chang M-L, Rowan S, Peng J, et al. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proc Natl Acad Sci U S A. 2015;112:1071–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caceres A, Shang F, Wawrousek E, Liu Q, Avidan O, Cvekl A, Yang Y, Haririnia A, Storaska A, Fushman D, et al. Perturbing the ubiquitin pathway reveals how mitosis is hijacked to denucleate and regulate cell proliferation and differentiation in vivo. PLoS One. 2010;5:e13331.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin X, Gu S, Jiang JX. The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation. J Biol Chem. 2001;276:34567–72.
Article
CAS
PubMed
Google Scholar
Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB. Disruption of α3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell. 1997;91:833–43.
Article
CAS
PubMed
Google Scholar
Chang B, Wang X, Hawes NL, Ojakian R, Davisson MT, Lo W-K, Gong X. A Gja8 (Cx50) point mutation causes an alteration of α3 connexin (Cx46) in semi-dominant cataracts of Lop10 mice. Hum Mol Genet. 2002;11:507–13.
Article
CAS
PubMed
Google Scholar
Berthoud VM, Minogue PJ, Yu H, Snabb JI, Beyer EC. Connexin46fs380 causes progressive cataracts. Invest Ophthalmol Vis Sci. 2014;55:6639–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthoud VM, Minogue PJ, Lambert PA, Snabb JI, Beyer EC. The cataract-linked mutant connexin50D47A causes endoplasmic reticulum stress in mouse lenses. J Biol Chem. 2016;291:17569–78.
Article
CAS
PubMed
Google Scholar
Minogue PJ, Beyer EC, Berthoud VM. A connexin50 mutant, Cx50fs, that causes cataracts is unstable, but is rescued by a proteasomal inhibitor. J Biol Chem. 2013;288:20427–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Ke M, Yan M, Guo S, Mothobi ME, Chen Q, Zheng F. Association between gap junction protein-alpha 8 polymorphisms and age-related cataract. Mol Biol Rep. 2011;38:1301–7.
Article
CAS
PubMed
Google Scholar
Zhou Z, Wang B, Hu S, Zhang C, Ma X, Qi Y. Genetic variations in GJA3, GJA8, LIM2, and age-related cataract in the Chinese population: a mutation screening study. Mol Vis. 2011;17:621–6.
CAS
PubMed
PubMed Central
Google Scholar
Xia C-h, Cheng C, Huang Q, Cheung D, Li L, Dunia I, Benedetti LE, Horwitz J, Gong X. Absence of α3 (Cx46) and α8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells. Exp Eye Res. 2006;83:688–96.
Article
CAS
PubMed
Google Scholar
Wang K, Cheng C, Li L, Liu H, Huang Q, Xia C-h, Yao K, Sun P, Horwitz J, Gong X. γD-Crystallin-associated protein aggregation and lens fiber cell denucleation. Invest Opthalmol Vis Sci. 2007;48:3719–28.
Article
Google Scholar
Li L, Chang B, Cheng C, Chang D, Hawes NL, Xia C-h, Gong X. Dense nuclear cataract caused by the γB-Crystallin S11R point mutation. Invest Ophthalmol Vis Sci. 2008;49:304–9.
Article
PubMed
Google Scholar
Cheng C, Nowak RB, Gao J, Sun X, Biswas SK, Lo W-K, Mathias RT, Fowler VM. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells. Am J Physiol Cell Physiol. 2015;308:C835–47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gokhin DS, Nowak RB, Kim NE, Arnett EE, Chen AC, Sah RL, Clark JI, Fowler VM. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 2012;7:e48734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grey AC, Jacobs MD, Gonen T, Kistler J, Donaldson PJ. Insertion of MP20 into lens fibre cell plasma membranes correlates with the formation of an extracellular diffusion barrier. Exp Eye Res. 2003;77:567–74.
Article
CAS
PubMed
Google Scholar
Shi Y, De Maria AB, Wang H, Mathias RT, FitzGerald PG, Bassnett S. Further analysis of the lens phenotype in Lim2-deficient mice. Invest Ophthalmol Vis Sci. 2011;52:7332–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Barton K, De Maria A, Petrash JM, Shiels A, Bassnett S. The stratified syncytium of the vertebrate lens. J Cell Sci. 2009;122:1607–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J. 2010;24:3274–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anchan RM, Lachke SA, Gerami-Naini B, Lindsey J, Ng N, Naber C, Nickerson M, Cavallesco R, Rowan S, Eaton JL, et al. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells. PLoS One. 2014;9:e115106.
Article
PubMed
PubMed Central
CAS
Google Scholar
White TW, Gao Y, Li L, Sellitto C, Srinivas M. Optimal lens epithelial cell proliferation is dependent on the connexin isoform providing gap junctional coupling. Invest Ophthalmol Vis Sci. 2007;48:5630–7.
Article
PubMed
Google Scholar
Gong X, Baldo GJ, Kumar NM, Gilula NB, Mathias RT. Gap junctional coupling in lenses lacking α3 connexin. Proc Natl Acad Sci U S A. 1998;95:15303–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldo GJ, Gong X, Martinez-Wittinghan FJ, Kumar NM, Gilula NB, Mathias RT. Gap junctional coupling in lenses from α8 connexin knockout mice. J Gen Physiol. 2001;118:447–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA. Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci. 2004;45:3629–37.
Article
PubMed
Google Scholar
Yu XS, Yin X, Lafer EM, Jiang JX. Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Biol Chem. 2005;280:22081–90.
Article
CAS
PubMed
Google Scholar