Horb ME, Thomsen GH. A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development. 1997;124(9):1689–98.
CAS
PubMed
Google Scholar
Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, et al. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development. 1999;126(24):5759–70.
CAS
PubMed
Google Scholar
Xanthos JB, Kofron M, Wylie C, Heasman J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development. 2001;128(2):167–80.
CAS
PubMed
Google Scholar
Heasman J. Patterning the early Xenopus embryo. Development. 2006;133(7):1205–17.
Article
CAS
PubMed
Google Scholar
Hemmati-Brivanlou A, Melton DA. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell. 1994;77(2):273–81.
Article
CAS
PubMed
Google Scholar
Reich S, Weinstein DC. Repression of inappropriate gene expression in the vertebrate embryonic ectoderm. Genes. 2019;10(11):895.
Article
CAS
PubMed Central
Google Scholar
Bates TJD, Vonica A, Heasman J, Brivanlou AH, Bell E. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. Development. 2013;140(20):4177–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bell E, Muñoz-Sanjuán I, Altmann CR, Vonica A, Brivanlou AH. Cell fate specification and competence by coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development. 2003;130(7):1381–9.
Article
CAS
PubMed
Google Scholar
Suri C, Haremaki T, Weinstein DC. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm. Development. 2005;132(12):2733–42..
Article
CAS
PubMed
Google Scholar
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn. 2018;247(7):903–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Showell C, Binder O, Conlon FL. T-box genes in early embryogenesis. Dev Dyn. 2004;229(1):201–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kispert A, Ortner H, Cooke J, Herrmann BG. The Chick Brachyury gene: developmental expression pattern and response to axial induction by localized Activin. Dev Biol. 1995 Apr 1;168(2):406–15.
Article
CAS
PubMed
Google Scholar
Gluecksohn-Schoenheimer S. The development of two tailless mutants in the house mouse. Genetics. 1938;23(6):573–84.
CAS
PubMed
PubMed Central
Google Scholar
Christoffels VM, Hoogaars WMH, Tessari A, Clout DEW, Moorman AFM, Campione M. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229(4):763–70.
Article
CAS
PubMed
Google Scholar
Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z, Rodriguez-Niedenführ M, et al. Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev Dyn. 2007;236(2):353–63.
Article
CAS
PubMed
Google Scholar
Lüdtke TH-W, Farin HF, Rudat C, Schuster-Gossler K, Petry M, Barnett P, et al. Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes Cdkn1a and Cdkn1b. PLoS Genet. 2013;9(1):e1003189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lüdtke TH-W, Christoffels VM, Petry M, Kispert A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology. 2009;49(3):969–78.
Article
PubMed
CAS
Google Scholar
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer. Development. 2014;141(20):3819–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson V, Conlon FL. The T-box family. Genome Biol. 2002;3(6):reviews3008.1–7.
Article
Google Scholar
Conlon FL, Fairclough L, Price BM, Casey ES, Smith JC. Determinants of T box protein specificity. Development. 2001;128(19):3749–58.
CAS
PubMed
Google Scholar
Plageman TF, Yutzey KE. T-box genes and heart development: putting the “T” in heart. Dev Dyn. 2005;232(1):11–20.
Article
CAS
PubMed
Google Scholar
Zaragoza MV, Lewis LE, Sun G, Wang E, Li L, Said-Salman I, et al. Identification of the TBX5 transactivating domain and the nuclear localization signal. Gene. 2004 Apr 14;330:9–18.
Article
CAS
PubMed
Google Scholar
Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 1990;343(6259):617–22.
Article
CAS
PubMed
Google Scholar
Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by bmp-4. Nature. 1995;376(6538):331–3.
Article
CAS
PubMed
Google Scholar
Baker CV, Bronner-Fraser M. Vertebrate cranial placodes I, Embryonic induction. Dev Biol. 2001;232(1):1–61.
Article
CAS
PubMed
Google Scholar
Mancilla A, Mayor R. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev Biol. 1996;177(2):580–9.
Article
CAS
PubMed
Google Scholar
Weinstein DC, Hemmati-Brivanlou A. Neural induction in Xenopus laevis: evidence for the default model. Curr Opin Neurobiol. 1997;7(1):7–12.
Article
CAS
PubMed
Google Scholar
Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem. 1997;272(44):27678–85.
Article
CAS
PubMed
Google Scholar
Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370(6488):341–7.
Article
CAS
PubMed
Google Scholar
Smith JC, Price BMJ, Green JBA, Weigel D, Herrmann BG. Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991;67(1):79–87.
Article
CAS
PubMed
Google Scholar
Cho KW, Blumberg B, Steinbeisser H, De Robertis EM. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991;67(6):1111–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christian JL, McMahon JA, McMahon AP, Moon RT. Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development. 1991;111(4):1045–55.
CAS
PubMed
Google Scholar
Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 1994;79(5):779–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996;383(6603):832–6.
Article
CAS
PubMed
Google Scholar
Macías-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996;87(7):1215–24.
Article
PubMed
Google Scholar
Simeoni I, Gurdon JB. Interpretation of BMP signaling in early Xenopus development. Dev Biol. 2007;308(1):82–92.
Article
CAS
PubMed
Google Scholar
Singh R, Horsthuis T, Farin HF, Grieskamp T, Norden J, Petry M, et al. Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal. Circ Res. 2009;105(5):442–52.
Article
CAS
PubMed
Google Scholar
Sinha S, Abraham S, Gronostajski RM, Campbell CE. Differential DNA binding and transcription modulation by three T-box proteins, T, TBX1 and TBX2. Gene. 2000;258(1–2):15–29.
Article
CAS
PubMed
Google Scholar
Casellas R, Brivanlou AH. Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev Biol. 1998;198(1):1–12.
Article
CAS
PubMed
Google Scholar
Xu S, Cheng F, Liang J, Wu W, Zhang J. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus. PLoS Biol. 2012;10(3):e1001286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Messenger NJ, Kabitschke C, Andrews R, Grimmer D, Núñez Miguel R, Blundell TL, et al. Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. Dev Cell. 2005;8(4):599–610.
Article
CAS
PubMed
Google Scholar
Picozzi P, Wang F, Cronk K, Ryan K. Eomesodermin requires transforming growth factor-beta/activin signaling and binds Smad2 to activate mesodermal genes. J Biol Chem. 2009;284(4):2397–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gentsch GE, Owens NDL, Martin SR, Piccinelli P, Faial T, Trotter MWB, et al. In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep. 2013 Sep 26;4(6):1185–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pei D. Regulation of pluripotency and reprogramming by transcription factors. J Biol Chem. 2009 Feb 6;284(6):3365–9.
Article
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663–76.
Article
CAS
PubMed
Google Scholar
Cho G-S, Choi S-C, Park EC, Han J-K. Role of Tbx2 in defining the territory of the pronephric nephron. Development. 2011 Feb;138(3):465–74.
Article
CAS
PubMed
Google Scholar
Carlson H, Ota S, Campbell CE, Hurlin PJ. A dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar-mammary syndrome. Hum Mol Genet. 2001;10(21):2403–13.
Article
CAS
PubMed
Google Scholar
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6(6):1365–75.
Article
CAS
PubMed
Google Scholar
Sridharan J, Haremaki T, Jin Y, Teegala S, Weinstein DC. Xmab21l3 mediates dorsoventral patterning in Xenopus laevis. Mech Dev. 2012;129(5–8):136–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Weinstein DC. Pitx1 regulates cement gland development in Xenopus laevis through activation of transcriptional targets and inhibition of BMP signaling. Dev Biol. 2018;437(1):41–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev. 1997;63(1):39–50.
Article
CAS
PubMed
Google Scholar
Miyazaki A, Ishii K, Yamashita S, Nejigane S, Matsukawa S, Ito Y, et al. mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells. PLoS One. 2012;7(10):e46630.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hama J, Suri C, Haremaki T, Weinstein DC. The molecular basis of Src kinase specificity during vertebrate mesoderm formation. J Biol Chem. 2002;277(22):19806–10.
Article
CAS
PubMed
Google Scholar