Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007;447(7141):413–7.
Article
CAS
PubMed
Google Scholar
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genetics. 2007;8(2):104–15.
Article
PubMed
Google Scholar
Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol. 2013;20(3):290–9.
Article
CAS
PubMed
Google Scholar
Sutherland H, Bickmore WA. Transcription factories: gene expression in unions? Nat Rev Genet. 2009;10(7):457–66.
Article
CAS
PubMed
Google Scholar
Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol. 2010;395(1):1–10.
Article
CAS
PubMed
Google Scholar
Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, Vassetzky YS. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res. 2011;39(21):9085–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson S, Macpherson N, Mitchell JA. Nuclear organization of RNA polymerase II transcription. Biochem Cell Biol. 2013;91(1):22–30.
Article
CAS
PubMed
Google Scholar
Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM. Chromosomal contact permits transcription between coregulated genes. Cell. 2013;155(3):606–20.
Article
CAS
PubMed
Google Scholar
Pombo A, Dillon N. Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol. 2015;16(4):245–57.
Article
CAS
PubMed
Google Scholar
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–80.
Article
CAS
PubMed
Google Scholar
Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–11.
Article
CAS
PubMed
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Steensel B, Dekker J. Genomics tools for the unraveling of chromosome architecture. Nat Biotechnol. 2010;28(10):1089–95.
Article
PubMed
PubMed Central
Google Scholar
Li G, Ruan X, Auerbach RK, Sandhu KS, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell. 2012;148(1–2):84–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59–64.
Article
CAS
PubMed
Google Scholar
Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. 2014; 6(2). Doi: 10.1101/cshperspect.a018382
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38(11):1341–47.
Article
CAS
PubMed
Google Scholar
Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 2006;113(1–4):279–91.
Article
CAS
PubMed
Google Scholar
Nordin M, Bergman D, Halje M, Engström W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif. 2014;47(3):189–99.
Article
CAS
PubMed
Google Scholar
Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet. 2004;36(8):889–93.
Article
CAS
PubMed
Google Scholar
Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science. 2006;312(5771):269–72.
Article
CAS
PubMed
Google Scholar
Sandhu KS, Shi C, Sjölinder M, Zhao Z, Göndör A, Liu L, et al. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev. 2009;23(22):2598–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, et al. An imprinted QTL with major effects on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet. 1999;21(2):155–56.
Article
CAS
PubMed
Google Scholar
Jeon JT, Carlborg O, Törnsten A, Giuffra E, Amarger V, Chardon P, et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet. 1999;21(2):157–58.
Article
CAS
PubMed
Google Scholar
Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003;425(6960):832–36.
Article
PubMed
Google Scholar
Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006;11(5):711–22.
Article
CAS
PubMed
Google Scholar
Yerle M, Schmitz A, Milan D, Chaput B, Monteagudo L, Vaiman M, et al. Accurate characterization of porcine bivariate flow karyotype by PCR and fluorescence in situ hybridization. Genomics. 1993;16(1):97–103.
Article
CAS
PubMed
Google Scholar
Yerle M, Goureau A, Gellin J, Le Tissier P, Moran C. Rapid mapping of cosmid clones on pig chromosomes by fluorescence in situ hybridization. Mamm Genome. 1994;5(1):34–7.
Article
CAS
PubMed
Google Scholar
Iannuccelli E, Mompart F, Gellin J, Lahbib-Mansais Y, Yerle M, Boudier T. NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments. Bioinformatics. 2010;26(5):696–97.
Article
CAS
PubMed
Google Scholar
Solinhac R, Mompart F, Martin P, Robelin D, Pinton P, Iannuccelli E, et al. Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma. 2011;120(5):501–20.
Article
CAS
PubMed
Google Scholar
Braunschweig MH, Owczarek-Lipska O, Stahlberger-Saitbekova N. Relationship of porcine IGF2 imprinting status to DNA methylation at the H19 DMD and the IGF2. BMC Genet. 2011;12:47–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voillet V, SanCristobal M, Lippi Y, Martin PG, Iannuccelli N, Lascor C, et al. Muscle transcriptomic investigation of late fetal development identifies candidate genes for piglet maturity. BMC Genomics. 2014;15(1):797–814.
Article
PubMed
PubMed Central
Google Scholar
Ratajczak MZ. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem Cytobiol. 2012;50(2):171–79.
Article
CAS
PubMed
Google Scholar
Amarger V, Nguyen M, Van Laere AS, Braunschweig MC, Nezer C, Georges M, et al. Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs. Mamm Genome. 2002;13(7):388–98.
Article
CAS
PubMed
Google Scholar
Han DW, Im YB, Do JT, Gupta MK, Uhm SJ, Kim JH, et al. Methylation status of putative differentially methylated regions of porcine IGF2 and H19. Mol Reprod Dev. 2008;75(5):777–84.
Article
CAS
PubMed
Google Scholar
Li C, Bin Y, Curchoe C, Yang L, Feng D, Jiang Q, et al. Genetic imprinting of H19 and IGF2 in domestic pigs (Sus scrofa). Anim Biotechnol. 2008;19(1):22–7.
Article
PubMed
Google Scholar
Li XP, Do KT, Kim JJ, Huang J, Zhao SH, Lee Y, et al. Molecular characteristics of the porcine DLK1 and MEG3 genes. Anim Genet. 2008;39(2):189–92.
Article
CAS
PubMed
Google Scholar
Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009;136(20):3413–21.
Article
CAS
PubMed
Google Scholar
Gabory A, Jammes H, Dandolo L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32(6):473–80.
Article
CAS
PubMed
Google Scholar
Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2(4):292–301.
Article
CAS
PubMed
Google Scholar
Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36(10):1065–71.
Article
CAS
PubMed
Google Scholar
Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, et al. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 2007;5(8):e192.
Article
PubMed
PubMed Central
Google Scholar
Schoenfelder S, Clay I, Fraser P. The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev. 2010;20(2):127–33.
Article
CAS
PubMed
Google Scholar
Joffe B, Leonhardt H, Solovei I. Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev. 2010;20(5):562–69.
Article
CAS
PubMed
Google Scholar
Cope NF, Fraser P, Eskiw CH. The yin and yang of chromatin spatial organization. Genome Biol. 2010;11(3):204–11.
Article
PubMed
PubMed Central
Google Scholar
Bickmore WA, van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell. 2013;152(6):1270–84. Review.
Article
CAS
PubMed
Google Scholar
Yang PK, Kuroda MI. Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell. 2007;128(4):777–86. Review.
Article
CAS
PubMed
Google Scholar
Zakharova IS, Shevchenko AI, Zakian SM. Monoallelic gene expression in mammals. Chromosoma. 2009;118(3):279–90.
Article
CAS
PubMed
Google Scholar
Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T. Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev. 2008;22(4):489–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gribnau J, Hochedlinger K, Hata K, Li E, Jaenisch R. Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev. 2003;17(6):759–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rieder D, Ploner C, Krogsdam AM, Stocker G, Fischer M, Scheideler M, et al. Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci. 2013;71(9):1741–59.
Article
PubMed
Google Scholar
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nat Genet. 2006;38(11):1348–54.
Article
CAS
PubMed
Google Scholar
Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 2009;5(11):e1000739.
Article
PubMed
PubMed Central
Google Scholar
Perkins AC, Kramer LN, Spurlock DM, Hadfield TS, Cockett NE, Bidwell CA. Postnatal changes in the expression of genes located in the callipyge region in sheep skeletal muscle. Anim Genet. 2006;37(6):535–42.
Article
CAS
PubMed
Google Scholar
Edelman LB, Fraser P. Transcription factories: genetic programming in three dimensions. Curr Opin Genet Dev. 2012;22(2):110–14.
Article
CAS
PubMed
Google Scholar
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet. 2010;42(1):53–61.
Article
CAS
PubMed
Google Scholar
Ulianov SV, Gavrilov AA, Razin SV. Nuclear compartments, genome folding, and enhancer-promoter communication. Int Rev Cell Mol Biol. 2015;315:183–244.
Article
PubMed
Google Scholar
Gierman HJ, Indemans MH, Koster J, Goetze S, Seppen J, Geerts D, et al. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17(9):1286–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503(7465):290–94.
CAS
PubMed
PubMed Central
Google Scholar
Palstra RJ, Simonis M, Klous P, Brasset E, Eijkelkamp B, de Laat W. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLoS One. 2008;3(2):e1661.
Article
PubMed
PubMed Central
Google Scholar
Branco MR, Pombo A. Intermingling of chromosome territories in interphase suggests role intranslocations and transcription-dependent associations. PLoS Biol. 2006;4(5):e138.
Article
PubMed
PubMed Central
Google Scholar
Meaburn KJ, Misteli T, Soutoglou E. Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 2007;17(1):80–90.
Article
CAS
PubMed
Google Scholar
Zhang Y, Gostissa M, Hildebrand DG, Becker MS, Boboila C, Chiarle R, et al. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol. 2010;106:93–133. Review.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engreitz JM, Agarwala V, Mirny LA. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS One. 2012;7(9):e44196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139(6):1069–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C, Yang L, Rosenfeld MG. Molecular logic underlying chromosomal translocations random or non-random? Adv Cancer Res. 2012;113:241–79.
Article
CAS
PubMed
Google Scholar
Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147(1):107–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012;148(5):908–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Georges M, Charlier C, Cockett N. The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 2003;19(5):248–52. Review.
Article
CAS
PubMed
Google Scholar
Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol. 2002;22(15):5585–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis E, Jensen CH, Schroder HD, Farnir F, Shay-Hadfield T, Kliem A, et al. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol. 2004;14(20):1858–62.
Article
CAS
PubMed
Google Scholar
da Rocha ST, Charalambous M, Lin SP, Gutteridge I, Ito Y, Gray D, et al. Gene dosage effects of the imprinted delta-like homologue 1 (dlk1/pref1) in development: implications for the evolution of imprinting. PLoS Genet. 2009;5(2):e1000392.
Article
PubMed
Google Scholar
Kim KS, Kim JJ, Dekkers JC, Rothschild MF. Polar overdominant inheritance of a DLK1 polymorphism is associated with growth and fatness in pigs. Mamm Genome. 2004;15(7):552–9.
Article
CAS
PubMed
Google Scholar
Neguembor MV, Jothi M, Gabellini D. Long noncoding RNAs emerging players in muscle differentiation and disease. Skelet Muscle. 2014;4(1):8–20.
Article
PubMed
PubMed Central
Google Scholar
O’Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet. 2015;6:156. Review.
PubMed
PubMed Central
Google Scholar