Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126 (4): 663-676.
Article
CAS
PubMed
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131 (5): 861-872.
Article
CAS
PubMed
Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318 (5858): 1917-1920.
Article
CAS
PubMed
Google Scholar
Abujarour R, Ding S: Induced pluripotent stem cells free of exogenous reprogramming factors. Genome Biol. 2009, 10 (5): 220-
Article
PubMed Central
PubMed
Google Scholar
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA: Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009, 324 (5928): 797-801.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009, 458 (7239): 771-775.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L, Rodriguez Piza I, Izpisua Belmonte JC: Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A. 2009, 106 (22): 8918-8922.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008, 322 (5903): 949-953.
Article
CAS
PubMed
Google Scholar
Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009, 4 (6): 472-476.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009, 4 (5): 381-384.
Article
CAS
PubMed
Google Scholar
Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010, 7 (5): 618-630.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S: A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008, 2 (6): 525-528.
Article
CAS
PubMed
Google Scholar
Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB: Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells. 2010, 28 (4): 713-720.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maherali N, Hochedlinger K: Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol. 2009, 19 (20): 1718-1723.
Article
PubMed Central
CAS
PubMed
Google Scholar
Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. 2010, 6 (1): 71-79.
Article
CAS
PubMed
Google Scholar
Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y: Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A. 2009, 106 (3): 808-813.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A. 2008, 105 (15): 5856-5861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007, 318 (5858): 1920-1923.
Article
CAS
PubMed
Google Scholar
Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009, 460 (7251): 53-59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC: Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells. 2008, 26 (1): 55-63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim DS, Kim JY, Kang M, Cho MS, Kim DW: Derivation of functional dopamine neurons from embryonic stem cells. Cell Transplant. 2007, 16 (2): 117-123.
PubMed
Google Scholar
Lamba DA, Gust J, Reh TA: Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009, 4 (1): 73-79.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sharp J, Keirstead HS: Stem cell-based cell replacement strategies for the central nervous system. Neurosci Lett. 2009, 456 (3): 107-111.
Article
CAS
PubMed
Google Scholar
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005, 25 (19): 4694-4705.
Article
CAS
PubMed
Google Scholar
Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW: Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010, 121 (9): 1113-1123.
Article
PubMed
Google Scholar
Wu R, Gu B, Zhao X, Tan Z, Chen L, Zhu J, Zhang M: Derivation of multipotent nestin(+)/CD271 (-)/STRO-1 (-) mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions. Hum Cell. 2011, ePub
Google Scholar
Barberi T, Willis LM, Socci ND, Studer L: Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005, 2 (6): e161-
Article
PubMed Central
PubMed
Google Scholar
Villa-Diaz LG, Brown SE, Liu Y, Ross AM, Lahann J, Parent JM, Krebsbach PH: Derivation of Mesenchymal Stem Cells from Human Induced Pluripotent Stem Cells Cultured on Synthetic Substrates. Stem Cells. 2012, 30 (6): 1174-1181.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bilousova G, du Jun H, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM: Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells. 2011, 29 (2): 206-216.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jukes JM, Both SK, Leusink A, Sterk LM, van Blitterswijk CA, de Boer J: Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci U S A. 2008, 105 (19): 6840-6845.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li F, Bronson S, Niyibizi C: Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. J Cell Biochem. 2010, 109 (4): 643-652.
Article
CAS
PubMed
Google Scholar
Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L: Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med. 2007, 13 (5): 642-648.
Article
CAS
PubMed
Google Scholar
Boyde A, Jones SJ: Bone modelling in the implantation bed. J Biomed Mater Res. 1985, 19 (3): 199-224.
Article
CAS
PubMed
Google Scholar
Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S: Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006, 38 (11): 1310-1315.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jung Y, Bauer G, Nolta JA: Induced Pluripotent Stem Cell - Derived Mesenchymal Stem Cells: Progress Toward Safe Clinical Products. Stem Cells. 2011, 30 (1): 42-47.
Article
Google Scholar
zur Nieden NI, Price FD, Davis LA, Everitt RE, Rancourt DE: Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol Endocrinol. 2007, 21 (3): 674-685.
Article
CAS
PubMed
Google Scholar
Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004, 10 (1): 55-63.
Article
CAS
PubMed
Google Scholar
Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T: Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells. 2007, 25 (4): 950-960.
Article
CAS
PubMed
Google Scholar
Mrugala D, Dossat N, Ringe J, Delorme B, Coffy A, Bony C, Charbord P, Haupl T, Daures JP, Noel D: Gene expression profile of multipotent mesenchymal stromal cells: Identification of pathways common to TGFbeta3/BMP2-induced chondrogenesis. Cloning Stem Cells. 2009, 11 (1): 61-76.
Article
CAS
PubMed
Google Scholar
Reddi AH: Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998, 16 (3): 247-252.
Article
CAS
PubMed
Google Scholar
Huang HY, Hu LL, Song TJ, Li X, He Q, Sun X, Li YM, Lu HJ, Yang PY, Tang QQ: nvolvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4. Mol Cell Proteomics. 2011, 10 (1): M110 002691-
Article
PubMed Central
PubMed
Google Scholar
Huang H, Song TJ, Li X, Hu L, He Q, Liu M, Lane MD, Tang QQ: BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A. 2009, 106 (31): 12670-12675.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang QQ, Otto TC, Lane MD: Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A. 2004, 101 (26): 9607-9611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Butterwith SC, Wilkie RS, Clinton M: Treatment of pluripotential C3H 10 T1/2 fibroblasts with bone morphogenetic protein-4 induces adipocyte commitment. Biochem Soc Trans. 1996, 24 (2): 163S-
Article
CAS
PubMed
Google Scholar
Wang EA, Israel DI, Kelly S, Luxenberg DP: Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3 T3 cells. Growth Factors. 1993, 9 (1): 57-71.
Article
CAS
PubMed
Google Scholar
Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G: Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993, 12 (10): 871-880.
CAS
PubMed
Google Scholar
Date T, Doiguchi Y, Nobuta M, Shindo H: Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci. 2004, 9 (5): 503-508.
Article
CAS
PubMed
Google Scholar
Watabe T, Miyazono K: Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19 (1): 103-115.
Article
CAS
PubMed
Google Scholar
Kimelman D: Mesoderm induction: from caps to chips. Nat Rev Genet. 2006, 7 (5): 360-372.
Article
CAS
PubMed
Google Scholar
Taipaleenmaki H, Harkness L, Chen L, Larsen KH, Saamanen AM, Kassem M, Abdallah BM: The Cross-talk Between TGF-beta1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification. Stem Cells. 2011, 30 (2): 304-313.
Article
Google Scholar
Duplomb L, Dagouassat M, Jourdon P, Heymann D: Differentiation of osteoblasts from mouse embryonic stem cells without generation of embryoid body. In Vitro Cell Dev Biol Anim. 2007, 43 (1): 21-24.
Article
CAS
PubMed
Google Scholar
Wang X, Li F, Niyibizi C: Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem Cells. 2006, 24 (8): 1869-1878.
Article
CAS
PubMed
Google Scholar
Li F, Wang X, Niyibizi C: Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells. 2007, 25 (12): 3183-3193.
Article
CAS
PubMed
Google Scholar
Li F, Wang X, Niyibizi C: Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone. 2010, 47 (3): 546-555.
Article
PubMed Central
PubMed
Google Scholar
Phillips CL, Bradley DA, Schlotzhauer CL, Bergfeld M, Libreros-Minotta C, Gawenis LR, Morris JS, Clarke LL, Hillman LS: Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density. Bone. 2000, 27 (2): 219-226.
Article
CAS
PubMed
Google Scholar