Gray MW, Gopalan V. Piece by piece: building a ribozyme. J Biol Chem. 2020;295:2313–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lilley DMJ. Classification of the nucleolytic ribozymes based upon catalytic mechanism. F1000Research. 2019;8:1462.
Article
CAS
Google Scholar
Jimenez RM, Polanco JA, Lupták A. Chemistry and biology of self-cleaving ribozymes. Trends Biochem Sci. 2015;40:648–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webb C-HT, Riccitelli NJ, Ruminski DJ, Lupták A. Widespread occurrence of self-cleaving ribozymes. Science. 2009;326:953.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Peña M, García-Robles I. Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA. 2010;16:1943–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jimenez RM, Delwart E, Lupták A. Structure-based search reveals hammerhead ribozymes in the human microbiome. J Biol Chem. 2011;286:7737–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G, et al. Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol. 2011;7:e1002031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salehi-Ashtiani K. A Genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science. 2006;313:1788–92.
Article
CAS
PubMed
Google Scholar
de la Peña M, García-Robles I. Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep. 2010;11:711–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roth A, Weinberg Z, Chen AGY, Kim PB, Ames TD, Breaker RR. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. 2014;10:56–60.
Article
CAS
PubMed
Google Scholar
Park SV, Yang J-S, Jo H, Kang B, Oh SS, Jung GY. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv. 2019;37:107452.
Article
CAS
PubMed
Google Scholar
Felletti M, Hartig JS. Ligand-dependent ribozymes: Ligand-dependent ribozymes. Wiley Interdiscip Rev. 2017;8:e1395.
Article
CAS
Google Scholar
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004;428:281–6.
Article
CAS
PubMed
Google Scholar
Famulok M, Hartig JS, Mayer G. Functional Aptamers and Aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007;107:3715–43.
Article
CAS
PubMed
Google Scholar
Chen X, Ellington AD. Design principles for ligand-sensing, Conformation-Switching Ribozymes. PLoS Comput Biol. 2009;5:e1000620.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res. 2019;47:9480–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris KA, Breaker RR. Large noncoding RNAs in Bacteria. Microbiol Spectrum. 2018;6:4. https://doi.org/10.1128/microbiolspec.RWR-0005-2017.
Article
Google Scholar
Yen L. Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. RNA. 2006;12:797–806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita S, Koguma T, Ohkawa J, Mori K, Kohda T, Kise H, et al. Discrimination of a single base change in a ribozyme using the gene for dihydrofolate reductase as a selective marker in Escherichia coli. Proc Natl Acad Sci. 1997;94:391–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wieland M, Hartig JS. Improved Aptazyme design and in vivo screening enable Riboswitching in Bacteria. Angew Chem Int Ed. 2008;47:2604–7.
Article
CAS
Google Scholar
Wurmthaler LA, Klauser B, Hartig JS. Highly motif- and organism-dependent effects of naturally occurring hammerhead ribozyme sequences on gene expression. RNA Biol. 2018;15:231–41.
Article
PubMed
Google Scholar
Meaux S, Van Hoof A. Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(a) tail in translation and mRNA decay. RNA. 2006;12:1323–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins JA, Irnov I, Baker S, Winkler WC. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 2007;21:3356–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larimer FW, Stevens A. Disruption of the gene XRN1, coding for a 5′→3′ exoribonuclease, restricts yeast cell growth. Gene. 1990;95:85–90.
Article
CAS
PubMed
Google Scholar
Figaro S, Durand S, Gilet L, Cayet N, Sachse M, Condon C. Bacillus subtilis mutants with knockouts of the genes encoding Ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol. 2013;195:2340–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui MP, Foley PL, Belasco JG. Messenger RNA degradation in bacterial cells. Annu Rev Genet. 2014;48:537–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
SnapGene Viewer | Free software for plasmid mapping, primer design, and restriction site analysis. SnapGene. https://www.snapgene.com/snapgene-viewer/. Accessed 9 Feb 2021.
Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci. Microb Cell Factories. 2013;12:60.
Article
CAS
Google Scholar
Glick BR. Metabolic load and heterologous gene expression. Biotechnol Adv. 1995;13:247–61.
Article
CAS
PubMed
Google Scholar
Even S, Pellegrini O, Zig L, Labas V, Vinh J, Bréchemmier-Baey D, et al. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res. 2005;33:2141–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahn M, Vorpahl C, Hübschmann T, Harms H, Müller S. Copy number variability of expression plasmids determined by cell sorting and droplet digital PCR. Microb Cell Factories. 2016;15:211.
Article
CAS
Google Scholar
Jahn M, Günther S, Müller S. Non-random distribution of macromolecules as driving forces for phenotypic variation. Curr Opin Microbiol. 2015;25:49–55.
Article
CAS
PubMed
Google Scholar
Summers DK. The kinetics of plasmid loss. Trends Biotechnol. 1991;9:273–8.
Article
CAS
PubMed
Google Scholar
Yang H, Qin J, Wang X, HM EI-S, Yu B. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli. Microbiol Res. 2020;238:126484.
Article
CAS
PubMed
Google Scholar
Gao Y, Liu C, Ding Y, Sun C, Zhang R, Xian M, et al. Development of genetically stable Escherichia coli strains for poly(3-Hydroxypropionate) production. PLoS One. 2014;9:e97845.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hausjell J, Kutscha R, Gesson JD, Reinisch D, Spadiut O. The Effects of Lactose Induction on a Plasmid-Free E. coli T7 Expression System. Bioengineering. 2020;7:8.
Article
CAS
PubMed Central
Google Scholar
Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol. 1998;64:2240–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. In: Marintchev A, editor. Advances in Protein Chemistry and Structural Biology: Academic Press; 2012. p. 151–91. https://doi.org/10.1016/B978-0-12-386497-0.00005-0.
Trachman RJ, Ferré-D’Amaré AR. Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers. Q Rev Biophys. 2019;52:e8. https://doi.org/10.1017/S0033583519000064.
Article
PubMed
PubMed Central
Google Scholar
Filonov GS, Kam CW, Song W, Jaffrey SR. In-gel imaging of RNA processing using broccoli reveals optimal aptamer expression strategies. Chem Biol. 2015;22:649–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Álvarez-Añorve LI, Gaugué I, Link H, Marcos-Viquez J, Díaz-Jiménez DM, Zonszein S, et al. Allosteric activation of Escherichia coli Glucosamine-6-phosphate Deaminase (NagB) In Vivo justified by intracellular amino sugar metabolite concentrations. J Bacteriol. 2016;198:1610–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol. 2011;18:359–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prommana P, Uthaipibull C, Wongsombat C, Kamchonwongpaisan S, Yuthavong Y, Knuepfer E, et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS One. 2013;8:e73783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooks KM, Hampel KJ. Rapid steps in the glmS ribozyme catalytic pathway: Cation and ligand requirements. Biochemistry. 2011;50:2424–33.
Article
CAS
PubMed
Google Scholar
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019;365:48–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambrook J, Fritsch E, Maniatis T. Molecular cloning: A laboratory manual, vol. 2. 2nd ed: Cold Spring Harbor; 1989.
Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177:4121–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173:33–8.
Article
CAS
PubMed
Google Scholar
Neklesa TK, Tae HS, Schneekloth AR, Stulberg MJ, Corson TW, Sundberg TB, et al. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nat Chem Biol. 2011;7:538–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braks JAM, Franke-Fayard B, Kroeze H, Janse CJ, Waters AP. Development and application of T3a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Res. 2006;34:e39.
Guan L, Liu Q, Li C, Zhang Y. Development of a fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol. 2013;13:25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Stancek M, Isaksson LA. The efficiency of a cis-cleaving ribozyme in an mRNA coding region is influenced by the translating ribosome in vivo. Nucleic Acids Res. 1997;25:4301–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G. Autolytic processing of dimeric plant virus satellite RNA. Science. 1986;231:1577–80.
Article
CAS
PubMed
Google Scholar
Buzayan JM, Gerlach WL, Bruening G. Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature. 1986;323:349–53.
Article
CAS
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97:6640–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. https://www.R-project.org/
Google Scholar
Kahm M, Hasenbrink G, Lichtenberg-Fraté H, Ludwig J, Kschischo M. grofit: Fitting Biological Growth Curves with R. J Stat Softw. 2010;33. https://doi.org/10.18637/jss.v033.i07.
Connelly B. briandconnelly/growthcurve. R. 2018. https://github.com/briandconnelly/growthcurve. Accessed 9 Feb 2021.
Google Scholar