Corbacioglu S, Carreras E, Ansari M, Balduzzi A, Cesaro S, Dalle J-H, et al. Diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in pediatric patients: a new classification from the European society for blood and marrow transplantation. Bone Marrow Transplant. 2018;53(2):138–45. https://doi.org/10.1038/bmt.2017.161.
Article
CAS
PubMed
Google Scholar
Kammersgaard MB, Kielsen K, Heilmann C, Ifversen M, Müller K. Assessment of the proposed EBMT pediatric criteria for diagnosis and severity grading of sinusoidal obstruction syndrome. Bone Marrow Transplant. 2019;54(9):1406–18. https://doi.org/10.1038/s41409-018-0426-8.
Article
PubMed
PubMed Central
Google Scholar
Huezo-Diaz Curtis P, Uppugunduri CRS, Muthukumaran J, Rezgui MA, Peters C, Bader P, et al. Association of CTH variant with sinusoidal obstruction syndrome in children receiving intravenous busulfan and cyclophosphamide before hematopoietic stem cell transplantation. Pharmacogenomics J. 2018;18(1):64–9. https://doi.org/10.1038/tpj.2016.65.
Article
CAS
PubMed
Google Scholar
Corbacioglu S, Jabbour EJ, Mohty M. Risk factors for development of and progression of hepatic Veno-occlusive disease/sinusoidal obstruction syndrome. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2019;25(7):1271–80. https://doi.org/10.1016/j.bbmt.2019.02.018.
Article
Google Scholar
Ansari M, Curtis PH-D, Uppugunduri CRS, Rezgui MA, Nava T, Mlakar V, et al. GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation: a multicenter study. Oncotarget. 2017;8(53):90852–67. https://doi.org/10.18632/oncotarget.20310.
Article
PubMed
PubMed Central
Google Scholar
Ansari M, Huezo-Diaz P, Rezgui MA, Marktel S, Duval M, Bittencourt H, et al. Influence of glutathione S -transferase gene polymorphisms on busulfan pharmacokinetics and outcome of hematopoietic stem-cell transplantation in thalassemia pediatric patients. Bone Marrow Transplant. 2016;51(3):377–83. https://doi.org/10.1038/bmt.2015.321.
Article
CAS
PubMed
Google Scholar
Huezo-Diaz P, Uppugunduri Satyanarayana CR, Tyagi AK, Krajinovic M, Ansari Djaberi MG. Pharmacogenetic aspects of drug metabolizing enzymes in busulfan based conditioning prior to allogenic hematopoietic stem cell transplantation in children. Curr Drug Metab. 2014;15(3):251–64. https://doi.org/10.2174/1389200215666140202214012.
Article
CAS
PubMed
Google Scholar
Bonifazi F, Barbato F, Ravaioli F, Sessa M, Defrancesco I, Arpinati M, et al. Diagnosis and treatment of VOD/SOS after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:489. https://doi.org/10.3389/fimmu.2020.00489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cairo MS, Cooke KR, Lazarus HM, Chao N. Modified diagnostic criteria, grading classification and newly elucidated pathophysiology of hepatic SOS/VOD after haematopoietic cell transplantation. Br J Haematol. 2020;190(6):822–36. https://doi.org/10.1111/bjh.16557.
Article
PubMed
PubMed Central
Google Scholar
Ansari M, Petrykey K, Rezgui MA, Del Vecchio V, Cortyl J, Ralph R-O, et al. Genetic susceptibility to hepatic sinusoidal obstruction syndrome in pediatric patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2020;26(5):920–7. https://doi.org/10.1016/j.bbmt.2019.11.026.
Article
CAS
Google Scholar
Mayr C. What are 3′ UTRs doing? Cold Spring Harb Perspect Biol. 2018;51(10):171–94. https://doi.org/10.1101/cshperspect.a034728.
Article
CAS
Google Scholar
Dluzen DF, Sutliff AK, Chen G, Watson CJW, Ishmael FT, Lazarus P. Regulation of UGT2B expression and activity by miR-216b-5p in liver Cancer cell lines. J Pharmacol Exp Ther. 2016;359(1):182–93. https://doi.org/10.1124/jpet.116.235044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32. https://doi.org/10.1016/j.biocel.2013.02.019.
Article
CAS
PubMed
Google Scholar
Fujiwara R, Yokoi T, Nakajima M. Structure and protein–protein interactions of human UDP-glucuronosyltransferases. Front Pharmacol. 2016;7. https://doi.org/10.3389/fphar.2016.00388.
Meech R, Miners JO, Lewis BC, Mackenzie PI. The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther. 2012;134(2):200–18. https://doi.org/10.1016/j.pharmthera.2012.01.009.
Article
CAS
PubMed
Google Scholar
Allain EP, Rouleau M, Lévesque E, Guillemette C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020;122(9):1277–87. https://doi.org/10.1038/s41416-019-0722-0.
Article
PubMed
PubMed Central
Google Scholar
Badée J, Qiu N, Collier AC, Takahashi RH, Forrest WF, Parrott N, et al. Characterization of the ontogeny of hepatic UDP-glucuronosyltransferase enzymes based on Glucuronidation activity measured in human liver Microsomes. J Clin Pharmacol. 2019;59(Suppl 1):S42–55. https://doi.org/10.1002/jcph.1493.
Article
CAS
PubMed
Google Scholar
Couto N, Al-Majdoub ZM, Achour B, Wright PC, Rostami-Hodjegan A, Barber J. Quantification of proteins involved in drug metabolism and disposition in the human liver using label-free global proteomics. Mol Pharm. 2019;16(2):632–47. https://doi.org/10.1021/acs.molpharmaceut.8b00941.
Article
CAS
PubMed
Google Scholar
Kato Y, Izukawa T, Oda S, Fukami T, Finel M, Yokoi T, et al. Human UDP-glucuronosyltransferase (UGT) 2B10 in drug N-glucuronidation: substrate screening and comparison with UGT1A3 and UGT1A4. Drug Metab Dispos Biol Fate Chem. 2013;41(7):1389–97. https://doi.org/10.1124/dmd.113.051565.
Article
CAS
PubMed
Google Scholar
Lu D, Xie Q, Wu B. N-glucuronidation catalyzed by UGT1A4 and UGT2B10 in human liver microsomes: assay optimization and substrate identification. J Pharm Biomed Anal. 2017;145:692–703. https://doi.org/10.1016/j.jpba.2017.07.037.
Article
CAS
PubMed
Google Scholar
Chen G, Dellinger RW, Gallagher CJ, Sun D, Lazarus P. Identification of a prevalent functional missense polymorphism in the UGT2B10 gene and its association with UGT2B10 inactivation against tobacco-specific nitrosamines. Pharmacogenet Genomics. 2008;18(3):181–91. https://doi.org/10.1097/FPC.0b013e3282f4dbdd.
Article
CAS
PubMed
Google Scholar
Kaivosaari S, Toivonen P, Hesse LM, Koskinen M, Court MH, Finel M. Nicotine glucuronidation and the human UDP-glucuronosyltransferase UGT2B10. Mol Pharmacol. 2007;72(3):761–8. https://doi.org/10.1124/mol.107.037093.
Article
CAS
PubMed
Google Scholar
Turgeon D, Chouinard S, Belanger P, Picard S, Labbe J-F, Borgeat P, et al. Glucuronidation of arachidonic and linoleic acid metabolites by human UDP-glucuronosyltransferases. J Lipid Res. 2003;44(6):1182–91. https://doi.org/10.1194/jlr.M300010-JLR200.
Article
CAS
PubMed
Google Scholar
Myers AL, Kawedia JD, Champlin RE, Kramer MA, Nieto Y, Ghose R, et al. Clarifying Busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opin Drug Metab Toxicol. 2017;13(9):901–23. https://doi.org/10.1080/17425255.2017.1360277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pattanawongsa A, Nair PC, Rowland A, Miners JO. Human UDP-glucuronosyltransferase (UGT) 2B10: validation of cotinine as a selective probe substrate, inhibition by UGT enzyme-selective inhibitors and antidepressant and antipsychotic drugs, and structural determinants of enzyme inhibition. Drug Metab Dispos Biol Fate Chem. 2016;44(3):378–88. https://doi.org/10.1124/dmd.115.068213.
Article
CAS
PubMed
Google Scholar
Söding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33(Web Server issue):W244–8.
Article
PubMed
PubMed Central
Google Scholar
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A completely Reimplemented MPI bioinformatics toolkit with a new HHpred server at its Core. J Mol Biol. 2018;430(15):2237–43. https://doi.org/10.1016/j.jmb.2017.12.007.
Article
CAS
PubMed
Google Scholar
Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013;41(W1):W384–8. https://doi.org/10.1093/nar/gkt458.
Article
PubMed
PubMed Central
Google Scholar
Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins. 2009;77(Suppl 9):114–22. https://doi.org/10.1002/prot.22570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc. 1993;2(9):1511–9. https://doi.org/10.1002/pro.5560020916.
Article
CAS
Google Scholar
Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253(5016):164–70. https://doi.org/10.1126/science.1853201.
Article
CAS
PubMed
Google Scholar
Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83–5. https://doi.org/10.1038/356083a0.
Article
PubMed
Google Scholar
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W407–10.
Article
PubMed
PubMed Central
Google Scholar
Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman ANR, et al. The disposition of Voriconazole in mouse, rat, rabbit, Guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41. https://doi.org/10.1124/dmd.31.6.731.
Article
CAS
PubMed
Google Scholar
Bourcier K, Hyland R, Kempshall S, Jones R, Maximilien J, Irvine N, et al. Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and Triazole-containing antifungal drugs in human liver Microsomes and recombinant UGT enzymes. Drug Metab Dispos. 2010;38(6):923–9. https://doi.org/10.1124/dmd.109.030676.
Article
CAS
PubMed
Google Scholar
Strassburg CP, Barut A, Obermayer-Straub P, Li Q, Nguyen N, Tukey RH, et al. Identification of cyclosporine a and tacrolimus glucuronidation in human liver and the gastrointestinal tract by a differentially expressed UDP-glucuronosyltransferase: UGT2B7. J Hepatol. 2001;34(6):865–72. https://doi.org/10.1016/S0168-8278(01)00040-X.
Article
CAS
PubMed
Google Scholar
Uchaipichat V, Suthisisang C, Miners JO. The glucuronidation of R- and S-lorazepam: human liver microsomal kinetics, UDP-glucuronosyltransferase enzyme selectivity, and inhibition by drugs. Drug Metab Dispos Biol Fate Chem. 2013;41(6):1273–84. https://doi.org/10.1124/dmd.113.051656.
Article
CAS
PubMed
Google Scholar
Widemann BC, Sung E, Anderson L, Salzer WL, Balis FM, Monitjo KS, et al. Pharmacokinetics and metabolism of the methotrexate metabolite 2, 4-diamino-N (10)-methylpteroic acid. J Pharmacol Exp Ther. 2000;294(3):894–901.
CAS
PubMed
Google Scholar
Vree TB, Lagerwerf AJ, Verwey-van Wissen CP, Jongen PJ. High-performance liquid chromatography analysis, preliminary pharmacokinetics, metabolism and renal excretion of methylprednisolone with its C6 and C20 hydroxy metabolites in multiple sclerosis patients receiving high-dose pulse therapy. J Chromatogr B Biomed Sci App. 1999;732(2):337–48. https://doi.org/10.1016/S0378-4347(99)00292-3.
Article
CAS
Google Scholar
DiFrancesco R, Frerichs V, Donnelly J, Hagler C, Hochreiter J, Tornatore KM. Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2007;859(1):42–51. https://doi.org/10.1016/j.jchromb.2007.09.003.
Article
CAS
Google Scholar
Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos Biol Fate Chem. 2004;32(8):775–8. https://doi.org/10.1124/dmd.32.8.775.
Article
CAS
PubMed
Google Scholar
Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol. 2006;19(5):701–9. https://doi.org/10.1021/tx050317i.
Article
CAS
PubMed
Google Scholar
Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos Biol Fate Chem. 2004;32(2):267–71. https://doi.org/10.1124/dmd.32.2.267.
Article
CAS
PubMed
Google Scholar
Zhou D, Kong L, Jiang Y, Wang C, Ni Y, Wang Y, et al. UGT-dependent regioselective glucuronidation of ursodeoxycholic acid and obeticholic acid and selective transport of the consequent acyl glucuronides by OATP1B1 and 1B3. Chem Biol Interact. 2019;310:108745. https://doi.org/10.1016/j.cbi.2019.108745.
Article
CAS
PubMed
Google Scholar
Categorization Of The Likelihood Of Drug Induced Liver Injury. In: LiverTox: clinical and research information on drug-induced liver injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. http://www.ncbi.nlm.nih.gov/books/NBK548392/. Accessed 3 Dec 2020
Google Scholar
Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–10. https://doi.org/10.1038/s41586-019-1923-7.
Article
CAS
PubMed
Google Scholar
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334.
Article
CAS
PubMed
PubMed Central
Google Scholar
SMILES explorer. http://www.cheminfo.org/Chemistry/Cheminformatics/Smiles/index.html. Accessed 7 Jan 2021.
Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci Publ Protein Soc. 2018;27(1):129–34. https://doi.org/10.1002/pro.3289.
Article
CAS
Google Scholar
Nair PC, Meech R, Mackenzie PI, McKinnon RA, Miners JO. Insights into the UDP-sugar selectivities of human UDP-glycosyltransferases (UGT): a molecular modeling perspective. Drug Metab Rev. 2015;47(3):335–45. https://doi.org/10.3109/03602532.2015.1071835.
Article
CAS
PubMed
Google Scholar
Chen Y-C. Beware of docking! Trends Pharmacol Sci. 2015;36(2):78–95. https://doi.org/10.1016/j.tips.2014.12.001.
Article
CAS
PubMed
Google Scholar
Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations: advances and applications. Adv Appl Bioinforma Chem AABC. 2015;8:37–47.
Google Scholar
Sakano T. Mahamood MdI, Yamashita T, Fujitani H. molecular dynamics analysis to evaluate docking pose prediction. Biophys Physicobiology. 2016;13(0):181–94. https://doi.org/10.2142/biophysico.13.0_181.
Article
CAS
Google Scholar
Larson AM. Acetaminophen hepatotoxicity. Clin Liver Dis. 2007;11(3):525–48. https://doi.org/10.1016/j.cld.2007.06.006.
Article
PubMed
Google Scholar
McClain CJ, Price S, Barve S, Devalarja R, Shedlofsky S. Acetaminophen hepatotoxicity: an update. Curr Gastroenterol Rep. 1999;1(1):42–9. https://doi.org/10.1007/s11894-999-0086-3.
Article
CAS
PubMed
Google Scholar
Krasniak AE, Knipp GT, Svensson CK, Liu W. Pharmacogenomics of acetaminophen in pediatric populations: a moving target. Front Genet. 2014;5. https://doi.org/10.3389/fgene.2014.00314.
Badée J, Qiu N, Parrott N, Collier AC, Schmidt S, Fowler S. Optimization of experimental conditions of automated Glucuronidation assays in human liver Microsomes using a cocktail approach and ultra-high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos Biol Fate Chem. 2019;47(2):124–34. https://doi.org/10.1124/dmd.118.084301.
Article
CAS
PubMed
Google Scholar
Mehboob H, Tahir IM, Iqbal T, Saleem S, Perveen S, Farooqi A. Effect of UDP-glucuronosyltransferase (UGT) 1A polymorphism (rs8330 and rs10929303) on Glucuronidation status of acetaminophen. Dose-Response Publ Int Hormesis Soc. 2017;15(3):1559325817723731. https://doi.org/10.1177/1559325817723731.
Article
CAS
Google Scholar
Badée J, Fowler S, de Wildt SN, Collier AC, Schmidt S, Parrott N. The ontogeny of UDP-glucuronosyltransferase enzymes, recommendations for future profiling studies and application through physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2019;58(2):189–211. https://doi.org/10.1007/s40262-018-0681-2.
Article
CAS
PubMed
Google Scholar
Zao JH, Schechter T, Liu WJ, Gerges S, Gassas A, Egeler RM, et al. Performance of Busulfan dosing guidelines for pediatric hematopoietic stem cell transplant conditioning. Biol Blood Marrow Transplant. 2015;21(8):1471–8. https://doi.org/10.1016/j.bbmt.2015.05.006.
Article
CAS
PubMed
Google Scholar
Björnsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand. 2008;118(5):281–90. https://doi.org/10.1111/j.1600-0404.2008.01009.x.
Article
CAS
PubMed
Google Scholar
Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 2008;135(1924–34):1934.e1–4.
Google Scholar
Arai T, Kogi K, Honda Y, Suzuki T, Kawai K, Okamoto M, et al. Lorazepam as a cause of drug-induced liver injury. Case Rep Gastroenterol. 2018;12(2):546–50. https://doi.org/10.1159/000492209.
Article
PubMed
PubMed Central
Google Scholar
Hoofnagle JH, Serrano J, Knoben JE, Navarro VJ. LiverTox: a website on drug-induced liver injury. Hepatology. 2013;57(3):873–4. https://doi.org/10.1002/hep.26175.
Article
PubMed
Google Scholar
Basara N, Fauser AA. Safety profile of mycophenolate mofetil. Bone Marrow Transplant. 2000;26(12):1362–3. https://doi.org/10.1038/sj.bmt.1702723.
Article
CAS
PubMed
Google Scholar
Dalle J-H, Giralt SA. Hepatic Veno-occlusive disease after hematopoietic stem cell transplantation: risk factors and stratification, prophylaxis, and treatment. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2016;22(3):400–9. https://doi.org/10.1016/j.bbmt.2015.09.024.
Article
Google Scholar
Xing Y, Chen L, Feng Y, Zhou Y, Zhai Y, Lu J. Meta-analysis of the safety of voriconazole in definitive, empirical, and prophylactic therapies for invasive fungal infections. BMC Infect Dis. 2017;17(1):798. https://doi.org/10.1186/s12879-017-2913-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbarino JM, Owusu Obeng A, Klein TE, Altman RB. PharmGKB summary: voriconazole pathway, pharmacokinetics. Pharmacogenet Genomics. 2017;27(5):201–9. https://doi.org/10.1097/FPC.0000000000000276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Liang S-C, Wang C, Ge G-B, Huo X-K, Qi X-Y, et al. Identifying and applying a highly selective probe to simultaneously determine the O-glucuronidation activity of human UGT1A3 and UGT1A4. Sci Rep. 2015;5(1):9627. https://doi.org/10.1038/srep09627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M, Miners JO. Influence of N-terminal domain histidine and proline residues on the substrate Selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos. 2009;37(9):1948–55. https://doi.org/10.1124/dmd.109.028225.
Article
CAS
PubMed
Google Scholar
Smith AD, Page BDG, Collier AC, Coughtrie MWH. Homology modeling of human Uridine-5′-diphosphate-glucuronosyltransferase 1A6 reveals insights into factors influencing substrate and Cosubstrate binding. ACS Omega. 2020;5(12):6872–87. https://doi.org/10.1021/acsomega.0c00205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair PC, Chau N, McKinnon RA, Miners JO. Arginine-259 of UGT2B7 confers UDP-sugar selectivity. Mol Pharmacol. 2020;98(6):710–8. https://doi.org/10.1124/molpharm.120.000104.
Article
CAS
PubMed
Google Scholar
Brammer KW, Coakley AJ, Jezequel SG, Tarbit MH. The disposition and metabolism of [14C] fluconazole in humans. Drug Metab Dispos Biol Fate Chem. 1991;19(4):764–7.
CAS
PubMed
Google Scholar
Egunsola O, Adefurin A, Fakis A, Jacqz-Aigrain E, Choonara I, Sammons H. Safety of fluconazole in paediatrics: a systematic review. Eur J Clin Pharmacol. 2013;69(6):1211–21. https://doi.org/10.1007/s00228-012-1468-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald GB, Hinds MS, Fisher LD, Schoch HG, Wolford JL, Banaji M, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med. 1993;118(4):255–67. https://doi.org/10.7326/0003-4819-118-4-199302150-00003.
Article
CAS
PubMed
Google Scholar
McDonald GB, Evans AT, McCune JS, Schoch G, Ostrow JD, Gooley TA. Mortality outcomes after busulfan-containing conditioning treatment and haemopoietic cell transplantation in patients with Gilbert’s syndrome: a retrospective cohort study. Lancet Haematol. 2016;3(11):e516–25. https://doi.org/10.1016/S2352-3026(16)30149-1.
Article
PubMed
Google Scholar
Gil J, Sąsiadek MM. Gilbert syndrome: the UGT1A1*28 promoter polymorphism as a biomarker of multifactorial diseases and drug metabolism. Biomark Med. 2012;6(2):223–30. https://doi.org/10.2217/bmm.12.4.
Article
CAS
PubMed
Google Scholar
Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, et al. Genetics of 35 blood and urine biomarkers in the UK biobank. Nat Genet. 2021;53(2):185–94. https://doi.org/10.1038/s41588-020-00757-z.
Article
CAS
PubMed
Google Scholar
Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995;23(3):318–26. https://doi.org/10.1002/prot.340230306.
Article
CAS
PubMed
Google Scholar
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001.
Article
Google Scholar
Creegan T, Jacob L, Singh R, Zhang JG. Development of an in-vitro method as a tool to assess UDP-glucuronyltransferase (UGT) 2B10 inhibition. Drug Metab Pharmacokinet. 2018;33(1):S50. https://doi.org/10.1016/j.dmpk.2017.11.172.
Article
Google Scholar
Milani N, Qiu N, Molitor B, Badée J, Cruciani G, Fowler S. Use of phenotypically poor metabolizer individual donor human liver Microsomes to identify selective substrates of UGT2B10. Drug Metab Dispos Biol Fate Chem. 2020;48(3):176–86. https://doi.org/10.1124/dmd.119.089482.
Article
CAS
PubMed
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–9. https://doi.org/10.1093/nar/gkaa1100.
Article
CAS
Google Scholar
Saxena A, Sangwan R, Mishra S. Fundamentals of homology modeling steps and comparison among important bioinformatics tools: an overview. Sci Int. 2013;1(7):237–52. https://doi.org/10.17311/sciintl.2013.237.252.
Article
CAS
Google Scholar
Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344–54. https://doi.org/10.1093/nar/gkaa977.
Article
CAS
PubMed
Google Scholar
Larsson P, Wallner B, Lindahl E, Elofsson A. Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci Publ Protein Soc. 2008;17(6):990–1002. https://doi.org/10.1110/ps.073344908.
Article
CAS
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. https://doi.org/10.1002/jcc.20084.
Article
CAS
PubMed
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. https://doi.org/10.1038/s41586-021-03819-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
SAVES - Ramachandran Plot. http://services.mbi.ucla.edu/SAVES/Ramachandran/. Accessed 23 Nov 2020.
Zhang Z, Li Y, Lin B, Schroeder M, Huang B. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics. 2011;27(15):2083–8. https://doi.org/10.1093/bioinformatics/btr331.
Article
CAS
PubMed
Google Scholar
The PyMOL Molecular Graphics System. Version 2.4.1. Schrödinger, LLC.
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol Clifton NJ. 2015;1263:243–50. https://doi.org/10.1007/978-1-4939-2269-7_19.
Article
CAS
Google Scholar
Sadowski J, Gasteiger J, Klebe G. Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci. 1994;34(4):1000–8. https://doi.org/10.1021/ci00020a039.
Article
CAS
Google Scholar
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. https://doi.org/10.1002/jcc.21256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du X, Li Y, Xia Y-L, Ai S-M, Liang J, Sang P, et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17(2). https://doi.org/10.3390/ijms17020144.
Lemkul J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living J Comput Mol Sci. 2018;1:5068.
Google Scholar
Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25(13):1656–76. https://doi.org/10.1002/jcc.20090.
Article
CAS
PubMed
Google Scholar
Schüttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60(8):1355–63. https://doi.org/10.1107/S0907444904011679.
Article
CAS
PubMed
Google Scholar
Kumari R, Kumar R, Lynn A. g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951–62. https://doi.org/10.1021/ci500020m.
Article
CAS
PubMed
Google Scholar