Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. The attenuated fibroblast sheath of the respiratory tract epithelial-mesenchymal trophic unit. Am J Respir Cell Mol Biol. 1999;21(6):655–7.
Article
CAS
PubMed
Google Scholar
Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 2009;6(8):678–82.
Article
PubMed
PubMed Central
Google Scholar
Knight D. Epithelium-fibroblast interactions in response to airway inflammation. Immunol Cell Biol. 2001;79(2):160–4.
Article
CAS
PubMed
Google Scholar
Bonner JC. Mesenchymal cell survival in airway and interstitial pulmonary fibrosis. Fibrogenesis Tissue Repair. 2010;3:15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin T-Y, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pitruzzella A, Modica DM, Burgio S, Gallina S, Manna OM, Intili G, et al. The role of emtu in mucosae remodeling: focus on a new model to study chronic inflammatory lung diseases. Euro Mediter Biomed J. 2020;15(02):4–10.
Google Scholar
Initiative G. Global Initiative for asthma: global strategy for asthma management and prevention (updated 2020). Rev Fr d’Allergologie d’Immunologie Clin. 2020;36(6):685–704 Available from: https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-full-report_-final-_wms.pdf.
Google Scholar
Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol. 2011;128(3):451–62 Available from: https://doi.org/10.1016/j.jaci.2011.04.047.
Article
PubMed
Google Scholar
Holgate ST, Holloway J, Wilson S, Bucchieri F, Puddicombe S, Davies DE. Epithelial-mesenchymal communication in the pathogenesis of chronic asthma. Proc Am Thorac Soc. 2004;1(2):93–8.
Article
CAS
PubMed
Google Scholar
Dong Z, Tai W, Lei W, Wang Y, Li Z, Zhang T. IL-27 inhibits the TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells. BMC Cell Biol. 2016;17:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loxham M, Davies DE, Blume C. Epithelial function and dysfunction in asthma. Clin Exp Allergy. 2014;44(11):1299–313.
Article
CAS
PubMed
Google Scholar
Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int. 2008;57(1):1–10.
Article
CAS
PubMed
Google Scholar
Bayram H, Devalia JL, Khair OA, Abdelaziz MM, Sapsford RJ, Sagai M, et al. Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol. 1998;102(5):771–82.
Article
CAS
PubMed
Google Scholar
Jakiela B, Gielicz A, Plutecka H, Hubalewska-Mazgaj M, Mastalerz L, Bochenek G, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2014;51(2):229–41.
PubMed
Google Scholar
Kilic A, Ameli A, Park J-A, Kho AT, Tantisira K, Santolini M, et al. Mechanical forces induce an asthma gene signature in healthy airway epithelial cells. Sci Rep. 2020;10(1):966.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves SR, Kolstad T, Lien TY, Herrington-Shaner S, Debley JS. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respir Res. 2015;16(1):1–12.
Article
CAS
Google Scholar
Reeves SR, Barrow KA, Kolstad TK, White MP, Rich LM, Wight TN, et al. Fibroblast gene expression following asthmatic bronchial epithelial cell conditioning correlates with epithelial donor lung function and exacerbation history. Sci Rep. 2018;8(1):15768.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reeves SR, Kolstad T, Lien T-Y, Elliott M, Ziegler SF, Wight TN, et al. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol. 2014;134(3):663–70 e1.
Article
CAS
PubMed
PubMed Central
Google Scholar
James RG, Reeves SR, Barrow KA, White MP, Glukhova VA, Haghighi C, et al. Deficient Follistatin-like 3 secretion by asthmatic airway epithelium impairs fibroblast regulation and fibroblast-to-Myofibroblast transition. Am J Respir Cell Mol Biol. 2018;59(1):104–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, et al. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci. 2018;75:21.
Article
CAS
Google Scholar
Das S, Miller M, Beppu AK, Mueller J, McGeough MD, Vuong C, et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc Natl Acad Sci U S A. 2016;113(46):13132–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017;367(3):551–69.
Article
PubMed
PubMed Central
Google Scholar
Michalik M, Pierzchalska M, Legutko A, Ura M, Ostaszewska A, Soja J, et al. Asthmatic bronchial fibroblasts demonstrate enhanced potential to differentiate into myofibroblasts in culture. Med Sci Monit. 2009;15(7):BR194–201.
CAS
PubMed
Google Scholar
Michalik M, Pierzchalska M, Wlodarczyk A, Wojcik KA, Czyz J, Sanak M, et al. Transition of asthmatic bronchial fibroblasts to myofibroblasts is inhibited by cell-cell contacts. Respir Med. 2011;105(10):1467–75.
Article
PubMed
Google Scholar
Michalik M, Wojcik KA, Jakiela B, Szpak K, Pierzchalska M, Sanak M, et al. Lithium attenuates TGF-beta(1)-induced fibroblasts to Myofibroblasts transition in bronchial fibroblasts derived from asthmatic patients. J Allergy. 2012:206109.
Wojcik K, Koczurkiewicz P, Michalik M, Sanak M. Transforming growth factor-beta(1)-induced expression of connective tissue growth factor is enhanced in bronchial fibroblasts derived from asthmatic patients. Pol Arch Med Wewn. 2012;122(7–8):326–32.
CAS
PubMed
Google Scholar
Sarna M, Wojcik KA, Hermanowicz P, Wnuk D, Burda K, Sanak M, et al. Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts. PLoS One. 2015;10(2):e0116840.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paw M, Borek I, Wnuk D, Ryszawy D, Piwowarczyk K, Kmiotek K, et al. Connexin43 controls the myofibroblastic differentiation of bronchial fibroblasts from patients with asthma. Am J Respir Cell Mol Biol. 2017;57:1.
Article
CAS
Google Scholar
Jakiela B, Brockman-Schneider R, Amineva S, Lee W-M, Gern JE. Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol. 2008;38(5):517–23.
Article
CAS
PubMed
Google Scholar
Wnuk D, Paw M, Ryczek K, Bochenek G, Sładek K, Madeja Z, et al. Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-β/Smad2/3 pathway intensification and antifibrotic TGF-β/Smad1/5/(8)9 pathway impairment. Sci Rep. 2020;10:1.
Article
CAS
Google Scholar
Hackett T-L, Warner SM, Stefanowicz D, Shaheen F, Pechkovsky DV, Murray LA, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am J Respir Crit Care Med. 2009;180(2):122–33.
Article
CAS
PubMed
Google Scholar
Grainge C, Dennison P, Lau L, Davies D, Howarth P. Asthmatic and normal respiratory epithelial cells respond differently to mechanical apical stress. Vol. 190, Am J Respir Crit Care Med. United States; 2014. p. 477–480.
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, He L, Liu B, Feng Y, Zhou H, Zhang Z, et al. Establishment and comparison of air-liquid interface culture systems for primary and immortalized swine tracheal epithelial cells. BMC Cell Biol. 2018;19(1):10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Araya J, Cambier S, Morris A, Finkbeiner W, Nishimura SL. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit. Am J Pathol. 2006;169(2):405–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bucchieri F, Pitruzzella A, Fucarino A, Gammazza AM, Bavisotto CC, Marciano V, et al. Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit. Exp Lung Res. 2017;43(2):82–92.
Article
CAS
PubMed
Google Scholar
Ishikawa S, Ishimori K, Ito S. A 3D epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-beta1 treatment. Respir Res. 2017;18(1):195.
Article
PubMed
PubMed Central
CAS
Google Scholar
Behzad AR, McDonough JE, Seyednejad N, Hogg JC, Walker DC. The disruption of the epithelial mesenchymal trophic unit in COPD. COPD. 2009;6(6):421–31.
Article
PubMed
Google Scholar
Sun C, Zhu M, Yang Z, Pan X, Zhang Y, Wang Q, et al. LL-37 secreted by epithelium promotes fibroblast collagen production: a potential mechanism of small airway remodeling in chronic obstructive pulmonary disease. Lab Investig. 2014;94(9):991–1002.
Article
CAS
PubMed
Google Scholar
Johnson JR, Nishioka M, Chakir J, Risse PA, Almaghlouth I, Bazarbashi AN, et al. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respir Res. 2013;14(1):1–12.
Article
CAS
Google Scholar
Holgate ST. Mechanisms of asthma and implications for its prevention and treatment: a personal journey. Allergy Asthma Immunol Res. 2013;5(6):343–7.
Article
PubMed
PubMed Central
Google Scholar
Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy. 2012:943982.
Wawrzyniak P, Wawrzyniak M, Wanke K, Sokolowska M, Bendelja K, Ruckert B, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 2017;139(1):93–103.
Article
CAS
PubMed
Google Scholar
Hackett T-L, Singhera GK, Shaheen F, Hayden P, Jackson GR, Hegele RG, et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am J Respir Cell Mol Biol. 2011;45(5):1090–100.
Article
CAS
PubMed
Google Scholar
Moheimani F, Koops J, Williams T, Reid AT, Hansbro PM, Wark PA, et al. Influenza a virus infection dysregulates the expression of microRNA-22 and its targets; CD147 and HDAC4, in epithelium of asthmatics. Respir Res. 2018;19(1):145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):512–49.
Article
CAS
Google Scholar
Park J-A, Kim JH, Bi D, Mitchel JA, Qazvini NT, Tantisira K, et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat Mater. 2015;14(10):1040–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill AR, Donaldson JE, Blume C, Smithers N, Tezera L, Tariq K, et al. IL-1alpha mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit. Tissue Barriers. 2016;4(3):e1206378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wójcik-Pszczoła K, Jakieła B, Plutecka H, Koczurkiewicz P, Madeja Z, Michalik M, et al. Connective tissue growth factor regulates transition of primary bronchial fibroblasts to myofibroblasts in asthmatic subjects. Cytokine. 2018;102(September):187–190.
Bouhout S, Pereira JM, Simon F, Chabaud S, Bolduc S, Conti M, et al. Production of Tissue-Engineered Human 3D Bronchi In Vitro. In: Eberli D, editor. Cells and Biomaterials in Regenerative Medicine. Rijeka: IntechOpen; 2014. Available from: https://doi.org/https://doi.org/10.5772/59192.
Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163(2):517–23.
Article
CAS
PubMed
Google Scholar
Bonser LR, Erle DJ. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J Clin Med. 2017;6:12.
Article
CAS
Google Scholar
Jonsdottir HR, Arason AJ, Palsson R, Franzdottir SR, Gudbjartsson T, Isaksson HJ, et al. Basal cells of the human airways acquire mesenchymal traits in idiopathic pulmonary fibrosis and in culture. Lab Investig. 2015; 95(12):1418–1428. Available from: https://doi.org/https://doi.org/10.1038/labinvest.2015.114.
Zhang M, Zhang Z, Pan H-Y, Wang D-X, Deng Z-T, Ye X-L. TGF-beta1 induces human bronchial epithelial cell-to-mesenchymal transition in vitro. Lung. 2009;187(3):187–94.
Article
CAS
PubMed
Google Scholar
Bartis D, Mise N, Mahida RY, Eickelberg O, Thickett DR. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax. 2014;69(8):760–5.
Article
PubMed
Google Scholar
Jayachandran A, Konigshoff M, Yu H, Rupniewska E, Hecker M, Klepetko W, et al. SNAI transcription factors mediate epithelial-mesenchymal transition in lung fibrosis. Thorax. 2009;64(12):1053–61.
Article
CAS
PubMed
Google Scholar
Paw M, Wnuk D, Kadziołka D, Sęk A, Lasota S, Czyż J, et al. Fenofibrate reduces the asthma-related fibroblast-to-myofibroblast transition by TGF-B/Smad2/3 signaling attenuation and connexin 43-dependent phenotype destabilization. Int J Mol Sci. 2018;19:9.
Article
CAS
Google Scholar