Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105–10. https://doi.org/10.1126/science.290.5499.2105.
Article
PubMed
CAS
Google Scholar
Zhang HM, Chen H, Liu W, Liu H, Gong J, Wang H, et al. AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids Res. 2012;40(Database issue):D144–9. https://doi.org/10.1093/nar/gkr965.
Article
PubMed
CAS
Google Scholar
Beauchemin M, Roy S, Daoust P, Dagenais-Bellefeuille S, Bertomeu T, Letourneau L, et al. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proc Natl Acad Sci U S A. 2012;109(39):15793–8. https://doi.org/10.1073/pnas.1206683109.
Article
PubMed
PubMed Central
Google Scholar
Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, Lindquist E, et al. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS One. 2012;7(4):e35269. https://doi.org/10.1371/journal.pone.0035269.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beauchemin M, Roy S, Pelletier S, Averback A, Morse D. Characterization of two dinoflagellate cold shock domain proteins. mSphere. 2016;1:e00034–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mihailovich M, Militti C, Gabaldon T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays. 2010;32(2):109–18. https://doi.org/10.1002/bies.200900122.
Article
PubMed
CAS
Google Scholar
Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV. Cold shock domain proteins: structure and interaction with nucleic acids. Biochemistry (Mosc). 2020;85(Suppl 1):S1–S19. https://doi.org/10.1134/S0006297920140011.
Article
CAS
Google Scholar
Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci U S A. 2000;97(14):7784–9. https://doi.org/10.1073/pnas.97.14.7784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roy S, Letourneau L, Morse D. Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation. Plant Physiol. 2014;164(2):966–77. https://doi.org/10.1104/pp.113.229856.
Article
PubMed
CAS
Google Scholar
Li T, Yu L, Song B, Song Y, Li L, Lin X, et al. Genome improvement and core gene set refinement of fugacium kawagutii. Microorganisms. 2020;8(1):102. https://doi.org/10.3390/microorganisms8010102.
Jones PG, VanBogelen RA, Neidhardt FC. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol. 1987;169(5):2092–5. https://doi.org/10.1128/JB.169.5.2092-2095.1987.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heinemann U, Roske Y. Cold-shock domains-abundance, structure, properties, and nucleic-acid binding. Cancers. 2021;13(2):190. https://doi.org/10.3390/cancers13020190.
Graumann PL, Marahiel MA. A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci. 1998;23(8):286–90. https://doi.org/10.1016/S0968-0004(98)01255-9.
Article
PubMed
CAS
Google Scholar
Jones PG, Krah R, Tafuri SR, Wolffe AP. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol. 1992;174(18):5798–802. https://doi.org/10.1128/JB.174.18.5798-5802.1992.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karlson D, Imai R. Conservation of the cold shock domain protein family in plants. Plant Physiol. 2003;131(1):12–5. https://doi.org/10.1104/pp.014472.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakaminami K, Karlson DT, Imai R. Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A. 2006;103(26):10122–7. https://doi.org/10.1073/pnas.0603168103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wistow G. Cold shock and DNA binding. Nature. 1990;344(6269):823–4. https://doi.org/10.1038/344823c0.
Article
PubMed
CAS
Google Scholar
Fusaro AF, Bocca SN, Ramos RL, Barroco RM, Magioli C, Jorge VC, et al. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta. 2007;225(6):1339–51. https://doi.org/10.1007/s00425-006-0444-4.
Article
PubMed
CAS
Google Scholar
Kim MH, Sonoda Y, Sasaki K, Kaminaka H, Imai R. Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress Chaperones. 2013;18(4):517–25. https://doi.org/10.1007/s12192-012-0398-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Izumi H, Imamura T, Nagatani G, Ise T, Murakami T, Uramoto H, et al. Y box-binding protein-1 binds preferentially to single-stranded nucleic acids and exhibits 3′-->5′ exonuclease activity. Nucleic Acids Res. 2001;29(5):1200–7. https://doi.org/10.1093/nar/29.5.1200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lasham A, Moloney S, Hale T, Homer C, Zhang YF, Murison JG, et al. The Y-box-binding protein, YB1, is a potential negative regulator of the p53 tumor suppressor. J Biol Chem. 2003;278(37):35516–23. https://doi.org/10.1074/jbc.M303920200.
Article
PubMed
CAS
Google Scholar
Sommerville J. Activities of cold-shock domain proteins in translation control. Bioessays. 1999;21(4):319–25. https://doi.org/10.1002/(SICI)1521-1878(199904)21:4<319::AID-BIES8>3.0.CO;2-3.
Article
PubMed
CAS
Google Scholar
Kleene KC. Y-box proteins combine versatile cold shock domains and arginine-rich motifs (ARMs) for pleiotropic functions in RNA biology. Biochem J. 2018;475(17):2769–84. https://doi.org/10.1042/BCJ20170956.
Article
PubMed
CAS
Google Scholar
Mordovkina D, Lyabin DN, Smolin EA, Sogorina EM, Ovchinnikov LP, Eliseeva I. Y-box binding proteins in mrnp assembly, translation, and stability control. Biomolecules. 2020;10(4):591. https://doi.org/10.3390/biom10040591.
Sangermano F, Delicato A, Calabro V. Y box binding protein 1 (YB-1) oncoprotein at the hub of DNA proliferation, damage and cancer progression. Biochimie. 2020;179:205–16. https://doi.org/10.1016/j.biochi.2020.10.004.
Article
PubMed
CAS
Google Scholar
MacDonald GH, Itoh-Lindstrom Y, Ting JP. The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter. J Biol Chem. 1995;270(8):3527–33. https://doi.org/10.1074/jbc.270.8.3527.
Article
PubMed
CAS
Google Scholar
Wei WJ, Mu SR, Heiner M, Fu X, Cao LJ, Gong XF, et al. YB-1 binds to CAUC motifs and stimulates exon inclusion by enhancing the recruitment of U2AF to weak polypyrimidine tracts. Nucleic Acids Res. 2012;40(17):8622–36. https://doi.org/10.1093/nar/gks579.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang XJ, Zhu H, Mu SR, Wei WJ, Yuan X, Wang M, et al. Crystal structure of a Y-box binding protein 1 (YB-1)-RNA complex reveals key features and residues interacting with RNA. J Biol Chem. 2019;294(28):10998–1010. https://doi.org/10.1074/jbc.RA119.007545.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu L, Li T, Li L, Lin X, Li H, Liu C, et al. SAGER: a database of Symbiodiniaceae and algal genomic resource. Database (Oxford). 2020;2020. https://doi.org/10.1093/database/baaa051.
Wang Y, Jensen L, Hojrup P, Morse D. Synthesis and degradation of dinoflagellate plastid-encoded psbA proteins are light-regulated, not circadian-regulated. Proc Natl Acad Sci U S A. 2005;102(8):2844–9. https://doi.org/10.1073/pnas.0406522102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(Web Server issue):W465–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar
Cock PJ, Chilton JM, Gruning B, Johnson JE, Soranzo N. NCBI BLAST+ integrated into galaxy. Gigascience. 2015;4(1):39. https://doi.org/10.1186/s13742-015-0080-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia B, Ke H, Inouye M. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol. 2001;40(1):179–88. https://doi.org/10.1046/j.1365-2958.2001.02372.x.
Article
PubMed
CAS
Google Scholar
Chang C, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG, Cleary ML. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric pbx proteins. Mol Cell Biol. 1997;17(10):56795687.
Article
Google Scholar
Magnani E, Sjolander K, Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell. 2004;16(9):2265–77. https://doi.org/10.1105/tpc.104.023135.
Article
PubMed
PubMed Central
CAS
Google Scholar