Mumby PJ, Steneck RS. Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol. 2008;23:555–63.
Article
PubMed
Google Scholar
Davies PS. Effect of daylight variations on the energy budgets of shallow-water corals. Mar Biol. 1991;108:137–44.
Article
Google Scholar
Davy SK, Allemand D, Weis VM. Cell biology of cnidarian-Dinoflagellate Symbiosis. Microbiol Mol Biol Rev. 2012;76:229–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tambutté S, Tambutté E, Zoccola D, Allemand D. Organic Matrix and Biomineralization of Scleractinian Corals. In Handbook of Biomineralization: Biological Aspects and Structure Formation (pp.243 - 259), E. Bauerlein (Ed.).
Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science. 1999;284(5411):118–20.
Article
CAS
PubMed
Google Scholar
Chan NCS, Connolly SR. Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol. 2013;19:282–90.
Article
PubMed
Google Scholar
Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF, Hoadley KD, et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One. 2013;8(10):e75049.
Comeau S, Cornwall CE, McCulloch MT. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-08003-z.
Article
CAS
Google Scholar
Venn AA, Tambutté E, Caminiti-Segonds N, Techer N, Allemand D, Tambutté S. Effects of light and darkness on pH regulation in three coral species exposed to seawater acidification. Sci Rep. 2019;9:1–12.
Article
CAS
Google Scholar
Tresguerres M, Hamilton TJ. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. J Exp Biol. 2017;220:2136–48.
Article
PubMed
Google Scholar
Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, et al. Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus - Palevol. 2004;3:453–67.
Article
Google Scholar
Webb DJ, Nuccitelli R. Fertilization potential and electrical properties of the Xenopus laevis egg. Dev Biol. 1985;107:395–406.
Article
CAS
PubMed
Google Scholar
Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S. Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci U S A. 2009;106:16574–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laurent J, Tambutté S, Tambutté É, Allemand D, Venn A. The influence of photosynthesis on host intracellular ph in scleractinian corals. J Exp Biol. 2013;216:1398–404.
Article
CAS
PubMed
Google Scholar
Al-Horani FA, Al-Moghrabi SM, De Beer D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol. 2003;142:419–26.
Article
CAS
Google Scholar
Agostini S, Suzuki Y, Higuchi T, Casareto BE, Yoshinaga K, Nakano Y, et al. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs. 2012;31:147–56.
Article
Google Scholar
Cai WJ, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Commun. 2016;7:1–8.
Google Scholar
Bove CB, Whitehead RF, Szmant AM. Responses of coral gastrovascular cavity pH during light and dark incubations to reduced seawater pH suggest species-specific responses to the effects of ocean acidification on calcification. Coral Reefs. 2020. https://doi.org/10.1007/s00338-020-01995-7.
Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11:50–61. https://doi.org/10.1038/nrm2820.
Article
CAS
PubMed
Google Scholar
Zoccola D, Ganot P, Bertucci A, Caminiti-Segonds N, Techer N, Voolstra CR, et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep. 2015;5. https://doi.org/10.1038/srep09983.
Barott KL, Barron ME, Tresguerres M. Identification of a molecular pH sensor in coral. Proc R Soc B Biol Sci. 2017;284.
Tresguerres M, Barott KL, Barron ME, Deheyn DD, Kline DI, Linsmayer LB. Acid-Base Balance and Nitrogen Excretion in Invertebrates. Acid-Base Balanc Nitrogen Excretion Invertebr. 2017:193–218.
Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL, Darszon A. Intracellular pH in sperm physiology. Biochem Biophys Res Commun. 2014;450:1149–58. https://doi.org/10.1016/j.bbrc.2014.05.100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch Eur J Physiol. 2004;447:549–65.
Article
CAS
Google Scholar
Donowitz M, Ming Tse C, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na +/H+ exchangers. Mol Asp Med. 2013;34:236–51.
Article
CAS
Google Scholar
Kawasaki-Nishi S, Nishi T, Forgac M. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci U S A. 2001;98:12397–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvador JM, Inesi G, Rigaud JL, Mata AM. Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. J Biol Chem. 1998;273:18230–4.
Article
CAS
PubMed
Google Scholar
Brini M, Carafoli E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. 2011 Feb 1;3(2):a004168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Perry SF, Beyers ML, Johnson DA. Cloning and molecular characterisation of the trout (Oncorhynchus mykiss) vacuolar H(+)-ATPase B subunit. J Exp Biol. 2000;203(Pt 3):459–70.
CAS
PubMed
Google Scholar
Torigoe T, Izumi H, Ise T, Murakami T, Uramoto H, Ishiguchi H, et al. Vacuolar H+-ATPase: functional mechanisms and potential as a target for cancer chemotherapy. Anti-Cancer Drugs. 2002;13:237–43.
Article
CAS
PubMed
Google Scholar
Miranda KC, Karet FE, Brown D. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants. PLoS One. 2010;5:1–5.
Google Scholar
Tresguerres M, Clifford AM, Harter TS, Roa JN, Thies AB, Yee DP, et al. Evolutionary links between intra- and extracellular acid–base regulation in fish and other aquatic animals. J Exp Zool Part A Ecol Integr Physiol. 2020;333:449–65.
CAS
Google Scholar
DeCoursey TE. Voltage-gated proton channels. Cell Mol Life Sci. 2008;65:2554–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by Flagellar voltage-gated Proton Channel. Cell. 2010;140:327–37.
Article
CAS
PubMed
Google Scholar
Stumpp M, Hu MY, Melzner F, Gutowska MA, Dorey N, Himmerkus N, et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc Natl Acad Sci U S A. 2012;109:18192–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards SL, Claiborne JB, Morrison-Shetlar AI, Toop T. Expression of Na+/H+ exchanger mRNA in the gills of the Atlantic hagfish (Myxine glutinosa) in response to metabolic acidosis. Comp Biochem Physiol - A Mol Integr Physiol. 2001;130:81–91.
Article
CAS
PubMed
Google Scholar
Claiborne JB, Edwards SL, Morrison-Shetlar AI. Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool. 2002;293:302–19.
Article
CAS
PubMed
Google Scholar
Li H, Ren C, Jiang X, Cheng C, Ruan Y, Zhang X, et al. Na + /H + exchanger (NHE) in Pacific white shrimp (Litopenaeus vannamei): molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis. PLoS One. 2019;14:1–15. https://doi.org/10.1371/journal.pone.0212887.
Article
CAS
Google Scholar
Hu MY, Lee JR, Lin LY, Shih TH, Stumpp M, Lee MF, et al. Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Front Zool. 2013;10:1–16.
Article
CAS
Google Scholar
Laurent J, Venn A, Tambutté É, Ganot P, Allemand D, Tambutté S. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. FEBS J. 2014;281:683–95.
Article
CAS
PubMed
Google Scholar
Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca JC, Allemand D, et al. Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta Biomembr. 2004;1663:117–26.
Article
CAS
Google Scholar
Barott KL, Venn AA, Perez SO, Tambutteeé S, Tresguerres M, Somero GN. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc Natl Acad Sci U S A. 2015;112:607–12.
Article
CAS
PubMed
Google Scholar
Decoursey TE. Voltage-gated proton channels and other proton transfer pathways. Physiol Rev. 2003;83:475–579.
Article
CAS
PubMed
Google Scholar
Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8:917–29.
Article
CAS
PubMed
Google Scholar
Wang Y, Li SJ, Wu X, Che Y, Li Q. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem. 2012;287:13877–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, et al. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep. 2017;7.
Karako-Lampert S, Zoccola D, Salmon-Divon M, Katzenellenbogen M, Tambutté S, Bertucci A, et al. Transcriptome analysis of the scleractinian coral stylophora pistillata. PLoS One. 2014;9.
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch Eur J Physiol. 2014;466:61–76.
Article
CAS
Google Scholar
Slepkov ER, Chow S, Lemieux MJ, Fliegel L. Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J. 2004;379:31–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Counillon L, Franchi A, Pouyssegur J. A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci U S A. 1993;90:4508–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakabayashi S, Hisamitsu T, Pang T, Shigekawa M. Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of Na+/H+ exchanger 1. J Biol Chem. 2003;278:11828–35.
Article
CAS
PubMed
Google Scholar
Holmes RS, Spradling Reeves KD. Evolution of vertebrate solute carrier family 9B genes and proteins (SLC9B): evidence for a marsupial origin for testis specific SLC9B1 from an ancestral vertebrate SLC9B2 gene. J Phylogenetics Evol Biol. 2016;4:1–8.
Article
CAS
Google Scholar
Windler F, Bönigk W, Körschen HG, Grahn E, Strünker T, Seifert R, et al. The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nat Commun. 2018;9:1–13. https://doi.org/10.1038/s41467-018-05253-x.
Article
CAS
Google Scholar
Smith AN, Finberg KE, Wagner CA, Lifton RP, Devonald MAJ, Su Y, et al. Molecular cloning and characterization of Atp6n1b. A novel fourth murine vacuolar H+-ATPase a-subunit gene. J Biol Chem. 2001;276:42382–8.
Article
CAS
PubMed
Google Scholar
Leng XH, Manolson MF, Forgac M. Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J Biol Chem. 1998;273:6717–23.
Article
CAS
PubMed
Google Scholar
Cotter K, Stransky L, McGuire C, Forgac M. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci. 2015;40:611–22. https://doi.org/10.1016/j.tibs.2015.08.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jr GDS. Cloud thinking - simplifying big data processing. Target Conf 2013, Probing Big Data answers 2013;60:195–225.
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, HV1. J R Soc Interface. 2018 Apr;15(141):20180108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bánfi B, Schrenzel J, Nüsse O, Lew DP, Ligeti E, Krause KH, Demaurex N. A novel H(+) conductance in eosinophils: unique characteristics and absence in chronic granulomatous disease. J Exp Med. 1999 Jul 19;190(2):183–94.
Article
PubMed
PubMed Central
Google Scholar
DeCoursey TE, Cherny VV, Zhou W, Thomas LL. Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc Natl Acad Sci U S A. 2000;97:6885–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musset B, Smith SME, Rajan S, Morgan D, Cherny VV, Decoursey TE. Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature. 2011;480:273–7. https://doi.org/10.1038/nature10557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capasso M, DeCoursey TE, Dyer MJS. PH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol. 2011;21:20–8. https://doi.org/10.1016/j.tcb.2010.09.006.
Article
CAS
PubMed
Google Scholar
Stühmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989;339:597–603.
Article
PubMed
Google Scholar
Ramsey IS, Moran MM, Chong JA, Clapham DE. A voltage-gated proton-selective channel lacking the pore domain. Nature. 2006;440:1213–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, et al. X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol. 2014;21:352–7. https://doi.org/10.1038/nsmb.2783.
Article
CAS
PubMed
Google Scholar
Sasaki M, Takagi M, Okamura Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science. 2006 Apr 28;312(5773):589–92.
Article
CAS
PubMed
Google Scholar
Ratanayotha A, Kawai T, Higashijima SI, Okamura Y. Molecular and functional characterization of the voltage-gated proton channel in zebrafish neutrophils. Physiol Rep. 2017;5(15):e13345.
Rosental B, Kozhekbaeva Z, Fernhoff N, Tsai JM, Traylor-Knowles N. Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol. 2017;18:1–12.
Article
CAS
Google Scholar
Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, et al. Structural molecular components of Septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol. 2015;32:44–62.
Article
CAS
PubMed
Google Scholar
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol. 2016;138–140:19–35. https://doi.org/10.1016/j.pneurobio.2016.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe H, Fujisawa T, Holstein TW. Cnidarians and the evolutionary origin of the nervous system. Develop Growth Differ. 2009;51:167–83.
Article
CAS
Google Scholar
Furla P, Allemand D, Shick JM, Ferrier-Pagès C, Richier S, Plantivaux A, et al. The symbiotic anthozoan: a physiological chimera between alga and animal. Integr Comp Biol. 2005;45:595–604.
Article
CAS
PubMed
Google Scholar
Saragosti E, Tchernov D, Katsir A, Shaked Y. Extracellular production and degradation of superoxide in the coral stylophora pistillata and cultured symbiodinium. PLoS One. 2010;5:1–10.
Article
CAS
Google Scholar
Zhang T, Diaz JM, Brighi C, Parsons RJ, McNally S, Apprill A, et al. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts. Front Mar Sci. 2016:1–16.
Raz-Bahat M, Douek J, Moiseeva E, Peters EC, Rinkevich B. The digestive system of the stony coral Stylophora pistillata. Cell Tissue Res. 2017;368:311–23.
Article
CAS
PubMed
Google Scholar
Mészáros B, Papp F, Mocsár G, Kókai E, Kovács K, Tajti G, et al. The voltage-gated proton channel hHv1 is functionally expressed in human chorion-derived mesenchymal stem cells. Sci Rep. 2020;10:1–16.
Article
CAS
Google Scholar
Harland AD, Brown BE. Metal tolerance in the scleractinian coral Porites lutea. Mar Pollut Bull. 1989;20:353–7.
Article
CAS
Google Scholar
Reichelt-Brushett AJ, McOrist G. Trace metals in the living and nonliving components of scleractinian corals. Mar Pollut Bull. 2003;46:1573–82.
Article
CAS
PubMed
Google Scholar
Ferrier-Pagès C, Houlbrèque F, Wyse E, Richard C, Allemand D, Boisson F. Bioaccumulation of zinc in the scleractinian coral Stylophora pistillata. Coral Reefs. 2005;24:636–45.
Article
Google Scholar
Murphy R, DeCoursey TE. Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta Bioenerg. 2006;1757:996–1011.
Article
CAS
Google Scholar
Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One. 2011;6(5):e20013.
Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C. A voltage-gated H+ channel underlying pH homeostasis in calcifying Coccolithophores. PLoS Biol. 2011;9:1–14.
Google Scholar
Lawrence SP, Holman GD, Koumanov F. Translocation of the Na+/H+ exchanger 1 (NHE1) in cardiomyocyte responses to insulin and energy-status signalling. Biochem J. 2010;432:515–23.
Article
CAS
PubMed
Google Scholar
Xia CH, Liu H, Cheung D, Tang F, Chang B, Li M, et al. NHE8 is essential for RPE cell polarity and photoreceptor survival. Sci Rep. 2015;5:1–8.
CAS
Google Scholar
Puverel S, Tambutté E, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, et al. Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs. 2005;24:149–56.
Article
Google Scholar
Nishi T, Forgac M. The vacuolar (H+)-ATPases - Nature’s most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3:94–103.
Article
CAS
PubMed
Google Scholar
Smith AN, Lovering RC, Futai M, Takeda J, Brown D, Karet FE. Revised nomenclature for mammalian vacuolar-type H+-ATPase subunit genes. Mol Cell. 2003;12:801–3.
Article
CAS
PubMed
Google Scholar
Toei M, Saum R, Forgac M. Regulation and isoform function of the V-ATPases. Biochemistry. 2010;49:4715–23.
Article
CAS
PubMed
Google Scholar
Toyomura T, Oka T, Yamaguchi C, Wada Y, Futai M. Three subunit a isoforms of mouse vacuolar H+-ATPase. Preferential expression of the α3 isoform during osteoclast differentiation. J Biol Chem. 2000;275:8760–5.
Article
CAS
PubMed
Google Scholar
Xiang M, Feng M, Muend S, Rao R. A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci U S A. 2007;104:18677–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuster DG, Zhang J, Shi M, Alexandru Bobulescu I, Andersson S, Moe OW. Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol. 2008;19:1547–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes R. Evolution of mammalian KELL blood group glycoproteins and genes (KEL): evidence for a marsupial origin from an ancestral M13 type II Endopeptidase gene. J Phylogenetics Evolutionary Biol. 2013;01:03. https://doi.org/10.4172/2329-9002.1000112.
Pedersen SF, Counillon L. The SLC9A-C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol Rev. 2019;99:2015–113.
Article
CAS
PubMed
Google Scholar
Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, Deutekom ES, Kaandorp JA, Voolstra CR, Foret S, Allemand D, Tambutté S, Aranda M. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv. 2018;4(6):eaar8028.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tambutté E, Venn AA, Holcomb M, Segonds N, Techer N, Zoccola D, et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat Commun. 2015;6.
Guindon S. Bayesian estimation of divergence times from large sequence alignments. Mol Biol Evol. 2010;27:1768–81.
Article
CAS
PubMed
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: Fasfile:///users/Laura/downloads/gb-2007-8-2-r19.Pdft selection of best-fit models of protein file:///users/Laura/downloads/gb-2007-8-2-r19.Pdfevolution. Bioinformatics. 2011;27:1164–5.
Article
CAS
PubMed
Google Scholar
Bernardet C, Tambutté E, Techer N, Tambutté S, Venn AA. Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral Stylophora pistillata. Sci Rep. 2019;9:1–13.
Article
CAS
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zoccola D, Innocenti A, Bertucci A, Tambutté E, Supuran CT, Tambutté S. Coral carbonic anhydrases: regulation by ocean acidification. Mar Drugs. 2016;14(6):109. https://doi.org/10.3390/md14060109.
Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, et al. Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem. 2008;283:25475–84.
Article
CAS
PubMed
Google Scholar