Venkatraman L, Chia SM, Narmada BC, White JK, Bhowmick SS, Forbes Dewey C Jr, et al. Plasmin triggers a switch-like decrease in thrombospondin-dependent activation of TGF-beta1. Biophys J. 2012;103(5):1060–8. https://doi.org/10.1016/j.bpj.2012.06.050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SY, Ferrell JE Jr. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell. 2007;128(6):1133–45. https://doi.org/10.1016/j.cell.2007.01.039.
Article
CAS
PubMed
Google Scholar
Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8(1):45–56. https://doi.org/10.1038/nrn2044.
Article
CAS
PubMed
Google Scholar
Chickarmane V, Enver T, Peterson C. Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput Biol. 2009;5(1):e1000268. https://doi.org/10.1371/journal.pcbi.1000268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurosawa G, Aihara K, Iwasa Y. A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression. Biophys J. 2006;91(6):2015–23. https://doi.org/10.1529/biophysj.105.076554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol. 2013;3(4):130031. https://doi.org/10.1098/rsob.130031.
Article
PubMed
PubMed Central
Google Scholar
Strogatz SH. Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineering. Cambridge: Westview Press; 2000.
Google Scholar
Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem. 2004;279(35):36892–7. https://doi.org/10.1074/jbc.M404893200.
Article
CAS
PubMed
Google Scholar
Ferrell JE Jr, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998;280(5365):895–8. https://doi.org/10.1126/science.280.5365.895.
Article
CAS
PubMed
Google Scholar
Bagowski CP, Ferrell JE Jr. Bistability in the JNK cascade. Curr Biol. 2001;11(15):1176–82. https://doi.org/10.1016/S0960-9822(01)00330-X.
Article
CAS
PubMed
Google Scholar
Beta C, Amselem G, Bodenschatz E. A bistable mechanism for directional sensing. New J Phys. 2008;10(8):083015. https://doi.org/10.1088/1367-2630/10/8/083015.
Article
CAS
Google Scholar
Semplice M, Veglio A, Naldi G, Serini G, Gamba A. A bistable model of cell polarity. PLoS One. 2012;7(2):e30977. https://doi.org/10.1371/journal.pone.0030977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko-Kawano T, Takasu F, Naoki H, Sakumura Y, Ishii S, Ueba T, et al. Dynamic regulation of myosin light chain phosphorylation by rho-kinase. PLoS One. 2012;7(6):e39269. https://doi.org/10.1371/journal.pone.0039269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrne KM, Monsefi N, Dawson JC, Degasperi A, Bukowski-Wills JC, Volinsky N, et al. Bistability in the Rac1, PAK, and RhoA signaling network drives actin cytoskeleton dynamics and cell motility switches. Cell systems. 2016;2(1):38–48. https://doi.org/10.1016/j.cels.2016.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes WR, Lin B, Levchenko A, Edelstein-Keshet L. Modelling cell polarization driven by synthetic spatially graded Rac activation. PLoS Comput Biol. 2012;8(6):e1002366. https://doi.org/10.1371/journal.pcbi.1002366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon CM, Vaughan EM, Bement WM, Edelstein-Keshet L. Pattern formation of rho GTPases in single cell wound healing. Mol Biol Cell. 2013;24(3):421–32. https://doi.org/10.1091/mbc.e12-08-0634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by rho-associated kinase (rho-kinase). J Biol Chem. 1996;271(34):20246–9. https://doi.org/10.1074/jbc.271.34.20246.
Article
CAS
PubMed
Google Scholar
SoRelle R. Nobel prize awarded to scientists for nitric oxide discoveries. Circulation. 1998;98(22):2365–6. https://doi.org/10.1161/01.CIR.98.22.2365.
Article
CAS
PubMed
Google Scholar
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593–615. https://doi.org/10.1042/bj3570593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, et al. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: role of rho/ROCK and mitogen-activated protein kinase. Circ Res. 2001;89(7):583–90. https://doi.org/10.1161/hh1901.097084.
Article
CAS
PubMed
Google Scholar
Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by rho GTPase. J Biol Chem. 1998;273(37):24266–71. https://doi.org/10.1074/jbc.273.37.24266.
Article
CAS
PubMed
Google Scholar
Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, et al. Rho GTPase/rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22(24):8467–77. https://doi.org/10.1128/MCB.22.24.8467-8477.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bivalacqua TJ, Champion HC, Usta MF, Cellek S, Chitaley K, Webb RC, et al. RhoA/rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A. 2004;101(24):9121–6. https://doi.org/10.1073/pnas.0400520101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolluru GK, Majumder S, Chatterjee S. Rho-kinase as a therapeutic target in vascular diseases: striking nitric oxide signaling. Nitric Oxide. 2014;43:45–54. https://doi.org/10.1016/j.niox.2014.09.002.
Article
CAS
PubMed
Google Scholar
Lee MR, Li L, Kitazawa T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem. 1997;272(8):5063–8. https://doi.org/10.1074/jbc.272.8.5063.
Article
CAS
PubMed
Google Scholar
Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol. 2000;184(3):409–20. https://doi.org/10.1002/1097-4652(200009)184:3<409::AID-JCP16>3.0.CO;2-K.
Chitaley K, Webb RC. Nitric oxide induces dilation of rat aorta via inhibition of rho-kinase signaling. Hypertension. 2002;39(2 Pt 2):438–42. https://doi.org/10.1161/hy02t2.102960.
Article
CAS
PubMed
Google Scholar
Sawada N, Itoh H, Yamashita J, Doi K, Inoue M, Masatsugu K, et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun. 2001;280(3):798–805. https://doi.org/10.1006/bbrc.2000.4194.
Article
CAS
PubMed
Google Scholar
Ellerbroek SM, Wennerberg K, Burridge K. Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem. 2003;278(21):19023–31. https://doi.org/10.1074/jbc.M213066200.
Article
CAS
PubMed
Google Scholar
Noda K, Godo S, Saito H, Tsutsui M, Shimokawa H. Opposing roles of nitric oxide and rho-kinase in lipid metabolism in mice. Tohoku J Exp Med. 2015;235(3):171–83. https://doi.org/10.1620/tjem.235.171.
Article
CAS
PubMed
Google Scholar
Sauzeau V, Rolli-Derkinderen M, Marionneau C, Loirand G, Pacaud P. RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem. 2003;278(11):9472–80. https://doi.org/10.1074/jbc.M212776200.
Article
CAS
PubMed
Google Scholar
Rolli-Derkinderen M, Sauzeau V, Boyer L, Lemichez E, Baron C, Henrion D, et al. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res. 2005;96(11):1152–60. https://doi.org/10.1161/01.RES.0000170084.88780.ea.
Article
CAS
PubMed
Google Scholar
Zhan R, Yang S, He W, Wang F, Tan J, Zhou J, et al. Nitric oxide enhances keratinocyte cell migration by regulating rho GTPase via cGMP-PKG signalling. PLoS One. 2015;10(3):e0121551. https://doi.org/10.1371/journal.pone.0121551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan R, He W, Wang F, Yao Z, Tan J, Xu R, et al. Nitric oxide promotes epidermal stem cell migration via cGMP-rho GTPase signalling. Sci Rep. 2016;6(1):30687. https://doi.org/10.1038/srep30687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem. 2004;385(1):1–10. https://doi.org/10.1515/BC.2004.001.
Article
CAS
PubMed
Google Scholar
Bernstein BW, Bamburg JR. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci. 2003;23(1):1–6.
Article
CAS
Google Scholar
Bernatova I, Kopincova J, Puzserova A, Janega P, Babal P. Chronic low-dose L-NAME treatment increases nitric oxide production and vasorelaxation in normotensive rats. Physiol Res / Academia Scientiarum Bohemoslovaca. 2007;56(Suppl 2):S17–24.
CAS
Google Scholar
Kopincova J, Puzserova A, Bernatova I. L-NAME in the cardiovascular system - nitric oxide synthase activator? Pharmacol Rep. 2012;64(3):511–20. https://doi.org/10.1016/S1734-1140(12)70846-0.
Article
CAS
PubMed
Google Scholar
Greif DM, Kou R, Michel T. Site-specific dephosphorylation of endothelial nitric oxide synthase by protein phosphatase 2A: evidence for crosstalk between phosphorylation sites. Biochemistry. 2002;41(52):15845–53. https://doi.org/10.1021/bi026732g.
Article
CAS
PubMed
Google Scholar
Yang J, Clark JW, Bryan RM, Robertson CS. Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am J Physiol Heart Circ Physiol. 2005;289(2):H886–97. https://doi.org/10.1152/ajpheart.00216.2004.
Article
CAS
PubMed
Google Scholar
Yang B, Gwozdz T, Dutko-Gwozdz J, Bolotina VM. Orai1 and Ca2+−independent phospholipase A2 are required for store-operated Icat-SOC current, Ca2+ entry, and proliferation of primary vascular smooth muscle cells. Am J Physiol Cell Physiol. 2012;302(5):C748–56. https://doi.org/10.1152/ajpcell.00312.2011.
Article
CAS
PubMed
Google Scholar
Bhadriraju K, Yang M, Alom Ruiz S, Pirone D, Tan J, Chen CS. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp Cell Res. 2007;313(16):3616–23. https://doi.org/10.1016/j.yexcr.2007.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao XH, Laschinger C, Arora P, Szaszi K, Kapus A, McCulloch CA. Force activates smooth muscle alpha-actin promoter activity through the rho signaling pathway. J Cell Sci. 2007;120(Pt 10):1801–9. https://doi.org/10.1242/jcs.001586.
Article
CAS
PubMed
Google Scholar
Lessey EC, Guilluy C, Burridge K. From mechanical force to RhoA activation. Biochemistry. 2012;51(38):7420–32. https://doi.org/10.1021/bi300758e.
Article
CAS
PubMed
Google Scholar
Mori K, Amano M, Takefuji M, Kato K, Morita Y, Nishioka T, et al. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J Biol Chem. 2009;284(8):5067–76. https://doi.org/10.1074/jbc.M806853200.
Article
CAS
PubMed
Google Scholar
Venkatraman L, Li H, Dewey CF Jr, White JK, Bhowmick SS, Yu H, et al. Steady states and dynamics of urokinase-mediated plasmin activation in silico and in vitro. Biophys J. 2011;101(8):1825–34. https://doi.org/10.1016/j.bpj.2011.08.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Cui J, Lu H, Wang R, Zhang S, Shen P. Modeling of the role of a Bax-activation switch in the mitochondrial apoptosis decision. Biophys J. 2007;92(12):4304–15. https://doi.org/10.1529/biophysj.106.099606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellamy TC, Wood J, Goodwin DA, Garthwaite J. Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci U S A. 2000;97(6):2928–33. https://doi.org/10.1073/pnas.97.6.2928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, et al. Coordination of rho GTPase activities during cell protrusion. Nature. 2009;461(7260):99–103. https://doi.org/10.1038/nature08242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, et al. Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem. 2002;277(50):48472–8. https://doi.org/10.1074/jbc.M209130200.
Article
CAS
PubMed
Google Scholar
Eroglu E, Gottschalk B, Charoensin S, Blass S, Bischof H, Rost R, et al. Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat Commun. 2016;7(1):10623. https://doi.org/10.1038/ncomms10623.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L. Direct multiplex imaging and optogenetics of rho GTPases enabled by near-infrared FRET. Nat Chem Biol. 2018;14(6):591–600. https://doi.org/10.1038/s41589-018-0044-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marston DJ, Vilela M, Huh J, Ren J, Azoitei ML, Glekas G, et al. Multiplexed GTPase and GEF biosensor imaging enables network connectivity analysis. Nat Chem Biol. 2020;16(8):826–33. https://doi.org/10.1038/s41589-020-0542-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Y, Rabodzey A, Dewey CF Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol. 2007;293(2):H1023–30. https://doi.org/10.1152/ajpheart.00162.2007.
Article
CAS
PubMed
Google Scholar
Fels J, Jeggle P, Kusche-Vihrog K, Oberleithner H. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium. PLoS One. 2012;7(7):e41520. https://doi.org/10.1371/journal.pone.0041520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuckerbraun BS, Stoyanovsky DA, Sengupta R, Shapiro RA, Ozanich BA, Rao J, et al. Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA. Am J Physiol Cell Physiol. 2007;292(2):C824–31. https://doi.org/10.1152/ajpcell.00592.2005.
Article
CAS
PubMed
Google Scholar
Rafikov R, Dimitropoulou C, Aggarwal S, Kangath A, Gross C, Pardo D, et al. Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA. J Biol Chem. 2014;289(8):4710–22. https://doi.org/10.1074/jbc.M114.547596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui MR, Komarova YA, Vogel SM, Gao X, Bonini MG, Rajasingh J, et al. Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability. J Cell Biol. 2011;193(5):841–50. https://doi.org/10.1083/jcb.201012129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gladwin MT, Kim-Shapiro DB. Vascular biology: nitric oxide caught in traffic. Nature. 2012;491(7424):344–5. https://doi.org/10.1038/nature11640.
Article
CAS
PubMed
Google Scholar
Goligorsky MS, Abedi H, Noiri E, Takhtajan A, Lense S, Romanov V, et al. Nitric oxide modulation of focal adhesions in endothelial cells. Am J Phys. 1999;276(6 Pt 1):C1271–81. https://doi.org/10.1152/ajpcell.1999.276.6.C1271.
Article
CAS
Google Scholar
Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389–99. https://doi.org/10.1016/0092-8674(92)90163-7.
Article
CAS
PubMed
Google Scholar
Changede R, Cai H, Wind SJ, Sheetz MP. Integrin nanoclusters can bridge thin matrix fibres to form cell-matrix adhesions. Nat Mater. 2019;18(12):1366–75. https://doi.org/10.1038/s41563-019-0460-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell. 2019;177(7):1738–56.e23.
Article
CAS
Google Scholar
Yang B, Wolfenson H, Chung VY, Nakazawa N, Liu S, Hu J, et al. Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. 2020;19(2):239–50. https://doi.org/10.1038/s41563-019-0507-0.
Article
CAS
PubMed
Google Scholar
Shemesh T, Verkhovsky AB, Svitkina TM, Bershadsky AD, Kozlov MM. Role of focal adhesions and mechanical stresses in the formation and progression of the lamellipodium-lamellum interface [corrected]. Biophys J. 2009;97(5):1254–64. https://doi.org/10.1016/j.bpj.2009.05.065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorodeski GI. NO increases permeability of cultured human cervical epithelia by cGMP-mediated increase in G-actin. Am J Physiol Cell Physiol. 2000;278(5):C942–52. https://doi.org/10.1152/ajpcell.2000.278.5.C942.
Article
CAS
PubMed
Google Scholar
Lu J, Katano T, Okuda-Ashitaka E, Oishi Y, Urade Y, Ito S. Involvement of S-nitrosylation of actin in inhibition of neurotransmitter release by nitric oxide. Mol Pain. 2009;5:58. https://doi.org/10.1186/1744-8069-5-58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clancy R, Leszczynska J, Amin A, Levartovsky D, Abramson SB. Nitric oxide stimulates ADP ribosylation of actin in association with the inhibition of actin polymerization in human neutrophils. J Leukoc Biol. 1995;58(2):196–202. https://doi.org/10.1002/jlb.58.2.196.
Article
CAS
PubMed
Google Scholar
Wolfenson H, Henis YI, Geiger B, Bershadsky AD. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil Cytoskeleton. 2009;66(11):1017–29. https://doi.org/10.1002/cm.20410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo A, Nordsletten D, Umeton R, Yankama B, Ayyadurai S, Garcia-Cardena G, et al. In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology. Biophys J. 2013;104(10):2295–306. https://doi.org/10.1016/j.bpj.2013.03.052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girard PR, Nerem RM. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol. 1995;163(1):179–93. https://doi.org/10.1002/jcp.1041630121.
Article
CAS
PubMed
Google Scholar
Wojciak-Stothard B, Ridley AJ. Shear stress-induced endothelial cell polarization is mediated by rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol. 2003;161(2):429–39. https://doi.org/10.1083/jcb.200210135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phua DC, Humbert PO, Hunziker W. Vimentin regulates scribble activity by protecting it from proteasomal degradation. Mol Biol Cell. 2009;20(12):2841–55. https://doi.org/10.1091/mbc.e08-02-0199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrell JE, Tsai TY-C, Yang Q. Modeling the cell cycle: why do certain circuits oscillate? Cell. 2011;144(6):874–85. https://doi.org/10.1016/j.cell.2011.03.006.
Article
CAS
PubMed
Google Scholar
Gérard C, Gonze D, Goldbeter A. Revisiting a skeleton model for the mammalian cell cycle: from bistability to Cdk oscillations and cellular heterogeneity. J Theor Biol. 2019;461:276–90. https://doi.org/10.1016/j.jtbi.2018.10.042.
Article
CAS
PubMed
Google Scholar
Dhooge A, Govaerts W, Kuznetsov YA. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw. 2003;29(2):141–64. https://doi.org/10.1145/779359.779362.
Article
Google Scholar