Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layeghifard M, Neuhold J, Lehner A, Kong JX, Grunwald K, et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature. 2018;553(7688):342-+.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiu SH, Karlowski WM, Pan RS, Tzeng YH, Mayer KFX, Li WH. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 2004;16(5):1220–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehti-Shiu MD, Zou C, Shiu SH. Origin, diversity, expansion history, and functional evolution of the plant receptor-like kinase/pelle family. Receptor-Like Kinases in Plants. Berlin: Springer; 2012. p. 1–22.
Afzal AJ, Wood AJ, Lightfoot DA. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant-Microbe Interact. 2008;21(5):507–17.
Article
CAS
PubMed
Google Scholar
Tang P, Zhang Y, Sun XQ, Tian DC, Yang SH, Ding J. Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Sci. 2010;179(4):399–406.
Article
CAS
Google Scholar
Dufayard J-F, Bettembourg M, Fischer I, Droc G, Guiderdoni E, Périn C, Chantret N, Diévart A. New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front Plant Sci. 2017;8:381.
PubMed
PubMed Central
Google Scholar
Fischer I, Dievart A, Droc G, Dufayard JF, Chantret N. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol. 2016;170(3):1595–610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu YZ, Xun QQ, Guo Y, Zhang JH, Cheng KL, Shi T, He K, Hou SW, Gou XP, Li J. Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Mol Plant. 2016;9(2):289–300.
Article
CAS
PubMed
Google Scholar
Lehti-Shiu MD, Zou C, Hanada K, Shiu SH. Evolutionary history and stress regulation of plant receptor-like kinase/Pelle genes. Plant Physiol. 2009;150(1):12–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiu S-H, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci. 2001;98(19):10763–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han GZ. Origin and evolution of the plant immune system. New Phytol. 2019;222(1):70–83.
Article
PubMed
Google Scholar
Liu PL, Du L, Huang Y, Gao SM, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol. 2017;17:47.
Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics. 2007;8(1):124.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kajava AV. Structural diversity of leucine-rich repeat proteins. J Mol Biol. 1998;277(3):519–27.
Article
CAS
PubMed
Google Scholar
Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11(6):725–32.
Article
CAS
PubMed
Google Scholar
Hohmann U, Lau K, Hothorn M. The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. Annu Rev Plant Biol. 2017;68:109–37.
Article
CAS
PubMed
Google Scholar
Song W, Han ZF, Wang JZ, Lin GZ, Chai JJ. Structural insights into ligand recognition and activation of plant receptor kinases. Curr Opin Struct Biol. 2017;43:18–27.
Article
CAS
PubMed
Google Scholar
Hohmann U, Santiago J, Nicolet J, Olsson V, Spiga FM, Hothorn LA, Butenko MA, Hothorn M. Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors. Proc Natl Acad Sci U S A. 2018;115(13):3488–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Häweker H, Rips S, Koiwa H, Salomon S, Saijo Y, Chinchilla D, Robatzek S, von Schaewen A. Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem. 2010;285(7):4629–36.
Article
PubMed
CAS
Google Scholar
She J, Han ZF, Kim TW, Wang JJ, Cheng W, Chang JB, Shi SA, Wang JW, Yang MJ, Wang ZY, et al. Structural insight into brassinosteroid perception by BRI1. Nature. 2011;474(7352):472–U496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun W, Cao Y, Labby KJ, Bittel P, Boller T, Bent AF. Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. Plant Cell. 2012;24(3):1096–113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Z, Jin H, Fitchette AC, Xia Y, Monk AM, Faye L, Li JM. Mutations of an alpha 1,6 Mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective Brassinosteroid receptors in Arabidopsis. Plant Cell. 2009;21(12):3792–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Z, Kajiura H, Su W, Jin H, Kimura A, Fujiyama K, Li JM. Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(28):11437–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonnhammer EL, Eddy SR, Durbin R. Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins. 1997;28(3):405–20.
Article
CAS
PubMed
Google Scholar
Bej A, Sahoo BR, Swain B, Basu M, Jayasankar P, Samanta M. LRRsearch: an asynchronous server-based application for the prediction of leucine-rich repeat motifs and an integrative database of NOD-like receptors. Comput Biol Med. 2014;53:164–70.
Article
PubMed
Google Scholar
Offord V, Coffey T, Werling D. LRRfinder: a web application for the identification of leucine-rich repeats and an integrative toll-like receptor database. Dev Comp Immunol. 2010;34(10):1035–41.
Article
CAS
PubMed
Google Scholar
Kolde R. Pheatmap: pretty heatmaps. R Package Version. 2012;61(926):915.
Google Scholar
Diévart A, Clark SE. LRR-containing receptors regulating plant development and defense. Development. 2004;131(2):251–61.
Article
PubMed
CAS
Google Scholar
Meng X, Zhou J, Tang J, Li B, de Oliveira MV, Chai J, He P, Shan L. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis. Cell Rep. 2016;14(6):1330–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. Elife. 2016;5:e15075.
Article
PubMed
PubMed Central
Google Scholar
Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics. 2014;30(18):2592–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi L, Wu XN, Gilbert M, Schulze WX. Classification and Interactions of LRR Receptors and Co-receptors Within the Arabidopsis Plasma Membrane – An Overview. Front Plant Sci. 2019;10:472.
Chakraborty S, Nguyen B, Wasti SD, Xu G. Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules. 2019;24(17):3081.
Stormo GD, Schneider TD, Gold L, Ehrenfeucht A. Use of the ‘Perceptron’algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res. 1982;10(9):2997–3011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.
Article
CAS
PubMed
Google Scholar
Wang GL, Ruan DL, Song WY, Sideris S, Chen LL, Pi LY, Zhang SP, Zhang Z, Fauquet C, Gaut BS, et al. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell. 1998;10(5):765–79.
CAS
PubMed
PubMed Central
Google Scholar
Zhang XRS, Choi JH, Heinz J, Chetty CS. Domain-specific positive selection contributes to the evolution of Arabidopsis leucine-rich repeat receptor-like kinase (LRR RLK) genes. J Mol Evol. 2006;63(5):612–21.
Article
CAS
PubMed
Google Scholar
Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature. 2011;474(7352):467–U490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Li H, Han Z, Zhang H, Wang T, Lin G, Chang J, Yang W, Chai J. Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature. 2015;525(7568):265.
Article
CAS
PubMed
Google Scholar
Song W, Liu L, Wang J, Wu Z, Zhang H, Tang J, Lin G, Wang Y, Wen X, Li W. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Res. 2016;26(6):674.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Lin X, Han Z, Qu L-J, Chai J. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res. 2016;26(5):543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou J-M, Chai J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science. 2013;342(6158):624–8.
Article
CAS
PubMed
Google Scholar
Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res. 2015;25(1):110.
Article
CAS
PubMed
Google Scholar
Sun C, Yan K, Han J-T, Tao L, Lv M-H, Shi T, He Y-X, Wierzba M, Tax FE, Li J. Scanning for new BRI1 mutations via TILLING analysis. Plant Physiol. 2017;174(3):1881–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 1999;121(3):743–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Hou Q, Saima S, Ren H, Ali K, Wu G. Less conserved LRRs is functionally important in brassinosteroid receptor BRI1. Front Plant Sci. 2019;10:634.
Article
PubMed
PubMed Central
Google Scholar
Chen T, Wang B, Wang F, Niu G, Zhang S, Li J, Hong Z. The evolutionarily conserved serine residues in BRI1 LRR motifs are critical for protein secretion. Front Plant Sci. 2020;11:32.
Article
PubMed
PubMed Central
Google Scholar
Rips S, Bentley N, Jeong IS, Welch JL, von Schaewen A, Koiwa H. Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1. Plant Cell. 2014;26(9):3792–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zielinska DF, Gnad F, Schropp K, Wiśniewski JR, Mann M. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell. 2012;46(4):542–8.
Article
CAS
PubMed
Google Scholar
Song W, Mentink RA, Henquet MG, Cordewener JH, van Dijk AD, Bosch D, America AH, van der Krol AR. N-glycan occupancy of Arabidopsis N-glycoproteins. J Proteome. 2013;93:343–55.
Article
CAS
Google Scholar
Tang J, Sun Y, Han Z, Shi W. An illustration of optimal selected glycosidase for N-glycoproteins deglycosylation and crystallization. Int J Biol Macromol. 2019;122:265–71.
Article
CAS
PubMed
Google Scholar
Jin H, Hong Z, Su W, Li JM. A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2009;106(32):13612–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Hoorn RA, Wulff BB, Rivas S, Durrant MC, van der Ploeg A, de Wit PJ, Jones JD. Structure–function analysis of cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. Plant Cell. 2005;17(3):1000–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen T, Zhang H, Niu G, Zhang S, Hong Z. Multiple N-glycans cooperate in balancing misfolded BRI1 secretion and ER retention. Plant Mol Biol. 2020;103:581–96.
Suga A, Nagae M, Yamaguchi Y. Analysis of protein landscapes around N-glycosylation sites from the PDB repository for understanding the structural basis of N-glycoprotein processing and maturation. Glycobiology. 2018;28(10):774–85.
Article
CAS
PubMed
Google Scholar
Diévart A, Gilbert N, Droc G, Attard A, Gourgues M, Guiderdoni E, Périn C. Leucine-rich repeat receptor kinases are sporadically distributed in eukaryotic genomes. BMC Evol Biol. 2011;11(1):367.
Article
PubMed
PubMed Central
CAS
Google Scholar
Emanuelsson O, Brunak S, Von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM. Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35(2):518–22.
Article
PubMed Central
CAS
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Switzerland: Springer International Publishing; 2016.
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar