WHO Coronavirus (COVID-19) Dashboard with vaccination data. WHO; 2021. https://covid19.who.int.
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–24. https://doi.org/10.1038/s41579-021-00573-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budinger GS, Misharin AV, Ridge KM, Singer BD, Wunderink RG. Distinctive features of severe SARS-CoV-2 pneumonia. J Clin Investig. 2021;131(14):e149412. https://doi.org/10.1172/JCI149412.
Article
CAS
Google Scholar
Port JR, Yinda CK, Owusu IO, Holbrook M, Fischer R, Bushmaker T, et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat Commun. 2021;12(1):1–15. https://doi.org/10.1038/s41467-021-25156-8.
Article
CAS
Google Scholar
Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. https://doi.org/10.1038/s41586-020-2008-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68. https://doi.org/10.1038/s41586-020-2286-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82. https://doi.org/10.1038/s41577-020-00480-0.
Article
CAS
PubMed
Google Scholar
Raghuvamsi PV, Tulsian NK, Samsudin F, Qian X, Purushotorman K, Yue G, et al. SARS-CoV-2 S protein: ACE2 interaction reveals novel allosteric targets. Elife. 2021;10:e63646. https://doi.org/10.7554/eLife.63646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–92 e286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci. 2020;117(21):11727–34. https://doi.org/10.1073/pnas.2003138117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Pöhlmann S. How SARS-CoV-2 makes the cut. Nat Microbiol. 2021;6(7):828–9. https://doi.org/10.1038/s41564-021-00931-x.
Article
CAS
PubMed
Google Scholar
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2021;23(1):1–18. https://doi.org/10.1038/s41580-021-00418-x.
Article
CAS
Google Scholar
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–20. https://doi.org/10.1038/s41586-020-2180-5.
Article
CAS
PubMed
Google Scholar
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894–904 e899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3. https://doi.org/10.1126/science.abb2507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588(7838):498–502. https://doi.org/10.1038/s41586-020-2665-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan X, Cao D, Kong L, Zhang X: Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat Commun 2020, 11(1):1–10, 3618, https://doi.org/10.1038/s41467-020-17371-6.
Turoňová B, Sikora M, Schürmann C, Hagen WJ, Welsch S, Blanc FE, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370(6513):203–8. https://doi.org/10.1126/science.abd5223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu M, Gao J. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci. 2020;117(25):13967–74. https://doi.org/10.1073/pnas.2008209117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali A, Vijayan R. Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Sci Rep. 2020;10:14214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM, Kranz DM, et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science. 2020;369(6508):1261–5. https://doi.org/10.1126/science.abc0870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray D, Le L, Andricioaei I. Distant residues modulate conformational opening in SARS-CoV-2 spike protein. BioRxiv. 2021;2020(2012):2007.415596.
Google Scholar
Simmonds P. Rampant C→ U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short-and long-term evolutionary trajectories. Msphere. 2020;5(3):e00408–20. https://doi.org/10.1128/mSphere.00408-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilar S, Isom DG. One year of SARS-CoV-2: how much has the virus changed? Biology. 2021;10(2):91. https://doi.org/10.3390/biology10020091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ. 2020;98(7):495–504. https://doi.org/10.2471/BLT.20.253591.
Article
PubMed
PubMed Central
Google Scholar
Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J, et al. SARS-CoV-2 variant B. 1.1. 7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe. 2021;29(4):529–39 e523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Davis BD, Chen SS, Martinez JMS, Plummer JT, Vail E. Emergence of a novel SARS-CoV-2 variant in Southern California. Jama. 2021;325(13):1324–6. https://doi.org/10.1001/jama.2021.1612.
Article
PubMed
PubMed Central
Google Scholar
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438–43. https://doi.org/10.1038/s41586-021-03402-9.
Article
CAS
PubMed
Google Scholar
Dejnirattisai W, Zhou D, Supasa P, Liu C, Mentzer AJ, Ginn HM, et al. Antibody evasion by the P. 1 strain of SARS-CoV-2. Cell. 2021;184(11):2939–54 e2939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms. 2021;9(7):1542. https://doi.org/10.3390/microorganisms9071542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhar MS, Marwal R, Radhakrishnan V, Ponnusamy K, Jolly B, Bhoyar RC, et al. Genomic characterization and Epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. medRxiv. 2021.
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812–27 e819.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021;592(7852):116–21. https://doi.org/10.1038/s41586-020-2895-3.
Article
CAS
PubMed
Google Scholar
Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell. 2021;184(1):64–75 e11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, Rangarajan ES, Pan A, Vanderheiden A, Suthar MS: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 2020, 11(1):1–9, 6013, https://doi.org/10.1038/s41467-020-19808-4.
Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science. 2021;372(6541):525–30. https://doi.org/10.1126/science.abf2303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021;184(5):1171–87 e1120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife. 2021;10:e69091. https://doi.org/10.7554/eLife.69091.
Article
PubMed
PubMed Central
Google Scholar
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 spike RBD and its ligand the human ACE2 receptor on binding affinity and kinetics. Elife. 2021;10:e70658. https://doi.org/10.7554/eLife.70658.
Article
PubMed
PubMed Central
Google Scholar
Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, et al. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proc Natl Acad Sci. 2021;118(36). https://doi.org/10.1073/pnas.2103154118.
Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, et al. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell host & microbe. 2021;29(1):44–57 e49.
Article
CAS
Google Scholar
Ghorbani M, Brooks BR, Klauda JB. Critical sequence hotspots for binding of novel coronavirus to angiotensin converter enzyme as evaluated by molecular simulations. J Phys Chem B. 2020;124(45):10034–47. https://doi.org/10.1021/acs.jpcb.0c05994.
Article
CAS
PubMed
Google Scholar
Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020;182(5):1284–94 e1289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KH, Dingens AS, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5):1295–310 e1220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashoor D, Khalaf NB, Marzouq M, Jarjanazi H, Chelif S, Fathallah MD. A computational approach to evaluate the combined effect of SARS-CoV-2 RBD mutations and ACE2 receptor genetic variants on infectivity: The COVID-19 host-pathogen nexus. bioRxiv. 2021;2020:2010–23 352344.
Google Scholar
Gobeil S, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity. bioRxiv. 2021;373(6555):eabi6226.
CAS
Google Scholar
Schrörs B, Riesgo-Ferreiro P, Sorn P, Gudimella R, Bukur T, Rösler T, et al. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS ONE. 2021;16(9):e0249254. https://doi.org/10.1371/journal.pone.0249254.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Cortés GI, Palacios-Pérez M, Zamudio GS, Veledíaz HF, Ortega E, José MV. Neutral evolution test of the spike protein of SARS-CoV-2 and its implications in the binding to ACE2. Sci Rep. 2021;11(1):18847.
Article
PubMed
PubMed Central
Google Scholar
Marquioni VM, de Aguiar MA. Modeling neutral viral mutations in the spread of SARS-CoV-2 epidemics. PLoS ONE. 2021;16(7):e0255438. https://doi.org/10.1371/journal.pone.0255438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 2020;92(6):595–601. https://doi.org/10.1002/jmv.25726.
Article
CAS
PubMed
Google Scholar
Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J Mol Biol. 2020;432(10):3309–25. https://doi.org/10.1016/j.jmb.2020.04.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Chen D, Szabla R, Zheng M, Li G, Du P, et al. Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2. J Virol. 2020;94(18):e00940–20. https://doi.org/10.1128/JVI.00940-20.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Zhang Y, Qu Y, Zhang C, Liu X-W, Zhao M, et al. Key residues of the receptor binding domain in the spike protein of SARS-CoV-2 mediating the interactions with ACE2: a molecular dynamics study. Nanoscale. 2021;13(20):9364–70. https://doi.org/10.1039/D1NR01672E.
Article
CAS
PubMed
Google Scholar
Wan Y, Graham R, Baric R, Li F. An analysis based on decade-long structural studies of SARS 3, JVI accepted manuscript posted online 29 January 2020. J Virol. 2020;94(7):e00127–0. https://doi.org/10.1128/JVI.00127-20.
Article
PubMed
PubMed Central
Google Scholar
Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021;371(6531):850–4. https://doi.org/10.1126/science.abf9302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laffeber C, de Koning K, Kanaar R, Lebbink JH. Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol. 2021;433(15):167058. https://doi.org/10.1016/j.jmb.2021.167058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J Virol. 2008;82(14):6984–91. https://doi.org/10.1128/JVI.00442-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu K, Peng G, Wilken M, Geraghty RJ, Li F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem. 2012;287(12):8904–11. https://doi.org/10.1074/jbc.M111.325803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boni MF, Lemey P, Jiang X, Lam TT-Y, Perry BW, Castoe TA, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5(11):1408–17. https://doi.org/10.1038/s41564-020-0771-4.
Article
CAS
PubMed
Google Scholar
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562–9. https://doi.org/10.1038/s41564-020-0688-y.
Article
CAS
PubMed
Google Scholar
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci. 2020;117(36):22311–22. https://doi.org/10.1073/pnas.2010146117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Hu G, Wang Y, Ren W, Zhao X, Ji F, et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci. 2021;118(12). https://doi.org/10.1073/pnas.2025373118.
Zhang H-L, Li Y-M, Sun J, Zhang Y-Y, Wang T-Y, Sun M-X, et al. Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species. J Biol Chem. 2021;296:100435. https://doi.org/10.1016/j.jbc.2021.100435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wells HL, Letko M, Lasso G, Ssebide B, Nziza J, Byarugaba DK, et al. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evol. 2021;7(1):veab007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F. Structure, function, and evolution of coronavirus spike proteins. Ann Rev Virol. 2016;3(1):237–61. https://doi.org/10.1146/annurev-virology-110615-042301.
Article
CAS
Google Scholar
Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 2020;17(6):621–30. https://doi.org/10.1038/s41423-020-0458-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Ki K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. https://doi.org/10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. https://doi.org/10.1093/bioinformatics/btp033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography. 2002;40(1):82–92.
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–5. https://doi.org/10.1093/nar/gkg520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins Struct Funct Bioinforma. 2002;47(3):393–402. https://doi.org/10.1002/prot.10104.
Article
CAS
Google Scholar
Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics. 2014;30(12):1771–3. https://doi.org/10.1093/bioinformatics/btu097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. 2016;32(23):3676–8. https://doi.org/10.1093/bioinformatics/btw514.
Article
CAS
PubMed
Google Scholar
Tina K, Bhadra R, Srinivasan N. PIC: protein interactions calculator. Nucleic Acids Res. 2007;35:W473–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127–34. https://doi.org/10.1093/protein/8.2.127.
Article
CAS
Google Scholar
Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al. ACM/IEEE conference on supercomputing. IEEE. 2006:43–3.