Bhaumik S, Gambhir SS: Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002, 99 (1): 377-382.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakajima Y, Yamazaki T, Nishii S, Noguchi T, Hoshino H, Niwa K, Viviani VR, Ohmiya Y: Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLoS One. 2010, 5 (4): e10011-
Article
PubMed Central
PubMed
CAS
Google Scholar
Shimomura O: The discovery of aequorin and green fluorescent protein. J Microsc. 2005, 217 (1): 1-15.
Article
CAS
PubMed
Google Scholar
Shimomura O: Discovery of green fluorescent protein. Methods Biochem Anal. 2006, 47: 1-13.
PubMed
Google Scholar
White DL, Kanwal F, El-Serag HB: Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012, 10 (12): 1342-1359.e2.
Article
PubMed Central
PubMed
Google Scholar
Oh JH, Sohn HY, Kim JM, Kim YS, Kim NS: Construction of multi-purpose vectors, pCNS and pCNS-D2, are suitable for collection and functional study of large-scale cDNAs. Plasmid. 2004, 51 (3): 217-226.
Article
CAS
PubMed
Google Scholar
Harada N, Fujimoto E, Okuyama M, Sakaue H, Nakaya Y: Identification and functional characterization of human glycerol-3-phosphate acyltransferase 1 gene promoters. Biochem Biophys Res Commun. 2012, 423 (1): 128-133.
Article
CAS
PubMed
Google Scholar
Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ: Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996, 273 (5280): 1392-1395.
Article
CAS
PubMed
Google Scholar
Heim R, Cubitt AB, Tsien RY: Improved green fluorescence. Nature. 1995, 373 (6516): 663-664.
Article
CAS
PubMed
Google Scholar
Wang Y, Shyy JY, Chien S: Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng. 2008, 10: 1-38.
Article
PubMed
CAS
Google Scholar
Tsien RY: The green fluorescent protein. Annu Rev Biochem. 1998, 67: 509-544.
Article
CAS
PubMed
Google Scholar
Delagrave S, Hawtin RE, Silva CM, Yang MM, Youvan DC: Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (N Y). 1995, 13 (2): 151-154.
Article
CAS
Google Scholar
Zacharias DA, Violin JD, Newton AC, Tsien RY: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002, 296 (5569): 913-916.
Article
CAS
PubMed
Google Scholar
Lippincott-Schwartz J, Roberts TH, Hirschberg K: Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol. 2000, 16: 557-589.
Article
CAS
PubMed
Google Scholar
Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J: Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J Cell Biol. 1998, 143 (6): 1485-1503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW: Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 1997, 73 (5): 2782-2790.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heim R, Prasher DC, Tsien RY: Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994, 91 (26): 12501-12504.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ehrig T, O'Kane DJ, Prendergast FG: Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 1995, 367 (2): 163-166.
Article
CAS
PubMed
Google Scholar
Cormack BP, Valdivia RH, Falkow S: FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996, 173 (1 Spec No): 33-38.
Article
CAS
PubMed
Google Scholar
Zapata-Hommer O, Griesbeck O: Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol. 2003, 3: 5-
Article
PubMed Central
PubMed
Google Scholar
Cubitt AB, Woollenweber LA, Heim R: Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol. 1999, 58: 19-30.
Article
CAS
PubMed
Google Scholar
Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS: Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2006, 24 (1): 79-88.
Article
PubMed
CAS
Google Scholar
Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE: Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry. 2007, 46 (20): 5904-5910.
Article
CAS
PubMed
Google Scholar
Mena MA, Treynor TP, Mayo SL, Daugherty PS: Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol. 2006, 24 (12): 1569-1571.
Article
CAS
PubMed
Google Scholar
Tomosugi W, Matsuda T, Tani T, Nemoto T, Kotera I, Saito K, Horikawa K, Nagai T: An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat Methods. 2009, 6 (5): 351-353.
Article
CAS
PubMed
Google Scholar
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY: Understanding, improving and using green fluorescent proteins. Trends Biochem Sci. 1995, 20 (11): 448-455.
Article
CAS
PubMed
Google Scholar
Rizzo MA, Springer GH, Granada B, Piston DW: An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol. 2004, 22 (4): 445-449.
Article
CAS
PubMed
Google Scholar
Miyawaki A, Griesbeck O, Heim R, Tsien RY: Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A. 1999, 96 (5): 2135-2140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY: Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications. J Biol Chem. 2001, 276 (31): 29188-29194.
Article
CAS
PubMed
Google Scholar
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002, 20 (1): 87-90.
Article
CAS
PubMed
Google Scholar
Rizzuto R, Brini M, De Giorgi F, Rossi R, Heim R, Tsien RY, Pozzan T: Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol. 1996, 6 (2): 183-188.
Article
CAS
PubMed
Google Scholar
Heim R, Tsien RY: Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996, 6 (2): 178-182.
Article
CAS
PubMed
Google Scholar
Ellenberg J, Lippincott-Schwartz J, Presley JF: Two-color green fluorescent protein time-lapse imaging. BioTechniques. 1998, 25 (5): 838-842. 844–6
CAS
PubMed
Google Scholar
Yang TT, Sinai P, Green G, Kitts PA, Chen YT, Lybarger L, Chervenak R, Patterson GH, Piston DW, Kain SR: Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem. 1998, 273 (14): 8212-8216.
Article
CAS
PubMed
Google Scholar
Shaner NC, Patterson GH, Davidson MW: Advances in fluorescent protein technology. J Cell Sci. 2007, 120: 4247-4260.
Article
CAS
PubMed
Google Scholar
Subach OM, Gundorov IS, Yoshimura M, Subach FV, Zhang J, Gruenwald D, Souslova EA, Chudakov DM, Verkhusha VV: Conversion of red fluorescent protein into a bright blue probe. Chem Biol. 2008, 15 (10): 1116-1124.
Article
PubMed Central
CAS
PubMed
Google Scholar
Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV: An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One. 2011, 6 (12): e28674-
Article
PubMed Central
CAS
PubMed
Google Scholar
Nguyen AW, Daugherty PS: Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol. 2005, 23 (3): 355-360.
Article
CAS
PubMed
Google Scholar
Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA: Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999, 17 (10): 969-973.
Article
CAS
PubMed
Google Scholar
Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY: A monomeric red fluorescent protein. Proc Natl Acad Sci U S A. 2002, 99 (12): 7877-7882.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu YL, Chien S: Dynamic motion of paxillin on actin filaments in living endothelial cells. Biochem Biophys Res Commun. 2007, 357 (4): 871-876.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shaner NC, Steinbach PA, Tsien RY: A guide to choosing fluorescent proteins. Nat Methods. 2005, 2 (12): 905-909.
Article
CAS
PubMed
Google Scholar
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004, 22 (12): 1567-1572.
Article
CAS
PubMed
Google Scholar
Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM: Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods. 2007, 4 (7): 555-557.
Article
CAS
PubMed
Google Scholar
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC: Green fluorescent protein as a marker for gene expression. Science. 1994, 263 (5148): 802-805.
Article
CAS
PubMed
Google Scholar
Inouye S, Tsuji FI: Aequorea green fluorescent protein: expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 1994, 341 (2–3): 277-280.
Article
CAS
PubMed
Google Scholar
Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H: Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc. 2002, 208 (Pt 2): 108-115.
Article
CAS
PubMed
Google Scholar
Joanny F, Held J, Mordmuller B: In vitro activity of fluorescent dyes against asexual blood stages of Plasmodium falciparum. Antimicrob Agents Chemother. 2012, 56 (11): 5982-5985.
Article
PubMed Central
CAS
PubMed
Google Scholar
Iwaki T, Torigoe C, Noji M, Nakanishi M: Antibodies for fluorescent molecular rotors. Biochemistry. 1993, 32 (29): 7589-7592.
Article
CAS
PubMed
Google Scholar
Irtegun S, Ramdzan YM, Mulhern TD, Hatters DM: ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells. J Vis Exp. 2011, 31 (54): 2-7.
Google Scholar
Griffin BA, Adams SR, Tsien RY: Specific covalent labeling of recombinant protein molecules inside live cells. Science. 1998, 281 (5374): 269-272.
Article
CAS
PubMed
Google Scholar
Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY: Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997, 388 (6645): 882-887.
Article
CAS
PubMed
Google Scholar
Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY: New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. 2002, 124 (21): 6063-6076.
Article
CAS
PubMed
Google Scholar
Szent-Gyorgyi C, Schmidt BF, Creeger Y, Fisher GW, Zakel KL, Adler S, Fitzpatrick JA, Woolford CA, Yan Q, Vasilev KV, Berget PB, Bruchez MP, Jarvik JW, Waggoner A: Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat Biotechnol. 2008, 26 (2): 235-240.
Article
CAS
PubMed
Google Scholar
Nygren J, Svanvik N, Kubista M: The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers. 1998, 46 (1): 39-51.
Article
CAS
PubMed
Google Scholar
Babendure JR, Adams SR, Tsien RY: Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc. 2003, 125 (48): 14716-14717.
Article
CAS
PubMed
Google Scholar
Holleran J, Brown D, Fuhrman MH, Adler SA, Fisher GW, Jarvik JW: Fluorogen-activating proteins as biosensors of cell-surface proteins in living cells. Cytometry A. 2010, 77 (8): 776-782.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lucifora J, Durantel D, Belloni L, Barraud L, Villet S, Vincent IE, Margeridon-Thermet S, Hantz O, Kay A, Levrero M, Zoulim F: Initiation of hepatitis B virus genome replication and production of infectious virus following delivery in HepG2 cells by novel recombinant baculovirus vector. J Gen Virol. 2008, 89 (Pt 8): 1819-1828.
Article
CAS
PubMed
Google Scholar
Kramer MG, Barajas M, Razquin N, Berraondo P, Rodrigo M, Wu C, Qian C, Fortes P, Prieto J: In vitro and in vivo comparative study of chimeric liver-specific promoters. Mol Ther. 2003, 7 (3): 375-385.
Article
CAS
PubMed
Google Scholar
Rotondaro L, Mele A, Rovera G: Efficiency of different viral promoters in directing gene expression in mammalian cells: effect of 3'-untranslated sequences. Gene. 1996, 168 (2): 195-198.
Article
CAS
PubMed
Google Scholar
Pelletier J, Sonenberg N: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988, 334 (6180): 320-325.
Article
CAS
PubMed
Google Scholar
Yang Y, Tan WJ: Progress on development and research of coronavirus based vector. Bing Du Xue Bao. 2012, 28 (3): 297-302.
CAS
PubMed
Google Scholar
Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988, 62 (8): 2636-2643.
PubMed Central
CAS
PubMed
Google Scholar
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982, 1 (7): 841-845.
PubMed Central
CAS
PubMed
Google Scholar
Gurdon JB: Gene expression in early animal development: the study of its control by the microinjection of amphibian eggs. Harvey Lect. 1973, 69: 49-69.
CAS
PubMed
Google Scholar
Kawasaki Y, Matsumoto S, Nagamine T: Analysis of baculovirus IE1 in living cells: dynamics and spatial relationships to viral structural proteins. J Gen Virol. 2004, 85 (Pt 12): 3575-3583.
Article
CAS
PubMed
Google Scholar
Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA: A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther. 2001, 8 (11): 846-854.
Article
CAS
PubMed
Google Scholar
Ge J, Tang X, Gao D, Song S, Lu S, Lou Z, Ping W: Construction of BV-T7 hybrid expression system based on baculovirus to express target gene eGFP in mammalian and chicken cells. Wei Sheng Wu Xue Bao. 2012, 52 (3): 318-325.
CAS
PubMed
Google Scholar
Lo WH, Chen CY, Yeh CN, Lin CY, Hu YC: Rapid baculovirus titration based on regulatable green fluorescent protein expression in mammalian cells. Enzyme Microb Technol. 2011, 48 (1): 13-18.
Article
CAS
PubMed
Google Scholar
Llosa M, Schröder G, Dehio C: New perspectives into bacterial DNA transfer to human cells. Trends Microbiol. 2012, 20 (8): 355-359.
Article
CAS
PubMed
Google Scholar
Akyüz MD, Balci Hayta B, Dınçer PR: An efficient method for stable transfection of mouse myogenic C2C12 cell line using a nonviral transfection approach. Turk J Med Sci. 2011, 41 (5): 821-825.
Google Scholar
Hahnenberger K, Chan S: Monitoring transfection efficiency by green fluorescent protein (GFP) detection with the Agilent 2100 bioanalyzer. Agilent Tecnologies. 2001, Publication Number 5988-4320EN. [http://www.chem.agilent.com/library/applications/59884320_025445.pdf]
Google Scholar
Legendre JY, Szoka FC: Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res. 1992, 9 (10): 1235-1242.
Article
CAS
PubMed
Google Scholar
Gopal V, Xavier J, Kamal MZ, Govindarajan S, Takafuji M, Soga S, Ueno T, Ihara H, Rao NM: Synthesis and transfection efficiency of cationic oligopeptide lipids: role of linker. Bioconjug Chem. 2011, 22 (11): 2244-2254.
Article
CAS
PubMed
Google Scholar
Mintzer MA, Simanek EE: Nonviral vectors for gene delivery. Chem Rev. 2009, 109 (2): 259-302.
Article
CAS
PubMed
Google Scholar
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH: Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007, 9 (3): 316-323.
Article
CAS
PubMed
Google Scholar
Oberbek A, Matasci M, Hacker DL, Wurm FM: Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng. 2011, 108 (3): 600-610.
Article
CAS
PubMed
Google Scholar
Wiznerowicz M, Trono D: Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol. 2003, 77 (16): 8957-8961.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F: Commentary: lysosomotropic agents. Biochem Pharmacol. 1974, 23 (18): 2495-2531.
Article
CAS
PubMed
Google Scholar
Luthman H, Magnusson G: High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res. 1983, 11 (5): 1295-1308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lucas P, Pouton CW, Moss SH: Influence of formulation factors on gene transfer mediated by cationic polypeptides. Proc Int Symp Control Rel Bioact Mater. 1995, 22: 468-469.
Google Scholar
Walsh SM, Flotte TR, Beck S, Allen S, Guggino WB, August T, Leong KW: Delivery of cftr gene to rabbit airways by gelatin-DNA microspheres. Proc Controlled Rel Soc. 1996, 23: 73-74.
Google Scholar
Levy MY, Meyer KB, Barron L, Szoka FC: Mechanism of gene uptake and expression in adult mouse skeletal muscle. Pharm Res. 1994, 11: 317-321.
Article
Google Scholar
Ciftci K, Levy RJ: Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int J Pharm. 2001, 218 (1–2): 81-92.
Article
CAS
PubMed
Google Scholar
Wildenthal K, Dees JH, Buja LM: Cardiac lysosomal derangements in mouse heart after long term exposure to non metabolizable sugars. Circ Res. 1977, 40: 26-35.
Article
CAS
PubMed
Google Scholar
Kato T, Okada S, Yutaka T, Yabuuchi H: The effects of sucrose loading on lysosomal hydrolases. Mol Cell Biochem. 1984, 60 (1): 83-98.
Article
CAS
PubMed
Google Scholar
Ose L, Ose T, Reinertsen R, Berg T: Fluid endocytosis in isolated rat parenchymal and non-parenchymal liver cells. Exp Cell Res. 1980, 126 (1): 109-119.
Article
CAS
PubMed
Google Scholar
Needham CJ, Williams AK, Chew SA, Kasper FK, Mikos AG: Engineering a polymeric gene delivery vector based on poly(ethylenimine) and hyaluronic acid. Biomacromolecules. 2012, 13 (5): 1429-1437.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dey D, Inayathullah M, Lee AS, LeMieux MC, Zhang X, Wu Y, Nag D, De Almeida PE, Han L, Rajadas J, Wu JC: Efficient gene delivery of primary human cells using peptide linked polyethylenimine polymer hybrid. Biomaterials. 2011, 32 (20): 4647-4658.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dai J, Zou S, Pei Y, Cheng D, Ai H, Shuai X: Polyethylenimine-grafted copolymer of poly(l-lysine) and poly(ethylene glycol) for gene delivery. Biomaterials. 2011, 32 (6): 1694-1705.
Article
CAS
PubMed
Google Scholar
Ahmed M, Narain R: Cell line dependent uptake and transfection efficiencies of PEI-anionic glycopolymer systems. Biomaterials. 2013, 34 (17): 4368-4376.
Article
CAS
PubMed
Google Scholar
Duan SY, Ge XM, Lu N, Wu F, Yuan W, Jin T: Synthetic polyspermine imidazole-4, 5-amide as an efficient and cytotoxicity-free gene delivery system. Int J Nanomed. 2012, 7: 3813-3822.
CAS
Google Scholar
Targett-Adams P, Chambers D, Gledhill S, Hope RG, Coy JF, Girod A, McLauchlan J: Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem. 2003, 278 (18): 15998-16007.
Article
CAS
PubMed
Google Scholar
Tolosa L, Donato MT, Perez-Cataldo G, Castell JV, Gomez-Lechon MJ: Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment. Toxicol In Vitro. 2012, 26 (8): 1272-1277.
Article
CAS
PubMed
Google Scholar
Tolosa L, Gomez-Lechon MJ, Perez-Cataldo G, Castell JV, Donato MT: HepG2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved. Arch Toxicol. 2013, 87 (6): 1115-1127.
Article
CAS
PubMed
Google Scholar
Wilson JM, Jefferson DM, Chowdhury JR, Novikoff PM, Johnston DE, Mulligan RC: Retrovirus-mediated transduction of adult hepatocytes. Proc Natl Acad Sci U S A. 1988, 85 (9): 3014-3018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bosch A, McCray PB, Walters KS, Bodner M, Jolly DJ, van Es HH, Nakamura T, Matsumoto K, Davidson BL: Effects of keratinocyte and hepatocyte growth factor in vivo: implications for retrovirus-mediated gene transfer to liver. Hum Gene Ther. 1998, 9 (12): 1747-1754.
Article
CAS
PubMed
Google Scholar
Patijn GA, Lieber A, Schowalter DB, Schwall R, Kay MA: Hepatocyte growth factor induces hepatocyte proliferation in vivo and allows for efficient retroviral-mediated gene transfer in mice. Hepatology. 1998, 28 (3): 707-716.
Article
CAS
PubMed
Google Scholar
Forbes SJ, Themis M, Alison MR, Sarosi I, Coutelle C, Hodgson HJ: Synergistic growth factors enhance rat liver proliferation and enable retroviral gene transfer via a peripheral vein. Gastroenterology. 2000, 118 (3): 591-598.
Article
CAS
PubMed
Google Scholar
Buchschacher GL, Wong-Staal F: Development of lentiviral vectors for gene therapy for human diseases. Blood. 2000, 95 (8): 2499-2504.
CAS
PubMed
Google Scholar
Trono D: Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 2000, 7 (1): 20-23.
Article
CAS
PubMed
Google Scholar
Naldini L: Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol. 1998, 9 (5): 457-463.
Article
CAS
PubMed
Google Scholar
Jia XQ, Cheng HQ, Qian X, Bian CX, Shi ZM, Zhang JP, Jiang BH, Feng ZQ: Lentivirus-mediated overexpression of microRNA-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell Biochem Biophys. 2012, 62 (1): 237-244.
Article
CAS
PubMed
Google Scholar
Zhang J, Randall G, Higginbottom A, Monk P, Rice CM, McKeating JA: CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol. 2004, 78 (3): 1448-1455.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin S, Parton RG: Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol. 2006, 7 (5): 373-378.
Article
CAS
PubMed
Google Scholar
Yang HJ, Hsu CL, Yang JY, Yang WY: Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging. PLoS One. 2012, 7 (3): e32693-
Article
PubMed Central
CAS
PubMed
Google Scholar
Niemann A, Baltes J, Elsasser HP: Fluorescence properties and staining behavior of monodansylpentane, a structural homologue of the lysosomotropic agent monodansylcadaverine. J Histochem Cytochem. 2001, 49 (2): 177-185.
Article
CAS
PubMed
Google Scholar
Jares-Erijman EA, Jovin TM: FRET imaging. Nat Biotechnol. 2003, 21 (11): 1387-1395.
Article
CAS
PubMed
Google Scholar
Sturmey RG, O'Toole PJ, Leese HJ: Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction. 2006, 132 (6): 829-837.
Article
CAS
PubMed
Google Scholar
McIntosh AL, Senthivinayagam S, Moon KC, Gupta S, Lwande JS, Murphy CC, Storey SM, Atshaves BP: Direct interaction of Plin2 with lipids on the surface of lipid droplets: a live cell FRET analysis. Am J Physiol Cell Physiol. 2012, 303 (7): C728-C742.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bae JH, Rubini M, Jung G, Wiegand G, Seifert MH, Azim MK, Kim JS, Zumbusch A, Holak TA, Moroder L, Huber R, Budisa N: Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins. J Mol Biol. 2003, 328 (5): 1071-1081.
Article
CAS
PubMed
Google Scholar
Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW: Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res. 1998, 294 (2): 309-321.
Article
CAS
PubMed
Google Scholar
Blouin CM, Le Lay S, Eberl A, Kofeler HC, Guerrera IC, Klein C, Le Liepvre X, Lasnier F, Bourron O, Gautier JF, Ferre P, Hajduch E, Dugail I: Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res. 2010, 51 (5): 945-956.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM, Kamali-Moghaddam M, Söderberg O: Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics. 2010, 7 (3): 401-409.
Article
CAS
PubMed
Google Scholar
Zirath H, Frenzel A, Oliynyk G, Segerström L, Westermark UK, Larsson K, Munksgaard Persson M, Hultenby K, Lehtiö J, Einvik C, Påhlman S, Kogner P, Jakobsson PJ, Henriksson MA: MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A. 2013, 110 (25): 10258-10263.
Article
PubMed Central
CAS
PubMed
Google Scholar