Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudo G. Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev. 2000;32(1):72–85.
Article
CAS
PubMed
Google Scholar
Belluardo N, Mudo G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, Amato G, Haefliger JA, Meda P, Condorelli DF. Expression of connexin36 in the adult and developing rat brain. Brain Res. 2000;865(1):121–38.
Article
CAS
PubMed
Google Scholar
Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci U S A. 2000;97(13):7573–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett MV, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron. 2004;41(4):495–511.
Article
CAS
PubMed
Google Scholar
Connors BW, Long MA. Electrical synapses in the mammalian brain. Annu Rev Neurosci. 2004;27:393–418.
Article
CAS
PubMed
Google Scholar
O’Brien J. The ever-changing electrical synapse. Curr Opin Neurobiol. 2014;29:64–72.
Article
PubMed
Google Scholar
Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta. 2013;1828(1):134–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris RG, Moser EI, Riedel G, Martin SJ, Sandin J, Day M, O'Carroll C. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond B Biol Sci. 2003;358(1432):773–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hebb D. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley; 1949.
Bloomfield SA, Volgyi B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci. 2009;10(7):495–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasater EM, Dowling JE. Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci U S A. 1985;82(9):3025–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76(1):33–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185–215.
Article
CAS
PubMed
Google Scholar
Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci. 2014;15(4):250–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang XD, Korn H, Faber DS. Long-term potentiation of electrotonic coupling at mixed synapses. Nature. 1990;348(6301):542–5.
Article
CAS
PubMed
Google Scholar
Furshpan EJ. “Electrical transmission” at an excitatory synapse in a vertebrate brain. Science. 1964;144(3620):878–80.
Article
CAS
PubMed
Google Scholar
Lin JW, Faber DS. Synaptic transmission mediated by single club endings on the goldfish mauthner cell. I. Characteristics of electrotonic and chemical postsynaptic potentials. J Neurosci. 1988;8(4):1302–12.
CAS
PubMed
Google Scholar
Tuttle R, Masuko S, Nakajima Y. Freeze-fracture study of the large myelinated club ending synapse on the goldfish mauthner cell: special reference to the quantitative analysis of gap junctions. J Comp Neurol. 1986;246(2):202–11.
Article
CAS
PubMed
Google Scholar
Rash JE, Curti S, Vanderpool KG, Kamasawa N, Nannapaneni S, Palacios-Prado N, Flores CE, Yasumura T, O'Brien J, Lynn BD, et al. Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron. 2013;79(5):957–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereda AE, Faber DS. Activity-dependent short-term enhancement of intercellular coupling. J Neurosci. 1996;16(3):983–92.
CAS
PubMed
Google Scholar
Smith M, Pereda AE. Chemical synaptic activity modulates nearby electrical synapses. Proc Natl Acad Sci U S A. 2003;100(8):4849–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereda AE, Bell TD, Chang BH, Czernik AJ, Nairn AC, Soderling TR, Faber DS. Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. Proc Natl Acad Sci U S A. 1998;95(22):13272–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rash JE, Pereda A, Kamasawa N, Furman CS, Yasumura T, Davidson KG, Dudek FE, Olson C, Li X, Nagy JI. High-resolution proteomic mapping in the vertebrate central nervous system: close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO–1). J Neurocytol. 2004;33(1):131–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cachope R, Mackie K, Triller A, O’Brien J, Pereda AE. Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids. Neuron. 2007;56(6):1034–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cachope R, Pereda AE. Opioids potentiate electrical synaptic transmission at mixed synapses on the mauthner cell. J Neurophysiol. 2015;114(1):689–97. doi:10.1152/jn.00165.2015.
Article
PubMed
Google Scholar
Casagrand JL, Guzik AL, Eaton RC. Mauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli. J Neurophysiol. 1999;82(3):1422–37.
CAS
PubMed
Google Scholar
Mirjany M, Faber DS. Characteristics of the anterior lateral line nerve input to the mauthner cell. J Exp Biol. 2011;214(Pt 20):3368–77.
Article
PubMed
Google Scholar
Pereda AE, Bell TD, Faber DS. Retrograde synaptic communication via gap junctions coupling auditory afferents to the mauthner cell. J Neurosci. 1995;15(9):5943–55.
CAS
PubMed
Google Scholar
Curti S, Pereda AE. Voltage-dependent enhancement of electrical coupling by a subthreshold sodium current. J Neurosci. 2004;24(16):3999–4010.
Article
CAS
PubMed
Google Scholar
Yang XD, Faber DS. Initial synaptic efficacy influences induction and expression of long-term changes in transmission. Proc Natl Acad Sci U S A. 1991;88(10):4299–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribelayga C, Wang Y, Mangel SC. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. J Physiol. 2002;544(Pt 3):801–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribelayga C, Cao Y, Mangel SC. The circadian clock in the retina controls rod-cone coupling. Neuron. 2008;59(5):790–801.
Article
CAS
PubMed
Google Scholar
Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O’Brien J. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci. 2013;33(7):3135–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMahon DG, Knapp AG, Dowling JE. Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. Proc Natl Acad Sci U S A. 1989;86(19):7639–43.
Article
CAS
PubMed
Google Scholar
Bloomfield SA, Volgyi B. Function and plasticity of homologous coupling between AII amacrine cells. Vision Res. 2004;44(28):3297–306.
Article
CAS
PubMed
Google Scholar
W. Kothmann, E.B. Trexler, C.M. Whitaker, W. Li, S.C. Massey, J.O. O'Brien, Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network, J. Neurosci. 32 (2012) 6747–6759.
Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci. 2002;22(24):10898–905.
CAS
PubMed
PubMed Central
Google Scholar
Llinas R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986;376:163–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chorev E, Yarom Y, Lampl I. Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J Neurosci. 2007;27(19):5043–52.
Article
CAS
PubMed
Google Scholar
Devor A, Yarom Y. Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. J Neurophysiol. 2002;87(6):3048–58.
PubMed
Google Scholar
Mann-Metzer P, Yarom Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci. 1999;19(9):3298–306.
CAS
PubMed
Google Scholar
De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21(9):391–400.
Article
PubMed
Google Scholar
Llinas R. Eighteenth Bowditch lecture. Motor aspects of cerebellar control. Physiologist. 1974;17(1):19–46.
CAS
PubMed
Google Scholar
Lefler Y, Yarom Y, Uusisaari MY. Cerebellar inhibitory input to the inferior olive decreases electrical coupling and blocks subthreshold oscillations. Neuron. 2014;81(6):1389–400.
Article
CAS
PubMed
Google Scholar
Turecek J, Yuen GS, Han VZ, Zeng XH, Bayer KU, Welsh JP. NMDA receptor activation strengthens weak electrical coupling in mammalian brain. Neuron. 2014;81(6):1375–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathy A, Clark BA, Hausser M. Synaptically induced long-term modulation of electrical coupling in the inferior olive. Neuron. 2014;81(6):1290–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malenka RC, Nicoll RA. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 1993;16(12):521–7.
Article
CAS
PubMed
Google Scholar
Hoge GJ, Davidson KG, Yasumura T, Castillo PE, Rash JE, Pereda AE. The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol. 2011;105(3):1089–101.
Article
PubMed
PubMed Central
Google Scholar
Tokuda IT, Hoang H, Schweighofer N, Kawato M. Adaptive coupling of inferior olive neurons in cerebellar learning. Neural Netw. 2013;47:42–50.
Article
PubMed
Google Scholar
Ohara PT, Lieberman AR. The thalamic reticular nucleus of the adult rat: experimental anatomical studies. J Neurocytol. 1985;14(3):365–411.
Article
CAS
PubMed
Google Scholar
Pinault D, Deschenes M. Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol. 1998;391(2):180–203.
Article
CAS
PubMed
Google Scholar
Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A. 1984;81(14):4586–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
McAlonan K, Cavanaugh J, Wurtz RH. Attentional modulation of thalamic reticular neurons. J Neurosci. 2006;26(16):4444–50.
Article
CAS
PubMed
Google Scholar
Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. Electrical synapses in the thalamic reticular nucleus. J Neurosci. 2002;22(3):1002–9.
CAS
PubMed
Google Scholar
Long MA, Landisman CE, Connors BW. Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J Neurosci. 2004;24(2):341–9.
Article
CAS
PubMed
Google Scholar
Landisman CE, Connors BW. Long-term modulation of electrical synapses in the mammalian thalamus. Science. 2005;310(5755):1809–13.
Article
CAS
PubMed
Google Scholar
Wang Z, Neely R, Landisman CE. Activation of group I and group II metabotropic glutamate receptors causes LTD and LTP of electrical synapses in the Rat thalamic reticular nucleus. J Neurosci. 2015;35(19):7616–25.
Article
CAS
PubMed
Google Scholar
Haas JS, Zavala B, Landisman CE. Activity-dependent long-term depression of electrical synapses. Science. 2011;334(6054):389–93.
Article
CAS
PubMed
Google Scholar
von Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science. 1993;261(5119):361–4.
Article
Google Scholar
Deschenes M, Paradis M, Roy JP, Steriade M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol. 1984;51(6):1196–219.
CAS
PubMed
Google Scholar
Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci. 2005;28(6):317–24.
Article
CAS
PubMed
Google Scholar
Inoue M, Duysens J, Vossen JM, Coenen AM. Thalamic multiple-unit activity underlying spike-wave discharges in anesthetized rats. Brain Res. 1993;612(1–2):35–40.
Article
CAS
PubMed
Google Scholar
Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol. 1987;57(1):260–73.
CAS
PubMed
Google Scholar
Sevetson J, Haas JS. Asymmetry and modulation of spike timing in electrically coupled neurons. J Neurophysiol. 2015;113(6):1743–51. doi:10.1152/jn.00843.2014.
Article
PubMed
Google Scholar
Modney BK, Yang QZ, Hatton GI. Activation of excitatory amino acid inputs to supraoptic neurons. II. Increased dye-coupling in maternally behaving virgin rats. Brain Res. 1990;513(2):270–3.
Article
CAS
PubMed
Google Scholar
Hatton GI, Yang QZ. Activation of excitatory amino acid inputs to supraoptic neurons. I. Induced increases in dye-coupling in lactating, but not virgin or male rats. Brain Res. 1990;513(2):264–9.
Article
CAS
PubMed
Google Scholar
Blakely RD, Ory-Lavollee L, Grzanna R, Koller KJ, Coyle JT. Selective immunocytochemical staining of mitral cells in rat olfactory bulb with affinity purified antibodies against N-acetyl-aspartyl-glutamate. Brain Res. 1987;402(2):373–8.
Article
CAS
PubMed
Google Scholar
Ffrench-Mullen JM, Koller K, Zaczek R, Coyle JT, Hori N, Carpenter DO. N-acetylaspartylglutamate: possible role as the neurotransmitter of the lateral olfactory tract. Proc Natl Acad Sci U S A. 1985;82(11):3897–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colwell CS. Rhythmic coupling among cells in the suprachiasmatic nucleus. J Neurobiol. 2000;43(4):379–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol. 2013;110(5):1097–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang MH, Chen N, Wang JH. The coupling features of electrical synapses modulate neuronal synchrony in hypothalamic superachiasmatic nucleus. Brain Res. 2014;1550:9–17.
Article
CAS
PubMed
Google Scholar
Kothmann WW, Trexler EB, Whitaker CM, Li W, Massey SC, O’Brien J. Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci. 2012;32(20):6747–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio ME, Nagy JI. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience. 2015;303:604–29.
Article
CAS
PubMed
Google Scholar
Belousov AB, Fontes JD. Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci. 2013;36(4):227–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herve JC, Derangeon M, Sarrouilhe D, Giepmans BN, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. Biochim Biophys Acta. 2012;1818(8):1844–65.
Article
CAS
PubMed
Google Scholar
Alev C, Urschel S, Sonntag S, Zoidl G, Fort AG, Hoher T, Matsubara M, Willecke K, Spray DC, Dermietzel R. The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc Natl Acad Sci U S A. 2008;105(52):20964–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO–1) and the transcription factor ZO–1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci. 2005;22(2):404–18.
Article
PubMed
Google Scholar
Ciolofan C, Li XB, Olson C, Kamasawa N, Gebhardt BR, Yasumura T, Morita M, Rash JE, Nagy JI. Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience. 2006;140(2):433–51.
Article
CAS
PubMed
PubMed Central
Google Scholar