Mazzarello P. A unifying concept: the history of cell theory. NAT CELL BIOL. 1999;1(1):E13–5.
Article
CAS
PubMed
Google Scholar
Hu P, Zhang W, Xin H, Deng G. Single Cell Isolation and Analysis. Frontiers in cell and developmental biology. 2016;4:116.
Article
PubMed
PubMed Central
Google Scholar
He X, Memczak S, Qu J, Belmonte JCI, Liu G. Single-cell omics in ageing: a young and growing field. Nat Metab. 2020;2(4):293–302.
Article
PubMed
Google Scholar
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. NAT METHODS. 2009;6(5):377–82.
Article
CAS
PubMed
Google Scholar
Grün D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell. 2015;163(4):799–810.
Article
PubMed
CAS
Google Scholar
Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K. Experimental Considerations for Single-Cell RNA Sequencing Approaches. Front Cell Dev Biol. 2018;6:108.
Article
PubMed
PubMed Central
Google Scholar
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell. 2019;177(7):1915–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boxberger JI, Sen S, Yerramalli CS, Elliott DM. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J ORTHOP RES. 2006;24(9):1906–15.
Article
CAS
PubMed
Google Scholar
Inoue N, Espinoza OA. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):487–99.
Article
PubMed
PubMed Central
Google Scholar
Gan Y, He J, Zhu J, Xu Z, Wang Z, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9(1):37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, et al. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep-Uk. 2020;10(1):15263.
Article
CAS
Google Scholar
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. In: International Journal of Molecular Sciences., vol. 22; 2021.
Zhang Y, Han S, Kong M, Tu Q, Zhang L, et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthr Cartilage. 2021;29(9):1324–34.
Article
CAS
Google Scholar
Tu J, Li W, Yang S, Yang P, Yan Q, et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. bioRxiv. 2021:2021–2025.
Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood. 2004;104(9):2728–35.
Article
CAS
PubMed
Google Scholar
Prideaux M, Schutz C, Wijenayaka AR, Findlay DM, Campbell DG, Solomon LB, et al. Isolation of osteocytes from human trabecular bone. Bone. 2016;88:64–72.
Article
CAS
PubMed
Google Scholar
Inoue N, Espinoza Orías AA. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):487.
Article
PubMed
PubMed Central
Google Scholar
Choi Y. Pathophysiology of degenerative disc disease. Asian spine journal. 2009;3(1):39–44.
Article
PubMed
PubMed Central
Google Scholar
Zhou Z, Gao M, Wei F, Liang J, Deng W, Dai X, et al. Shock absorbing function study on denucleated intervertebral disc with or without hydrogel injection through static and dynamic biomechanical tests in vitro. BIOMED RES INT. 2014;2014: 461724.
PubMed
PubMed Central
Google Scholar
Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976). 2004;29(23):2691–9.
Article
Google Scholar
Urban JPG, Roberts S, Ralphs JR. The Nucleus of the Intervertebral Disc from Development to Degeneration1. Am Zool. 2015;40(1):53–61.
Google Scholar
Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J CLIN INVEST. 1996;98(4):996–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, et al. Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop. 2012;2012: 970752.
Article
PubMed
PubMed Central
Google Scholar
Hemanta D, Jiang X, Feng Z, Chen Z, Cao Y. Etiology for Degenerative Disc Disease. Chin Med Sci J. 2016;31(3):185–91.
Article
PubMed
Google Scholar
Lee JT, Cheung KM, Leung VY. Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. J ORTHOP RES. 2015;33(12):1743–55.
Article
CAS
PubMed
Google Scholar
Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, et al. Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. CARTILAGE. 2020;11(2):169–80.
Article
CAS
PubMed
Google Scholar
Nam DC, Lee HJ, Lee CJ, Hwang S. Molecular Pathophysiology of Ossification of the Posterior Longitudinal Ligament (OPLL). BIOMOL THER. 2019;27(4):342–8.
Article
Google Scholar
Zhang Q, Zhou D, Wang H, Tan J. Heterotopic ossification of tendon and ligament. J CELL MOL MED. 2020;24(10):5428–37.
Article
PubMed
PubMed Central
Google Scholar
Choi BW, Song KJ, Chang H. Ossification of the posterior longitudinal ligament: a review of literature. Asian Spine J. 2011;5(4):267–76.
Article
PubMed
PubMed Central
Google Scholar
ONO K, OTA H, TADA K, HAMADA H, TAKAOKA K. Ossified Posterior Longitudinal Ligament: A Clinicopathologic Study. SPINE. 1977;2(2).
Hashizume Y. Pathological studies on the ossification of the posterior longitudinal ligament (opll). Acta Pathol Jpn. 1980;30(2):255–73.
CAS
PubMed
Google Scholar
Sophia FA, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. SPORTS HEALTH. 2009;1(6):461–8.
Article
Google Scholar
Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. LANCET. 2018;392(10159):1789–1858.
Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014;7(1):37–41.
CAS
PubMed
PubMed Central
Google Scholar
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019;393(10182):1745–59.
Article
CAS
Google Scholar
Scherer HU, Häupl T, Burmester GR. The etiology of rheumatoid arthritis. J AUTOIMMUN. 2020;110: 102400.
Article
CAS
PubMed
Google Scholar
McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. NEW ENGL J MED. 2011;365(23):2205–19.
Article
CAS
PubMed
Google Scholar
Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations. npj Regenerative Medicine. 2019;4(1):12.
Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. ANN RHEUM DIS. 2019;78(1):100–10.
Article
CAS
PubMed
Google Scholar
Grandi FC, Baskar R, Smeriglio P, Murkherjee S, Indelli PF, Amanatullah DF, et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. SCI ADV. 2020;6(11): y5352.
Article
CAS
Google Scholar
Li J, Luo H, Wang R, Lang J, Zhu S, Zhang Z, et al. Systematic Reconstruction of Molecular Cascades Regulating GP Development Using Single-Cell RNA-Seq. CELL REP. 2016;15(7):1467–80.
Article
CAS
PubMed
Google Scholar
Sunkara V, Heinz G, Heinrich F, Durek P, Mobasheri A, Mashreghi M, et al. Combining segmental bulk- and single-cell RNA-sequencing to define the chondrocyte gene expression signature in the murine knee joint. In.: bioRxiv; 2020.
Mizuhashi K, Nagata M, Matsushita Y, Ono W, Ono N. Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells. J BONE MINER RES. 2019;34(8):1387–92.
Article
CAS
PubMed
Google Scholar
Kelly NH, Huynh N, Guilak F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. MATRIX BIOL. 2020;89:1–10.
Article
CAS
PubMed
Google Scholar
Renner WA, Jordan M, Eppenberger HM, Leist C. Cell-cell adhesion and aggregation: Influence on the growth behavior of CHO cells. BIOTECHNOL BIOENG. 1993;41(2):188–93.
Article
CAS
PubMed
Google Scholar
Reichard A, Asosingh K. Best Practices for Preparing a Single Cell Suspension from Solid Tissues for Flow Cytometry. Cytometry A. 2019;95(2):219–26.
Article
CAS
PubMed
Google Scholar
Hanamsagar R, Reizis T, Chamberlain M, Marcus R, Nestle FO, de Rinaldis E, et al. An optimized workflow for single-cell transcriptomics and repertoire profiling of purified lymphocytes from clinical samples. SCI REP-UK. 2020;10(1):2219.
Article
CAS
Google Scholar
Ordoñez-Rueda D, Baying B, Pavlinic D, Alessandri L, Yeboah Y, Landry JJM, et al. Apoptotic Cell Exclusion and Bias-Free Single-Cell Selection Are Important Quality Control Requirements for Successful Single-Cell Sequencing Applications. CYTOM PART A. 2020;97(2):156–67.
Article
Google Scholar
Zeng W, Jiang S, Kong X, El-Ali N, Ball AJ, Ma CI, et al. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity. NUCLEIC ACIDS RES. 2016;44(21): e158.
PubMed
PubMed Central
Google Scholar
Liang Q, Dharmat R, Owen L, Shakoor A, Li Y, Kim S, et al. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling. NAT COMMUN. 2019;10(1):5743.
Article
CAS
PubMed
PubMed Central
Google Scholar