De Marzo AM, Meeker AK, Epstein JI, Coffey DS: Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol. 1998, 153: 911-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheville JC, Lloyd RV, Sebo TJ, Cheng L, Erickson L, Bostwick DG, Lohse CM, Wollan P: Expression of p27kip1 in prostatic adenocarcinoma. Mod Pathol. 1998, 11: 324-8.
CAS
PubMed
Google Scholar
Tsihlias J, Kapusta LR, DeBoer G, Morava-Protzner I, Zbieranowski I, Bhattacharya N, Catzavelos GC, Klotz LH, Slingerland JM: Loss of cyclin-dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cancer Res. 1998, 58: 542-8.
CAS
PubMed
Google Scholar
Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, Lieskovosky G: Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst. 1998, 90: 916-20. 10.1093/jnci/90.12.916.
Article
CAS
PubMed
Google Scholar
Mal A, Poon RY, Howe PH, Toyoshima H, Hunter T, Harter ML: Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFbeta-treated cells. Nature. 1996, 380: 262-5. 10.1038/380262a0.
Article
CAS
PubMed
Google Scholar
Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P: Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996, 13: 2323-30.
CAS
PubMed
Google Scholar
Kawamata N, Morosetti R, Miller CW, Park D, Spirin KS, Nakamaki T, Takeuchi S, Hatta Y, Simpson J, Wilcyznski S: Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res. 1995, 55: 2266-9.
CAS
PubMed
Google Scholar
Ponce-Castaneda MV, Lee MH, Latres E, Polyak K, Lacombe L, Montgomery K, Mathew S, Krauter K, Sheinfeld J, Massague J: p27Kip1: chromosomal mapping to 12p12-12p13.1 and absence of mutations in human tumors. Cancer Res. 1995, 55: 1211-4.
CAS
PubMed
Google Scholar
Pietenpol JA, Bohlander SK, Sato Y, Papadopoulos N, Liu B, Friedman C, Trask BJ, Roberts JM, Kinzler KW, Rowley JD: Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res. 1995, 55: 1206-10.
CAS
PubMed
Google Scholar
Koff A, Polyak K: p27KIP1, an inhibitor of cyclin-dependent kinases. Prog Cell Cycle Res. 1995, 1: 141-7.
Article
CAS
PubMed
Google Scholar
Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9: 1149-63.
Article
CAS
PubMed
Google Scholar
Coats S, Flanagan WM, Nourse J, Roberts JM: Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996, 272: 877-80.
Article
CAS
PubMed
Google Scholar
Hengst L, Reed SI: Translational control of p27Kip1 accumulation during the cell cycle. Science. 1996, 271: 1861-4.
Article
CAS
PubMed
Google Scholar
Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, Gaudin PB, Fazzari M, Zhang ZF, Massague J, Scher HI: Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst. 1998, 90: 1284-91. 10.1093/jnci/90.17.1284.
Article
CAS
PubMed
Google Scholar
Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M: Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med. 1997, 3: 231-4.
Article
CAS
PubMed
Google Scholar
Esposito V, Baldi A, De Luca A, Groger AM, Loda M, Giordano GG, Caputi M, Baldi F, Pagano M, Giordano A: Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res. 1997, 57: 3381-5.
CAS
PubMed
Google Scholar
Chiarle R, Budel LM, Skolnik J, Frizzera G, Chilosi M, Corato A, Pizzolo G, Magidson J, Montagnoli A, Pagano M, Maes B, De Wolf-Peeters C, Inghirami G: Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma. Blood. 2000, 95: 619-26.
CAS
PubMed
Google Scholar
Piva R, Cancelli I, Cavalla P, Bortolotto S, Dominguez J, Draetta GF, Schiffer D: Proteasome-dependent degradation of p27/kip1 in gliomas. J Neuropathol Exp Neurol. 1999, 58: 691-6.
Article
CAS
PubMed
Google Scholar
Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem. 1998, 67: 425-79. 10.1146/annurev.biochem.67.1.425.
Article
CAS
PubMed
Google Scholar
Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999, 1: 193-199. 10.1038/12013.
Article
CAS
PubMed
Google Scholar
Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H: p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol. 1999, 9: 661-4. 10.1016/S0960-9822(99)80290-5.
Article
CAS
PubMed
Google Scholar
Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW, Reed SI: A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell. 2001, 7: 639-50.
Article
CAS
PubMed
Google Scholar
Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A: The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol. 2001, 3: 321-4. 10.1038/35060126.
Article
CAS
PubMed
Google Scholar
Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE: Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997, 11: 1464-78.
Article
CAS
PubMed
Google Scholar
Vlach J, Hennecke S, Amati B: Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. Embo J. 1997, 16: 5334-44. 10.1093/emboj/16.17.5334.
Article
PubMed Central
CAS
PubMed
Google Scholar
Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M: Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 1999, 13: 1181-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Michel JJ, Xiong Y: Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 1998, 9: 435-49.
CAS
PubMed
Google Scholar
Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W: Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. Embo J. 1998, 17: 368-83. 10.1093/emboj/17.2.368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W: p45Skp2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat. Cell Biol. 1999, 1: 207-214. 10.1038/12027.
Article
CAS
PubMed
Google Scholar
Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H: PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol. 2001, 11: 263-7. 10.1016/S0960-9822(01)00065-3.
Article
CAS
PubMed
Google Scholar
Nelsen CJ, Hansen LK, Rickheim DG, Chen C, Stanley MW, Krek W, Albrecht JH: Induction of hepatocyte proliferation and liver hyperplasia by the targeted expression of cyclin E and skp2. Oncogene. 2001, 20: 1825-31. 10.1038/sj.onc.1204248.
Article
CAS
PubMed
Google Scholar
Carrano AC, Pagano M: Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol. 2001, 153: 1381-90. 10.1083/jcb.153.7.1381.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W: Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A. 2001, 98: 5043-8. 10.1073/pnas.081474898.
Article
PubMed Central
CAS
PubMed
Google Scholar
Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, Pagano M: Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A. 2001, 98: 2515-20. 10.1073/pnas.041475098.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang H, Kobayashi R, Galaktionov K, Beach D: p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 1995, 82: 915-25.
Article
CAS
PubMed
Google Scholar
Chao Y, Shih YL, Chiu JH, Chau GY, Lui WY, Yang WK, Lee SD, Huang TS: Overexpression of cyclin A but not Skp 2 correlates with the tumor relapse of human hepatocellular carcinoma. Cancer Res. 1998, 58: 985-90.
CAS
PubMed
Google Scholar
Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM, Hershko A: Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 2001, 91: 1745-51. 10.1002/1097-0142(20010501)91:9<1745::AID-CNCR1193>3.0.CO;2-H.
Article
CAS
PubMed
Google Scholar
Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T: High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 2001, 61: 7044-7.
CAS
PubMed
Google Scholar
Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, Kim U, Chai LS, Kakati S, Arya SK, Sandberg AA: The LNCaP cell line – a new model for studies on human prostatic carcinoma. Prog Clin Biol Res. 1980, 37: 115-32.
CAS
PubMed
Google Scholar
Soto AM, Lin TM, Sakabe K, Olea N, Damassa DA, Sonnenschein C: Variants of the human prostate LNCaP cell line as tools to study discrete components of the androgen-mediated proliferative response. Oncol Res. 1995, 7: 545-58.
CAS
PubMed
Google Scholar
Sonnenschein C, Olea N, Pasanen ME, Soto AM: Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res. 1989, 49: 3474-81.
CAS
PubMed
Google Scholar
Kokontis JM, Hay N, Liao S: Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol. 1998, 12: 941-53.
Article
CAS
PubMed
Google Scholar
Tsihlias J, Zhang W, Bhattacharya N, Flanagan M, Klotz L, Slingerland J: Involvement of p27Kip1 in G1 arrest by high dose 5 alpha-dihydrotestosterone in LNCaP human prostate cancer cells. Oncogene. 2000, 19: 670-9. 10.1038/sj.onc.1203369.
Article
CAS
PubMed
Google Scholar
Wolf DA, Kohlhuber F, Schulz P, Fittler F, Eick D: Transcriptional down-regulation of c-myc in human prostate carcinoma cells by the synthetic androgen mibolerone. Br J Cancer. 1992, 65: 376-82.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hofman K, Swinnen JV, Verhoeven G, Heyns W: E2F activity is biphasically regulated by androgens in LNCaP cells. Biochem Biophys Res Commun. 2001, 283: 97-101. 10.1006/bbrc.2001.4738.
Article
CAS
PubMed
Google Scholar
Wolf DA, Schulz P, Fittler F: Synthetic androgens suppress the transformed phenotype in the human prostate carcinoma cell line LNCaP. Br J Cancer. 1991, 64: 47-53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA: Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell. 1992, 70: 993-1006.
Article
CAS
PubMed
Google Scholar
Chen Y, Robles AI, Martinez LA, Liu F, Gimenez-Conti IB, Conti CJ: Expression of G1 cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in androgen-induced prostate proliferation in castrated rats. Cell Growth Differ. 1996, 7: 1571-8.
CAS
PubMed
Google Scholar
Waltregny D, Leav I, Signoretti S, Soung P, Lin D, Merk F, Adams JY, Bhattacharya N, Cirenei N, Loda M: Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol. 2001, 15: 765-82.
Article
CAS
PubMed
Google Scholar
Leav I, Merk FB, Kwan PW, Ho SM: Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate. 1989, 15: 23-40.
Article
CAS
PubMed
Google Scholar
Mashal RD, Lester S, Corless C, Richie JP, Chandra R, Propert KJ, Dutta A: Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res. 1996, 56: 4159-63.
CAS
PubMed
Google Scholar
Geck P, Szelei J, Jimenez J, Lin TM, Sonnenschein C, Soto AM: Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. J Steroid Biochem Mol Biol. 1997, 63: 211-8. 10.1016/S0960-0760(97)00122-2.
Article
CAS
PubMed
Google Scholar
Geck P, Maffini MV, Szelei J, Sonnenschein C, Soto AM: Androgen-induced proliferative quiescence in prostate cancer cells: the role of AS3 as its mediator. Proc Natl Acad Sci U S A. 2000, 97: 10185-90. 10.1073/pnas.97.18.10185.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tomoda K, Y. K, J.-Y. K: Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature. 1999, 398: 160-5. 10.1038/18230.
Article
CAS
PubMed
Google Scholar
Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T, Yoshida M, Yoneda-Kato N, Kato JY: The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem. 2002, 277: 2302-10. 10.1074/jbc.M104431200.
Article
CAS
PubMed
Google Scholar
Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW: The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell. 1996, 86: 115-21.
Article
CAS
PubMed
Google Scholar
Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D: A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell. 1998, 94: 615-23.
Article
CAS
PubMed
Google Scholar
Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M, Dubiel W: A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. Faseb J. 1998, 12: 469-78.
CAS
PubMed
Google Scholar
Wei N, Chamovitz DA, Deng XW: Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell. 1994, 78: 117-24.
Article
CAS
PubMed
Google Scholar
Zhou C, Seibert V, Geyer R, Rhee E, Lyapina S, Cope G, Deshaies RJ, Wolf DA: The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochemistry. 2001, 2: 7-10.1186/1472-2091-2-7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mundt KE, Liu C, Carr AM: Deletion mutants in COP9/signalosome subunits in fission yeast Schizosaccharomyces pombe display distinct phenotypes. Mol Biol Cell. 2002, 13: 493-502. 10.1091/mbc.01-10-0521.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kwok SF, Solano R, Tsuge T, Chamovitz DA, Ecker JR, Matsui M, Deng XW: Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell. 1998, 10: 1779-90. 10.1105/tpc.10.11.1779.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tai Y, Tokuda M: Jab1 Expression Is Associated with Inverse Expression of p27(kip1) and Poor Prognosis in Epithelial Ovarian Tumors. Clin Cancer Res. 2001, 7: 4130-5.
CAS
PubMed
Google Scholar
Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S: Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem. 2001, 276: 48937-43. 10.1074/jbc.M107274200.
Article
CAS
PubMed
Google Scholar
Wolf DA, Hermeking H, Albert T, Herzinger T, Kind P, Eick D: A complex between E2F and the pRb-related protein p130 is specifically targeted by the simian virus 40 large T antigen during cell transformation. Oncogene. 1995, 10: 2067-78.
CAS
PubMed
Google Scholar