Verver DE, Hwang GH, Jordan PW, Hamer G. Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6. Chromosoma. 2016;125:15–27. https://doi.org/10.1007/s00412-015-0518-9.
Article
CAS
PubMed
Google Scholar
Murray JM, Carr AM. Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol. 2008;9:177–82. https://doi.org/10.1038/nrm2309.
Article
CAS
PubMed
Google Scholar
Uhlmann F. The mechanism of sister chromatid cohesion. Exp Cell Res. 2004;296:80–5. https://doi.org/10.1016/j.yexcr.2004.03.005.
Article
CAS
PubMed
Google Scholar
Hirano T. Condensin-based chromosome organization from bacteria to vertebrates. Cell. 2016;164:847–57. https://doi.org/10.1016/j.cell.2016.01.033.
Article
CAS
PubMed
Google Scholar
Gómez R, Jordan PW, Viera A, Alsheimer M, Fukuda T, Jessberger R, et al. Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J Cell Sci. 2013;126(Pt 18):4239–52. https://doi.org/10.1242/jcs.130195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang G, Verver DE, Handel MA, Hamer G, Jordan PW. Depletion of SMC5/6 sensitizes male germ cells to DNA damage. Mol Biol Cell. 2018;:mbcE18070459. https://doi.org/10.1091/mbc.E18-07-0459.
Gallego-Paez LM, Tanaka H, Bando M, Takahashi M, Nozaki N, Nakato R, et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell. 2014;25:302–17. https://doi.org/10.1091/mbc.E13-01-0020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang G, Sun F, O’Brien M, Eppig JJ, Handel MA, Jordan PW. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development. 2017;144:1648–60. https://doi.org/10.1242/dev.145607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aragón L. The Smc5/6 complex: new and old functions of the enigmatic long-distance relative. Annu Rev Genet. 2018;52:89–107. https://doi.org/10.1146/annurev-genet-120417-031353.
Article
CAS
PubMed
Google Scholar
Copsey A, Tang S, Jordan PW, Blitzblau HG, Newcombe S, Chan AC-H, et al. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet. 2013;9:e1004071. https://doi.org/10.1371/journal.pgen.1004071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu N, Kong X, Ji Z, Zeng W, Potts PR, Yokomori K, et al. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev. 2012;26:1473–85. https://doi.org/10.1101/gad.193615.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR. The Smc5-Smc6 DNA repair complex. Bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem. 2006;281:36952–9. https://doi.org/10.1074/jbc.M608004200.
Article
CAS
PubMed
Google Scholar
Palecek JJ, Gruber S. Kite proteins: a superfamily of smc/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure. 2015;23:2183–90. https://doi.org/10.1016/j.str.2015.10.004.
Article
CAS
PubMed
Google Scholar
Pebernard S, Perry JJP, Tainer JA, Boddy MN. Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol Biol Cell. 2008;19:4099–109. https://doi.org/10.1091/mbc.E08-02-0226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U, Renatus M, et al. Crystal structure of the human COP9 signalosome. Nature. 2014;512:161–5. https://doi.org/10.1038/nature13566.
Article
CAS
PubMed
Google Scholar
Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature. 2016;531:598–603. https://doi.org/10.1038/nature17416.
Article
CAS
PubMed
Google Scholar
Chung D, Dellaire G. The role of the COP9 signalosome and neddylation in DNA damage signaling and repair. Biomolecules. 2015;5:2388–416. https://doi.org/10.3390/biom5042388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20. https://doi.org/10.1038/nrm1547.
Article
CAS
PubMed
Google Scholar
Meir M, Galanty Y, Kashani L, Blank M, Khosravi R, Fernández-Ávila MJ, et al. The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Res. 2015;43:4517–30. https://doi.org/10.1093/nar/gkv270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Füzesi-Levi MG, Ben-Nissan G, Bianchi E, Zhou H, Deery MJ, Lilley KS, et al. Dynamic regulation of the COP9 signalosome in response to DNA damage. Mol Cell Biol. 2014;34:1066–76. https://doi.org/10.1128/MCB.01598-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mundt KE, Liu C, Carr AM. Deletion mutants in COP9/signalosome subunits in fission yeast Schizosaccharomyces pombe display distinct phenotypes. Mol Biol Cell. 2002;13:493–502. https://doi.org/10.1091/mbc.01-10-0521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubois EL, Gerber S, Kisselev A, Harel-Bellan A, Groisman R. UV-dependent phosphorylation of COP9/signalosome in UV-induced apoptosis. Oncol Rep. 2016;35:3101–5. https://doi.org/10.3892/or.2016.4671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell. 2011;147:1024–39. https://doi.org/10.1016/j.cell.2011.10.035.
Article
CAS
PubMed
Google Scholar
Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67. https://doi.org/10.1016/s0092-8674(03)00316-7.
Article
CAS
PubMed
Google Scholar
Jang S-M, Redon CE, Aladjem MI. Chromatin-bound Cullin-ring ligases: regulatory roles in DNA replication and potential targeting for Cancer therapy. Front Mol Biosci. 2018;5:19. https://doi.org/10.3389/fmolb.2018.00019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J-M, Jin J. CRL ubiquitin ligases and DNA damage response. Front Oncol. 2012;2:29. https://doi.org/10.3389/fonc.2012.00029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dohmann EMN, Levesque MP, De Veylder L, Reichardt I, Jürgens G, Schmid M, et al. The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. Development. 2008;135:2013–22. https://doi.org/10.1242/dev.020743.
Article
CAS
PubMed
Google Scholar
Kim E, Yoon S-J, Kim E-Y, Kim Y, Lee H-S, Kim K-H, et al. Function of COP9 signalosome in regulation of mouse oocytes meiosis by regulating MPF activity and securing degradation. PLoS One. 2011;6:e25870. https://doi.org/10.1371/journal.pone.0025870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brockway H, Balukoff N, Dean M, Alleva B, Smolikove S. The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of Caenorhabditis elegans. PLoS Genet. 2014;10:e1004757. https://doi.org/10.1371/journal.pgen.1004757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin L, Chen L, Tran PT. Fission yeast neddylation ligase Dcn1 facilitates cohesin cleavage and chromosome segregation at anaphase. Biol Open. 2017;6:844–9. https://doi.org/10.1242/bio.021238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung D, Salsman J, Dellaire G. Inhibition of neddylation induces mitotic defects and alters MKLP1 accumulation at the midbody during cytokinesis. Cell Cycle. 2019;18:1135–53. https://doi.org/10.1080/15384101.2019.1612696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993;7:555–69. https://doi.org/10.1101/gad.7.4.555.
Article
CAS
PubMed
Google Scholar
Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY, Bogdanoff D, et al. Mapping the genetic landscape of human cells. Cell. 2018;174:953–67.e22. https://doi.org/10.1016/j.cell.2018.06.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan CJ, Roguev A, Patrick K, Xu J, Jahari H, Tong Z, et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol Cell. 2012;46:691–704. https://doi.org/10.1016/j.molcel.2012.05.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon SJ, Fedyshyn Y, Koh JLY, Prasad TSK, Chahwan C, Chua G, et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A. 2008;105:16653–8. https://doi.org/10.1073/pnas.0806261105.
Article
PubMed
PubMed Central
Google Scholar
Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016;353. https://doi.org/10.1126/science.aaf1420.
Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R, Chen Y, et al. Systematic analysis of complex genetic interactions. Science. 2018;360. https://doi.org/10.1126/science.aao1729.
Lu H, Shamanna RA, de Freitas JK, Okur M, Khadka P, Kulikowicz T, et al. Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun. 2017;8:2039. https://doi.org/10.1038/s41467-017-02146-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The bioplex network: a systematic exploration of the human interactome. Cell. 2015;162:425–40. https://doi.org/10.1016/j.cell.2015.06.043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–9. https://doi.org/10.1038/nature22366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan Z-Q, et al. A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res. 2008;7:1274–87. https://doi.org/10.1021/pr700749v.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122:957–68. https://doi.org/10.1016/j.cell.2005.08.029.
Article
CAS
PubMed
Google Scholar
Wang Y, Devereux W, Stewart TM, Casero RA. Polyamine-modulated factor 1 binds to the human homologue of the 7a subunit of the Arabidopsis COP9 signalosome: implications in gene expression. Biochem J. 2002;366(Pt 1):79–86. https://doi.org/10.1042/BJ20020211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016;16:2846–54. https://doi.org/10.1016/j.celrep.2016.08.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–9. https://doi.org/10.1038/nature17170.
Article
CAS
PubMed
Google Scholar
Pryzhkova MV, Jordan PW. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J Cell Sci. 2016;129:1619–34. https://doi.org/10.1242/jcs.179036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chun Y, Lee M, Park B, Lee S. CSN5/JAB1 interacts with the centromeric components CENP-T and CENP-W and regulates their proteasome-mediated degradation. J Biol Chem. 2013;288:27208–19. https://doi.org/10.1074/jbc.M113.469221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Guo L-Q, Menon S, Jin D, Pick E, Wang X, et al. COP9 signalosome subunit Csn8 is involved in maintaining proper duration of the G1 phase. J Biol Chem. 2013;288:20443–52. https://doi.org/10.1074/jbc.M113.468959.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rona G, Roberti D, Yin Y, Pagan JK, Homer H, Sassani E, et al. PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. Elife. 2018;7. https://doi.org/10.7554/eLife.38771.