UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998, 352: 837-853.
Article
Google Scholar
Piconi L, Quagliaro L, Assaloni R, Da RR, Maier A, Zuodar G, Ceriello A: Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev. 2006, 22: 198-203. 10.1002/dmrr.613.
Article
CAS
PubMed
Google Scholar
Piconi L, Quagliaro L, Da RR, Assaloni R, Giugliano D, Esposito K, Szabo C, Ceriello A: Intermittent high glucose enhances ICAM-1, VICAM-1, E-selectin and interleukin-6 expression in human umbilical enclothelial cells in culture: the role of poly(ADP-ribose) polymerase. J Thromb Haemost. 2004, 2: 1453-1459. 10.1111/j.1538-7836.2004.00835.x.
Article
CAS
PubMed
Google Scholar
Quagliaro L, Piconi L, Assaloni R, Da RR, Maier A, Zuodar G, Ceriello A: Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis. 2005, 183: 259-267. 10.1016/j.atherosclerosis.2005.03.015.
Article
CAS
PubMed
Google Scholar
Pricci F, Leto G, Amadio L, Iacobini C, Cordone S, Catalano S, Zicari A, Sorcini M, Di MU, Pugliese G: Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med. 2003, 35: 683-694. 10.1016/S0891-5849(03)00401-5.
Article
CAS
PubMed
Google Scholar
Goeckeler ZM, Wysolmerski RB: Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 1995, 130: 613-627. 10.1083/jcb.130.3.613.
Article
CAS
PubMed
Google Scholar
Price CJ, Brindle NP: Vasodilator-stimulated phosphoprotein is involved in stress-fiber and membrane ruffle formation in endothelial cells. Arterioscler Thromb Vasc Biol. 2000, 20: 2051-2056. 10.1161/01.ATV.20.9.2051.
Article
CAS
PubMed
Google Scholar
Li CS, Purich DL, Chang KH, Afzal A, Nakagawa T, Busik JV, Agarwal A, Segal MS, Grant MB: Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein phosphorylation: evidence for blunted responsiveness in diabetes. Diabetes. 2008, 57: 2488-2494. 10.2337/db08-0381.
Article
Google Scholar
Liu SM, Sundqvist T: Involvement of nitric oxide in permeability alteration and F-actin redistribution induced by Phorbol myristate acetate in endothelial cells. Exp Cell Res. 1995, 221: 289-293. 10.1006/excr.1995.1377.
Article
CAS
PubMed
Google Scholar
Liu SM, Sundqvist T: Nitric oxide and cGMP regulate endothelial permeability and F-actin distribution in hydrogen peroxide-treated endothelial cells. Exp Cell Res. 1997, 235: 238-244. 10.1006/excr.1997.3675.
Article
CAS
PubMed
Google Scholar
Chen Y, McCarron RM, Bembry J, Ruetzler C, Azzam N, Lenz FA, Spatz M: Nitric oxide modulates endothelin 1-induced Ca2+ mobilization and cytoskeletal F-actin filaments in human cerebromicrovascular endothelial cells. J Cereb Blood Flow Metab. 1999, 19: 133-138.
Article
CAS
PubMed
Google Scholar
Yourek G, Hussain MA, Mao JJ: Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J. 2007, 53: 219-228. 10.1097/MAT.0b013e31802deb2d.
Article
PubMed Central
PubMed
Google Scholar
Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI: Atomic force microscopy probing of cell elasticity. Micron. 2007, 38: 824-833. 10.1016/j.micron.2007.06.011.
Article
CAS
PubMed
Google Scholar
Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T: Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy. 2000, 82: 253-258. 10.1016/S0304-3991(99)00157-6.
Article
CAS
PubMed
Google Scholar
Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M: Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci USA. 2007, 104: 16281-16286. 10.1073/pnas.0707791104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmuller C, Macgregor GA, de Wardener HE: Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA. 2009, 106: 2829-2834. 10.1073/pnas.0813069106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hillebrand U, Lang D, Telgmann RG, Hagedorn C, Reuter S, Kliche K, Stock CM, Oberleithner H, Pavenstadt H, Bussemaker E, Hausberg M: Nebivolol decreases endothelial cell stiffness via the estrogen receptor beta: a nano-imaging study. J Hypertens. 2009, 27: 517-526. 10.1097/HJH.0b013e32831fb389.
Article
CAS
PubMed
Google Scholar
Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K: Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J Biomech. 2000, 33: 127-135. 10.1016/S0021-9290(99)00178-5.
Article
CAS
PubMed
Google Scholar
Kataoka N, Iwaki K, Hashimoto K, Mochizuki S, Ogasawara Y, Sato M, Tsujioka K, Kajiya F: Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during Monocyte adhesion. Proc Natl Acad Sci USA. 2002, 99: 15638-15643. 10.1073/pnas.242590799.
Article
PubMed Central
CAS
PubMed
Google Scholar
Puech PH, Poole K, Knebel D, Muller DJ: A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy. 2006, 106: 637-644. 10.1016/j.ultramic.2005.08.003.
Article
CAS
PubMed
Google Scholar
Balint Z, Krizbai IA, Wilhelm I, Farkas AE, Parducz A, Szegletes Z, Varo G: Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study. Eur Biophys J. 2007, 36: 113-120. 10.1007/s00249-006-0112-4.
Article
CAS
PubMed
Google Scholar
Kang I, Panneerselvam D, Panoskaltsis VP, Eppell SJ, Marchant RE, Doerschuk CM: Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-alpha. Biophys J. 2008, 94: 3273-3285. 10.1529/biophysj.106.099333.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cuerrier CM, Gagner A, Lebel R, Gobeil F, Grandbois M: Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit. 2009, 22: 389-396. 10.1002/jmr.953.
Article
CAS
PubMed
Google Scholar
Sun J, Zhang XJ, Broderick M, Fein H: Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors. 2003, 3: 276-284. 10.3390/s30800276.
Article
CAS
Google Scholar
Chen XX, Feng L, Jin H, Feng SF, Yu Y: Quantification of the erythrocyte deformability using atomic force microscopy: correlation study of the erythrocyte deformability with atomic force microscopy and hemorheology. Clin Hemorheol Microcirc. 2009, 43: 243-251.
PubMed
Google Scholar
Calles-Escandon J, Cipolla M: Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev. 2001, 22: 36-52. 10.1210/er.22.1.36.
Article
CAS
PubMed
Google Scholar
Noyman I, Marikovsky M, Sasson S, Stark AH, Bernath K, Seger R, Madar Z: Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide. 2002, 7: 187-193. 10.1016/S1089-8603(02)00106-4.
Article
CAS
PubMed
Google Scholar
Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, Hedrick CC: Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia. 2004, 47: 1727-1734. 10.1007/s00125-004-1525-1.
Article
CAS
PubMed
Google Scholar
Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A: Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab. 2001, 281: E924-E930.
CAS
PubMed
Google Scholar
Hoshiyama M, Li B, Yao J, Harada T, Morioka T, Oite T: Effect of high glucose on nitric oxide production and endothelial nitric oxide synthase protein expression in human glomerular endothelial cells. Nephron Exp Nephrol. 2003, 95: E62-E68. 10.1159/000073673.
Article
CAS
PubMed
Google Scholar
De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM: Endothelial dysfunction in diabetes. Br J Pharmacol. 2000, 130: 963-974. 10.1038/sj.bjp.0703393.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chouinard JA, Grenier G, Khalil A, Vermette P: Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells. Exp Cell Res. 2008, 314: 3007-3016. 10.1016/j.yexcr.2008.07.020.
Article
CAS
PubMed
Google Scholar
Jungmann P, Wilhelmi M, Oberleithner H, Riethmuller C: Bradykinin does not induce gap formation between human endothelial cells. Pflugers Arch. 2008, 455: 1007-1016. 10.1007/s00424-007-0352-x.
Article
CAS
PubMed
Google Scholar
Searles CD, Ide L, Davis ME, Cai H, Weber M: Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res. 2004, 95: 488-495. 10.1161/01.RES.0000138953.21377.80.
Article
CAS
PubMed
Google Scholar
Hu T, Ramachandrarao SP, Siva S, Valancius C, Zhu Y, Mahadev K, Toh I, Goldstein BJ, Woolkalis M, Sharma K: Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol. 2005, 289: F816-F825. 10.1152/ajprenal.00024.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schaeffer G, Levak-Frank S, Spitaler MM, Fleischhacker E, Esenabhalu VE, Wagner AH, Hecker M, Graier WF: Intercellular signalling within vascular cells under high D-glucose involves free radical-triggered tyrosine kinase activation. Diabetologia. 2003, 46: 773-783. 10.1007/s00125-003-1091-y.
Article
CAS
PubMed
Google Scholar
Su Y, Edwards-Bennett S, Bubb MR, Block ER: Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol. 2003, 284: C1542-C1549.
Article
CAS
PubMed
Google Scholar