Wilson SH, Bailey AM, Nourse CR, Mattei MG, Byrne JA: Identification of MAL2, a novel member of the mal proteolipid family, through interactions with TPD52-like proteins in the yeast two-hybrid system. Genomics. 2001, 76: 81-88.
Article
CAS
PubMed
Google Scholar
de Marco MC, Martín-Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA, Alonso MA: MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol. 2002, 159: 37-44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alonso MA, Weissman SM: cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation. Proc Natl Acad Sci USA. 1987, 84: 1997-2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zacchetti D, Peranen J, Murata M, Fiedler K, Simons K: VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett. 1995, 377: 465-469.
Article
CAS
PubMed
Google Scholar
Millan J, Puertollano R, Fan L, Rancano C, Alonso MA: The MAL proteolipid is a component of the detergent-insoluble membrane subdomains of human T-lymphocytes. Biochem J. 1997, 321: 247-252.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheong KH, Zacchetti D, Schneeberger EE, Simons K: VIP17/MAL, a lipid raft associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci USA. 1999, 96: 6241-6248.
Article
PubMed Central
CAS
PubMed
Google Scholar
Puertollano R, Martin-Belmonte F, Millan J, de Marco MC, Albar JP, Kremer L, Alonso MA: The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Cell Biol. 1999, 145: 141-151.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin-Belmonte F, Puertollano R, Millan J, Alonso MA: The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines. Mol Biol Cell. 2000, 11: 2033-2045.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin-Belmonte F, Arvan P, Alonso MA: MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. J Biol Chem. 2001, 276: 49337-49342.
Article
CAS
PubMed
Google Scholar
de Marco MC, Kremer L, Albar JP, Martinez-Menarguez JA, Ballesta J, Garcia-Lopez MA, Marazuela M, Puertollano R, Alonso MA: BENE, a novel raft-associated protein of the MAL proteolipid family, interacts with Caveolin-1 in human endothelial-like ECV304 cells. J Biol Chem. 2001, 276: 23009-23017.
Article
CAS
PubMed
Google Scholar
Bosse F, Hasse B, Pippirs U, Greiner-Petter R, Muller H-W: Proteolipid plasmolipin: localization in polarized cells, regulated expression and lipid raft association in CNS and PNS myelin. J Neurochem. 2003, 86: 508-518.
Article
CAS
PubMed
Google Scholar
Jin C, Ding P, Wang Y, Ma D: Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett. 2005, 579: 6375-6382.
Article
CAS
PubMed
Google Scholar
Marazuela M, Acevedo A, García-López MA, Adrados M, de Marco MC, Alonso MA: Expression of MAL2, an integral protein component of the machinery of basolateral to-apical transcytosis, in human epithelia. J Histochem Cytochem. 2004, 52: 243-252.
Article
CAS
PubMed
Google Scholar
de Marco MC, Puertollano M, Martinez-Menarguez JA, Alonso MA: Dynamics of MAL2 during glycosylphosphatidylinositol-anchored protein transcytotic transport to the apical surface of hepatoma HepG2 cells. Traffic. 2006, 7: 61-73.
Article
CAS
PubMed
Google Scholar
Marazuela M, Martín-Belmonte F, García-López MA, Aranda JF, de Marco MC, Alonso MA: Expression and distribution of MAL2, an essential element of the machinery for basolateral-to apical transcytosis in human thyroid epithelial cells. Endocrinology. 2004, 145 (2): 1011-1016.
Article
CAS
PubMed
Google Scholar
Llorente A, de Marco MC, Alonso MA: Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. J Cell Sci. 2004, 117: 5343-5351.
Article
CAS
PubMed
Google Scholar
Myllykangas S, Himberg J, Bohling T, Nagy B, Hollmen J, Knuutila S: DNA copy number amplification profiling of human neoplasms. Oncogene. 2006, 25: 7324-7332.
Article
CAS
PubMed
Google Scholar
Nupponen NN, Isola J, Visakorpi T: Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chromosomes Cancer. 2000, 28: 203-210.
Article
CAS
PubMed
Google Scholar
Chung CH, Bernard PS, Perou CM: Molecular portraits and the family tree of cancer. Nat Genet. 2002, 32 (Suppl): 533-540.
Article
CAS
PubMed
Google Scholar
Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PF, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002, 99: 12963-12968.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paik S, Kim C-K, Song Y-K, Kim W-S: Technology insight: Application of molecular techniques to formalin-fixed paraffin-embedded tissues from breast cancer. Nat Clin Pract Oncol. 2005, 2 (5): 246-254.
Article
CAS
PubMed
Google Scholar
Shehata M, Bièche I, Boutros R, Weidenhofer J, Fanayan S, Spalding L, Zeps N, Byth K, Bright RK, Lidereau R, Byrne JA: Non-redundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clin Cancer Res. 2008, 14: 5050-60.
Article
CAS
PubMed
Google Scholar
Shridhar V, Lee J, Pandita A, Itturia S, Avula R, Staub J, Morrissey M, Calhoun E, Sen A, Kalli K, Keeney G, Roche P, Cliby W, Lu K, Schmandt R, Mills GB, Bast RC, James CD, Couch FJ, Hartmann LC, Lillie J, Smith DI: Genetic analysis of early versus late-stage ovarian tumors. Cancer Res. 2001, 61: 5895-5904.
CAS
PubMed
Google Scholar
Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, Heinzelmann M, Kalish LH, Bali A, Kench JG, Edwards LS, Bergh Vanden PM, Hacker NF, Sutherland RL, O'Brien PM: A distinct molecular profile associated with mucinous epithelial ovarian cancer. Clin Cancer Res. 2004, 10: 4427-36.
Article
CAS
PubMed
Google Scholar
Schaner ME, Davidson B, Skrede M, Reich R, Flørenes VA, Risberg B, Berner A, Goldberg I, Givant-Horwitz V, Tropè CG, Kristensen GB, Nesland JM, Børresen-Dale AL: Variation in gene expression patterns in effusions and primary tumors from serous ovarian cancer patients. Mol Cancer. 2005, 4: 26-
Article
PubMed Central
PubMed
Google Scholar
Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R, Jaffee E, Ryu B, Jones J, Eshleman JR, Yeo CJ, Cameron JL, Kern SE, Hruban RH, Brown PO, Goggins M: Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol. 2003, 162: 1151-1162.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Zheng B, Robbins DH, Lewin DN, Mikhitarian K, Graham A, Rumpp L, Glenn T, Gillanders WE, Cole DJ, Lu X, Hoffman BJ, Mitas M: Accurate discrimination of pancreatic ductal adenocarcinoma and chronic pancreatitis using multimarker expression data and samples obtained by minimally invasive fine needle aspiration. Int J Cancer. 2007, 120: 1511-1517.
Article
CAS
PubMed
Google Scholar
Hoang CD, D'Cunha J, Kratzke MG, Casmey CE, Frizelle SP, Maddaus MA, Kratzke RA: Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest. 2004, 125: 1843-1852.
Article
CAS
PubMed
Google Scholar
Dasgupta S, Tripathi PK, Qin H, Bhattacharya-Chatterjee M, Valentino J, Chatterjee SK: Identification of molecular targets for immunotherapy of patients with head and neck squamous cell carcinoma. Oral Oncol. 2006, 42: 306-316.
Article
CAS
PubMed
Google Scholar
Rohan S, Tu JJ, Kao J, Mukherjee P, Campagne F, Zhou XK, Hyjek F, Alonso MA, Chen YT: Gene expression profiling separates chromophobe renal cell carcinoma from oncocytoma and identifies vesicular transport and cell junction proteins as differentially expressed genes. Clin Cancer Res. 2006, 12: 6937-6945.
Article
CAS
PubMed
Google Scholar
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M: Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005, 437: 1173-1178.
Article
CAS
PubMed
Google Scholar
Byrne JA, Nourse CR, Basset P, Gunning P: Identification of homo- and heteromeric interactions between members of the breast carcinoma-associated D52 protein family using the yeast two-hybrid system. Oncogene. 1998, 16: 873-881.
Article
CAS
PubMed
Google Scholar
Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D, Smith M: MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia. 2002, 7: 209-21.
Article
PubMed
Google Scholar
Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ: MUC1 immunobiology: from discovery to clinical applications. Adv Immunol. 2004, 82: 249-93.
Article
CAS
PubMed
Google Scholar
Bièche I, Lidereau R: A gene dosage effect is responsible for high overexpression of the MUC1 gene observed in human breast tumors. Cancer Genet Cytogenet. 1997, 98: 75-80.
Article
PubMed
Google Scholar
Wykes M, MacDonald KP, Tran M, Quin RJ, Xing PX, Gendler SJ, Hart DN, McGuckin MA: MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J Leukoc Biol. 2002, 72: 692-701.
CAS
PubMed
Google Scholar
Balleine R, Schoenberg Fejzo M, Sathasivam P, Basset P, Clarke C, Byrne JA: The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma. Genes Chromosomes Cancer. 2000, 29: 48-57.
Article
CAS
PubMed
Google Scholar
Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268.
Article
CAS
PubMed
Google Scholar
Boutros R, Bailey AM, Wilson SH, Byrne JA: Alternative splicing as a mechanism for regulating 14-3-3 binding: interactions between hD53 (TPD52L1) and 14-3-3 proteins. J Mol Biol. 2003, 332: 675-687.
Article
CAS
PubMed
Google Scholar
Brown DA, Rose JK: Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992, 68: 533-544.
Article
CAS
PubMed
Google Scholar
Xie Z, Zeng X, Waldman T, Glazer RI: Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 activates beta-catenin and c-Myc, and down-regulates caveolin-1. Cancer Res. 2003, 63: 5370-5375.
CAS
PubMed
Google Scholar
Ostapkowicz A, Inai K, Smith L, Kreda S, Spychala J: Lipid rafts remodeling in estrogen receptor-negative breast cancer is reversed by histone deacetylase inhibitor. Mol Cancer Ther. 2006, 5: 238-245.
Article
CAS
PubMed
Google Scholar
Gendler SJ: MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia. 2001, 6: 339-353.
Article
CAS
PubMed
Google Scholar
Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4 (1): 45-60.
Article
CAS
PubMed
Google Scholar
Cullen PJ, Sabbagh W, Graham E, Irick MM, van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF: A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev. 2004, 18: 1695-1708.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boutros R, Fanayan S, Shehata M, Byrne JA: The tumor protein D52 family: many pieces, many puzzles. Biochem Biophys Res Commun. 2004, 325: 1115-1121.
Article
CAS
PubMed
Google Scholar
Kinlough CL, McMahan RJ, Poland PA, Bruns JB, Harkleroad KL, Stremple RJ, Kashlan OB, Weixel KM, Weisz OA, Hughey RP: Recycling of MUC1 is dependent on its palmitoylation. J Biol Chem. 2006, 281: 12112-12122.
Article
CAS
PubMed
Google Scholar
Adler AS, Lin M, Horlings M, Nuyten DS, Vijver van der MJ, Chang HY: Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet. 2006, 38: 421-430.
Article
PubMed Central
CAS
PubMed
Google Scholar
Folgueira MA, Carraro DM, Brentani H, Patrão DF, Barbosa EM, Netto MM, Caldeira JR, Katayama ML, Soares FA, Oliveira CT, Reis LF, Kaiano JH, Camargo LP, Vêncio RZ, Snitcovsky IM, Makdissi FB, e Silva PJ, Góes JC, Brentani MM: Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res. 2005, 11: 7434-7443.
Article
CAS
PubMed
Google Scholar
McGuckin MA, Walsh MD, Hohn BG, Ward BG, Wright RG: Prognostic significance of MUC1 epithelial mucin expression in breast cancer. Hum Pathol. 1995, 26: 432-439.
Article
CAS
PubMed
Google Scholar
Dong Y, Walsh MD, Cummings MC, Wright RG, Khoo SK, Parsons PG, McGuckin MA: Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J Pathol. 1997, 183: 311-317.
Article
CAS
PubMed
Google Scholar
Rahn JJ, Dabbagh L, Pasdar M, Hugh JC: The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer. 2001, 91: 1973-1982.
Article
CAS
PubMed
Google Scholar
Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M, Yonezawa S, Hollingsworth MA: RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res. 2006, 12: 2976-2987.
Article
CAS
PubMed
Google Scholar
Handa K, Jacobs F, Longgenecker BM, Hakomori S: Association of MUC1 and PSGL-1 with low-density microdomain in T-lymphocytes: A preliminary note. Biochem Biophys Res Commun. 2001, 285: 788-794.
Article
CAS
PubMed
Google Scholar
Mukherjee P, Tinder TL, Basu GD, Gendler SJ: MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lyphoma cells and normal T cells. J Leukoc Biol. 2004, 77: 90-9.
PubMed
Google Scholar
Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K: Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA. 2003, 100: 5795-5800.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang X, Claas C, Kraeft S-K, Chen LB, Wang Z, Kreidberg JA, Hemler ME: Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution and integrin-dependent cell morphology. Mol Biol Cell. 2002, 13: 767-781.
Article
PubMed Central
CAS
PubMed
Google Scholar