Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
Article
PubMed
Google Scholar
Paez JG, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. https://doi.org/10.1126/science.1099314.
Article
CAS
PubMed
Google Scholar
Gallardo E, Navarro A, Viñolas N, Marrades RM, Diaz T, Gel B, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis. 2009;30(11):1903–9. https://doi.org/10.1093/carcin/bgp219.
Article
CAS
PubMed
Google Scholar
Normanno N, de Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366(1):2–16. https://doi.org/10.1016/j.gene.2005.10.018.
Article
CAS
PubMed
Google Scholar
Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2):S21–6. https://doi.org/10.1016/j.ijrobp.2003.11.041.
Article
CAS
Google Scholar
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203. https://doi.org/10.1016/j.cell.2007.11.025.
Article
CAS
PubMed
Google Scholar
Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. https://doi.org/10.1038/nrc2088.
Article
CAS
PubMed
Google Scholar
Herbst RS, Maddox AM, Rothenberg ML, Small EJ, Rubin EH, Baselga J, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non–small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol. 2002;20(18):3815–25. https://doi.org/10.1200/JCO.2002.03.038.
Article
CAS
PubMed
Google Scholar
Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305(5687):1163–7. https://doi.org/10.1126/science.1101637.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92. https://doi.org/10.1056/NEJMoa044238.
Article
CAS
PubMed
Google Scholar
Ghosh A, Yan H. Hydrogen bond analysis of the EGFR-ErbB3 heterodimer related to non-small cell lung cancer and drug resistance. J Theor Biol. 2019;464:63–71. https://doi.org/10.1016/j.jtbi.2018.12.035.
Article
CAS
PubMed
Google Scholar
Yun C-H, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci. 2008;105(6):2070–5. https://doi.org/10.1073/pnas.0709662105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou B, Lee VH, Yan H. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis. BMC Bioinformatics. 2018;19(1):1–13.
Article
Google Scholar
Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci. 2007;104(52):20932–7. https://doi.org/10.1073/pnas.0710370104.
Article
PubMed
PubMed Central
Google Scholar
Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. science. 2007;316(5827):1039–43. https://doi.org/10.1126/science.1141478.
Article
CAS
PubMed
Google Scholar
D. D. Wang, L. Ma, M. P. Wong, V. H. Lee, and H. Yan, "Contribution of EGFR and ErbB-3 heterodimerization to the EGFR mutation-induced gefitinib-and erlotinib-resistance in non-small-cell lung carcinoma treatments," PloS one, vol. 10, no. 5, p. e0128360, 2015.
Ahmad T, Farnie G, Bundred NJ, Anderson NG. The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem. 2004;279(3):1713–9. https://doi.org/10.1074/jbc.M306156200.
Article
CAS
PubMed
Google Scholar
Jones HE, Goddard L, Gee JMW, Hiscox S, Rubini M, Barrow D, et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer. 2004;11(4):793–814. https://doi.org/10.1677/erc.1.00799.
Article
CAS
PubMed
Google Scholar
F. Cappuzzo et al., "Increased MET gene copy number negatively affects survival of surgically resected non–small-cell lung cancer patients," Journal of Clinical Oncology, vol. 27, no. 10, p. 1667, 2009.
Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between epidermal growth factor receptor and c-met signal pathways in transformed cells. J Biol Chem. 2000;275(12):8806–11. https://doi.org/10.1074/jbc.275.12.8806.
Article
CAS
PubMed
Google Scholar
E. Ortiz-Zapater et al., "MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition," PLoS One, vol. 12, no. 1, p. e0170798, 2017.
Tanizaki J, Okamoto I, Sakai K, Nakagawa K. Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br J Cancer. 2011;105(6):807–13. https://doi.org/10.1038/bjc.2011.322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008;27(28):3944–56. https://doi.org/10.1038/onc.2008.19.
Article
CAS
PubMed
PubMed Central
Google Scholar
M.-L. I. Harwardt et al., "Single-Molecule Super-Resolution Microscopy Reveals Heteromeric Complexes of MET and EGFR upon Ligand Activation," International Journal of Molecular Sciences, vol. 21, no. 8, p. 2803, 2020.
J. Knowles and Z. Gechtman, "Probing EGFR, HER2, and c-Met Protein-Protein Interactions Using an Antibody Array," in Molecular Cancer Therapeutics, 2013, vol. 12, no. 11: AMER ASSOC CANCER RESEARCH 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA … .
R. Lee et al., "T6 MET targeted therapy in lung adenocarcinoma: does ‘resistant’EGFR make a MET-responsive dimer?," ed: BMJ publishing group ltd, 2015.
Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–28. https://doi.org/10.1158/0008-5472.CAN-04-3841.
Article
CAS
PubMed
Google Scholar
Iyer G, Price J, Bourgeois S, Armstrong E, Huang S, Harari PM. Insulin growth factor 1 like receptor (IGF-1R). BMC Cancer. 2016;16(1):1–11.
Article
Google Scholar
Oliveira S, Schiffelers R, Storm G, Henegouwen P, Roovers R. Crosstalk between epidermal growth factor receptor-and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr Cancer Drug Targets. 2009;9(6):748–60.
Article
PubMed
Google Scholar
Morgillo F, Woo JK, Kim ES, Hong WK, Lee H-Y. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res. 2006;66(20):10100–11. https://doi.org/10.1158/0008-5472.CAN-06-1684.
Article
CAS
PubMed
Google Scholar
M. A. Becker and D. Yee, "Crosstalk Between Insulin-like Growth Factor (IGF) and Epidermal Growth Factor (EGF) Receptors," in EGFR Signaling Networks in Cancer Therapy: Springer, 2008, pp. 147–160.
Tang Z, du R, Jiang S, Wu C, Barkauskas DS, Richey J, et al. Dual MET–EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99(6):911–22. https://doi.org/10.1038/sj.bjc.6604559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Stabile LP, Gubish CT, Gooding WE, Grandis JR, Siegfried JM. Dual blockade of EGFR and c-met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011;17(13):4425–38. https://doi.org/10.1158/1078-0432.CCR-10-3339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berasain C, Ujue Latasa M, Urtasun R, Goñi S, Elizalde M, Garcia-Irigoyen O, et al. Epidermal growth factor receptor (EGFR) crosstalks in liver cancer. Cancers. 2011;3(2):2444–61. https://doi.org/10.3390/cancers3022444.
Article
CAS
PubMed
PubMed Central
Google Scholar
A. Dixit and G. M. Verkhivker, "Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases," PLoS computational biology, vol. 7, no. 10, p. e1002179, 2011.
Ma L, Wang DD, Huang Y, Wong MP, Lee VH, Yan H. Decoding the EGFR mutation-induced drug resistance in lung cancer treatment by local surface geometric properties. Comput Biol Med. 2015;63:293–300. https://doi.org/10.1016/j.compbiomed.2014.06.016.
Article
CAS
PubMed
Google Scholar
L. Ma, B. Zou, and H. Yan, "Identifying EGFR mutation-induced drug resistance based on alpha shape model analysis of the dynamics," Proteome science, vol. 14, no. 1, p. 12, 2016.
Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. Transitions to catalytically inactive conformations in EGFR kinase. Proc Natl Acad Sci. 2013;110(18):7270–5. https://doi.org/10.1073/pnas.1220843110.
Article
PubMed
PubMed Central
Google Scholar
Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, Dror RO, et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell. 2012;149(4):860–70. https://doi.org/10.1016/j.cell.2012.02.063.
Article
CAS
PubMed
Google Scholar
M. Z. Tamirat, K. J. Kurppa, K. Elenius, and M. S. Johnson, "Deciphering the structural effects of activating EGFR somatic mutations with molecular dynamics simulation," JoVE (Journal of Visualized Experiments), no. 159, p. e61125, 2020.
M. Z. Tamirat, M. Koivu, K. Elenius, and M. S. Johnson, "Structural characterization of EGFR exon 19 deletion mutation using molecular dynamics simulation," PloS one, vol. 14, no. 9, p. e0222814, 2019.
Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell. 2006;9(6):485–95. https://doi.org/10.1016/j.ccr.2006.04.022.
Article
CAS
PubMed
Google Scholar
L. V. Sequist et al., "Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors," Science translational medicine, vol. 3, no. 75, pp. 75ra26-75ra26, 2011.
Ni Z, Wang X, Zhang T, Jin RZ. Molecular dynamics simulations reveal the allosteric effect of F1174C resistance mutation to ceritinib in ALK-associated lung cancer. Comput Biol Chem. 2016;65:54–60. https://doi.org/10.1016/j.compbiolchem.2016.10.005.
Article
CAS
PubMed
Google Scholar
H. Edelsbrunner, Weighted alpha shapes. University of Illinois at Urbana-Champaign, 1992.
Edelsbrunner H, Mücke EP. Three-dimensional alpha shapes. ACM Transactions on Graphics (TOG). 1994;13(1):43–72. https://doi.org/10.1145/174462.156635.
Article
Google Scholar
Ma L, Wang DD, Huang Y, Yan H, Wong MP, Lee VH. EGFR mutant structural database: computationally predicted 3D structures and the corresponding binding free energies with gefitinib and erlotinib. BMC Bioinformatics. 2015;16(1):1–10.
Article
Google Scholar
Song Y, DiMaio F, Wang RYR, Kim D, Miles C, Brunette T, et al. "High-resolution comparative modeling with RosettaCM". Structure. 2013;21(10):1735–42.
Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125(6):1137–49. https://doi.org/10.1016/j.cell.2006.05.013.
Article
CAS
PubMed
Google Scholar
Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268(1):209–25. https://doi.org/10.1006/jmbi.1997.0959.
Article
CAS
PubMed
Google Scholar
Robetta. "Full-chain Protein Structure Prediction Server." (accessed 12-June, 2019).
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. https://doi.org/10.1002/jcc.20084.
Article
CAS
PubMed
Google Scholar
Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, Snell G, et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J Biol Chem. 2011;286(21):18756–65. https://doi.org/10.1074/jbc.M110.206193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu K, Ai J, Liu Q, Chen TT, Zhao A, Peng X, et al. Multisubstituted quinoxalines and pyrido [2, 3-d] pyrimidines: synthesis and SAR study as tyrosine kinase c-met inhibitors. Bioorg Med Chem Lett. 2012;22(20):6368–72. https://doi.org/10.1016/j.bmcl.2012.08.075.
Article
CAS
PubMed
Google Scholar
Degorce SBL, et al. Discovery of a potent, selective, orally bioavailable, and efficacious novel 2-(pyrazol-4-ylamino)-pyrimidine inhibitor of the insulin-like growth factor-1 receptor (IGF-1R). J Med Chem. 2016;59(10):4859–66. https://doi.org/10.1021/acs.jmedchem.6b00203.
Article
CAS
PubMed
Google Scholar
D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications. Elsevier, 2001.
R. M. B. D.A. Case, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. Legrand, P. Li C. and T. L. Lin, R. Luo, B. Madej, D. Mermelstein, K.M. Merz, G. Monard, H. Nguyen, H.T. Nguyen, I. Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, C. Sagui, C.L. Simmerling, W.M. Botello-Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, L. Xiao and P.A. Kollman, "AMBER 2016," 2016.
F. Bernardini and C. L. Bajaj, "Sampling and reconstructing manifolds using alpha-shapes," 1997.
Guibas L, Stolfi J. Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM transactions on graphics (TOG). 1985;4(2):74–123. https://doi.org/10.1145/282918.282923.
Article
Google Scholar
CGAL. "Computational Geometry Algorithms Library. 1996. [online] Available: https://www.cgal.org/.
Zhou W, Yan H, Hao Q. Analysis of surface structures of hydrogen bonding in protein–ligand interactions using the alpha shape model. Chem Phys Lett. 2012;545:125–31. https://doi.org/10.1016/j.cplett.2012.07.016.
Article
CAS
Google Scholar
Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–95. https://doi.org/10.1021/ct400341p.
Article
CAS
PubMed
Google Scholar
Srivastava HK, Sastry GN. Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. J Chem Inf Model. 2012;52(11):3088–98. https://doi.org/10.1021/ci300385h.
Article
CAS
PubMed
Google Scholar