Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, et al. Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol. 2007;304(2):633–51.
Article
CAS
PubMed
Google Scholar
Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol. 2012;798:21–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol. 2007;308(2):281–93.
Article
CAS
PubMed
Google Scholar
Mesires NT, Doumit ME. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am J Physiol Cell Physiol. 2002;282(4):C899–906.
Article
CAS
PubMed
Google Scholar
Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971;170(4):421–35.
Article
CAS
PubMed
Google Scholar
Campion DR, Richardson RL, Reagan JO, Kraeling RR. Changes in the satellite cell population during postnatal growth of pig skeletal muscle. J Anim Sci. 1981;52(5):1014–8.
Article
CAS
PubMed
Google Scholar
Swatland HJ. Accumulation of myofiber nuclei in pigs with normal and arrested development. J Anim Sci. 1977;44(5):759–64.
Article
CAS
PubMed
Google Scholar
Rouger K, Brault M, Daval N, Leroux I, Guigand L, Lesoeur J, Fernandez B, Cherel Y. Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently. Cell Tissue Res. 2004;317(3):319–26.
Article
PubMed
Google Scholar
Ding S, Wang F, Liu Y, Li S, Zhou G, Hu P. Characterization and isolation of highly purified porcine satellite cells. Cell death discovery. 2017;3:17003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yablonka-Reuveni Z. The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem. 2011;59(12):1041–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceccarelli G, Benedetti L, Arcari ML, Carubbi C, Galli D. Muscle stem cell and physical activity: what point is the debate at? Open Med. 2017;12:144–56.
Article
Google Scholar
Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151(6):1221–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olguin HC, Olwin BB. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004;275(2):375–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oustanina S, Hause G, Braun T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J. 2004;23(16):3430–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development. 2012;139(16):2857–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neal A, Boldrin L, Morgan JE. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration. PLoS One. 2012;7(5):e37950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci. 2006;119(Pt 9):1824–32.
Article
CAS
PubMed
Google Scholar
Zouraq FA, Stölting M, Eberli D. Skeletal muscle regeneration for clinical application. In: Regenerative medicine and tissue engineering: InTech; 2013.
Musaro A, Barberi L. Isolation and culture of mouse satellite cells. Methods Mol Biol. 2010;633:101–11.
Article
CAS
PubMed
Google Scholar
Yablonka-Reuveni Z, Quinn LS, Nameroff M. Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev Biol. 1987;119(1):252–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mau M, Oksbjerg N, Rehfeldt C. Establishment and conditions for growth and differentiation of a myoblast cell line derived from the semimembranosus muscle of newborn piglets. In Vitro Cell Dev Biol Anim. 2008;44(1–2):1–5.
Article
PubMed
Google Scholar
Jankowski RJ, Haluszczak C, Trucco M, Huard J. Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum Gene Ther. 2001;12(6):619–28.
Article
CAS
PubMed
Google Scholar
Li BJ, Li PH, Huang RH, Sun WX, Wang H, Li QF, Chen J, Wu WJ, Liu HL. Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian Australas J Anim Sci. 2015;28(8):1171–7.
Article
PubMed
PubMed Central
Google Scholar
Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, Peault B, Cummins J, Huard J. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 2008;3(9):1501–9.
Article
CAS
PubMed
Google Scholar
Sellathurai J, Cheedipudi S, Dhawan J, Schroder HD. A novel in vitro model for studying quiescence and activation of primary isolated human myoblasts. PLoS One. 2013;8(5):e64067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yablonka-Reuveni Z, Nameroff M. Skeletal muscle cell populations. Separation and partial characterization of fibroblast-like cells from embryonic tissue using density centrifugation. Histochemistry. 1987;87(1):27–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bischoff R. Chemotaxis of skeletal muscle satellite cells. Dev Dyn. 1997;208(4):505–15.
Article
CAS
PubMed
Google Scholar
Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem. 2000;48(8):1079–96.
Article
CAS
PubMed
Google Scholar
Che X, Guo J, Wang B, Bai Y. Rapid isolation of muscle-derived stem cells by discontinuous Percoll density gradient centrifugation. In Vitro Cell Dev Biol Anim. 2011;47(7):454–8.
Article
CAS
PubMed
Google Scholar
Fumarola D, Antonaci S, Jirillo E, Munno I, Lucivero G, Bonomo L. Percoll density gradient centrifugation. (an improved method for the enrichment of lymphocyte subsets mediating different activities). La Ricerca in clinica e in laboratorio. 1982;12(3):485–91.
CAS
PubMed
Google Scholar
Li Z, Gilbert JA, Zhang Y, Zhang M, Qiu Q, Ramanujan K, Shavlakadze T, Eash JK, Scaramozza A, Goddeeris MM, et al. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev Cell. 2012;23(6):1176–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakkalakal JV, Christensen J, Xiang W, Tierney MT, Boscolo FS, Sacco A, Brack AS. Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development. 2014;141(8):1649–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zammit PS. All muscle satellite cells are equal, but are some more equal than others? J Cell Sci. 2008;121(Pt 18):2975–82.
Article
CAS
PubMed
Google Scholar
Biressi S, Rando TA. Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol. 2010;21(8):845–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz E. Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol. 1996;175(1):84–94.
Article
CAS
PubMed
Google Scholar
White RB, Bierinx AS, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol. 2010;10:21.
Article
PubMed
PubMed Central
Google Scholar
Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol. 2006;8(7):677–87.
Article
CAS
PubMed
Google Scholar
Ono Y, Masuda S, Nam HS, Benezra R, Miyagoe-Suzuki Y, Takeda S. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J Cell Sci. 2012;125(Pt 5):1309–17.
Article
CAS
PubMed
Google Scholar
Baquero-Perez B, Kuchipudi SV, Nelli RK, Chang KC. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol. 2012;13:16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doumit ME, Merkel RA. Conditions for isolation and culture of porcine myogenic satellite cells. Tissue & cell. 1992;24(2):253–62.
Article
CAS
Google Scholar
Henckel PR, Theil PK, Sorensen IL, Oksbjerg N. Temporal changes in glycogenolytic enzyme mRNAs during myogenesis of primary porcine satellite cells. Meat Sci. 2007;75(2):248–55.
Article
CAS
PubMed
Google Scholar
Yi Z, Hathaway MR, Dayton WR, White ME. Effects of growth factors on insulin-like growth factor binding protein (IGFBP) secretion by primary porcine satellite cell cultures. J Anim Sci. 2001;79(11):2820–6.
Article
CAS
PubMed
Google Scholar
Miersch C, Stange K, Hering S, Kolisek M, Viergutz T, Rontgen M. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Sci Rep. 2017;7:45052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bischoff R, Heintz C. Enhancement of skeletal muscle regeneration. Dev Dyn. 1994;201(1):41–54.
Article
CAS
PubMed
Google Scholar
Xi B, Yu N, Wang X, Xu X, Abassi YA. The application of cell-based label-free technology in drug discovery. Biotechnol J. 2008;3(4):484–95.
Article
CAS
PubMed
Google Scholar
Atienza JM, Zhu J, Wang X, Xu X, Abassi Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen. 2005;10(8):795–805.
Article
CAS
PubMed
Google Scholar
Ke N, Wang X, Xu X, Abassi YA. The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol Biol. 2011;740:33–43.
Article
CAS
PubMed
Google Scholar
Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006;20(13):1692–708.
Article
CAS
PubMed
Google Scholar
Witzel F, Fritsche-Guenther R, Lehmann N, Sieber A, Bluthgen N. Analysis of impedance-based cellular growth assays. Bioinformatics. 2015;31(16):2705–12.
Article
CAS
PubMed
Google Scholar
Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O, Pauwels P. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One. 2012;7(10):e46536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yablonka-Reuveni Z, Anderson SK, Bowen-Pope DF, Nameroff M. Biochemical and morphological differences between fibroblasts and myoblasts from embryonic chicken skeletal muscle. Cell Tissue Res. 1988;252(2):339–48.
Article
CAS
PubMed
Google Scholar
Alexander LS, Seabolt BS, Rhoads RP, Stahl CH. Neonatal phosphate nutrition alters in vivo and in vitro satellite cell activity in pigs. Nutrients. 2012;4(6):436–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Park S, Scheffler JM, Kuang S, Grant AL, Gerrard DE. Porcine satellite cells are restricted to a phenotype resembling their muscle origin. J Anim Sci. 2013;91(10):4684–91.
Article
CAS
PubMed
Google Scholar
Allen RE, Rankin LL, Greene EA, Boxhorn LK, Johnson SE, Taylor RG, Pierce PR. Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J Cell Physiol. 1991;149(3):525–35.
Article
CAS
PubMed
Google Scholar
Kaufman SJ, Foster RF. Replicating myoblasts express a muscle-specific phenotype. Proc Natl Acad Sci U S A. 1988;85(24):9606–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med. 2009;266(4):372–89.
Article
CAS
PubMed
Google Scholar
Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166(3):347–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tierney MT, Sacco A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol. 2016;26(6):434–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn. 2009;238(4):1001–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diao Y, Guo X, Li Y, Sun K, Lu L, Jiang L, Fu X, Zhu H, Sun H, Wang H, et al. Pax3/7BP is a Pax7- and Pax3-binding protein that regulates the proliferation of muscle precursor cells by an epigenetic mechanism. Cell Stem Cell. 2012;11(2):231–41.
Article
CAS
PubMed
Google Scholar
Lepper C, Conway SJ, Fan CM. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature. 2009;460(7255):627–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dike LE, Farmer SR. Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts. Proc Natl Acad Sci U S A. 1988;85(18):6792–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol. 2002;4(4):E65–8.
Article
CAS
PubMed
Google Scholar
Moro L, Dolce L, Cabodi S, Bergatto E, Boeri Erba E, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M, et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem. 2002;277(11):9405–14.
Article
CAS
PubMed
Google Scholar
Schutt BS, Langkamp M, Rauschnabel U, Ranke MB, Elmlinger MW. Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J Mol Endocrinol. 2004;32(3):859–68.
Article
CAS
PubMed
Google Scholar
Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007;18(4):1397–409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornelison DD. Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem. 2008;105(3):663–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163(5):1133–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyganowska-Swiatkowska M, Kotwicka M, Urbaniak P, Nowak A, Skrzypczak-Jankun E, Jankun J. Clinical implications of the growth-suppressive effects of chlorhexidine at low and high concentrations on human gingival fibroblasts and changes in morphology. Int J Mol Med. 2016;37(6):1594–600.
Article
CAS
PubMed
Google Scholar
Pham PV, Nguyen NT, Nguyen HM, Khuat LT, Le PM, Pham VQ, Nguyen ST, Phan NK. A simple in vitro method for evaluating dendritic cell-based vaccinations. OncoTargets and therapy. 2014;7:1455–64.
Article
CAS
PubMed
PubMed Central
Google Scholar