Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13(1):83–117.
Article
CAS
PubMed
Google Scholar
Kinoshita K, Arnal I, Desai A, Dreschsel DN, Hyman AA. Reconstitution of physiological microtubule dynamics using purified components. Science. 2001;294(5545):1340–3.
Article
CAS
PubMed
Google Scholar
Dammermann A, Desai A, Oegema K. The minus end in sight. Curr Biol. 2003;13(15):R614–24.
Article
CAS
PubMed
Google Scholar
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. 1st ed. Vol. 309, International review of cell and molecular biology. Elsevier Inc; 2014. p.59–140.
Howard J, Hyman AA. Microtubule polymerases and depolymerases. Curr Opin Cell Biol. 2007;19(1):31–5.
Article
CAS
PubMed
Google Scholar
Akhmanova A, Steinmetz MO. Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol. 2015;16(12):711–26.
Article
CAS
PubMed
Google Scholar
Mennella V, Rogers GC, Rogers SL, Buster DW, Vale RD, Sharp DJ. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol. 2005;7(3):235–45.
Article
CAS
PubMed
Google Scholar
Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE, Vale RD, et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature. 2004;427(6972):364–70.
Article
CAS
PubMed
Google Scholar
Zheng Y, Wong ML, Alberts B, Mitchison T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature. 1995;378(6557):578–83.
Article
CAS
PubMed
Google Scholar
Farache D, Emorine L, Haren L, Merdes A. Assembly and regulation of γ-tubulin complexes. Open Biol. 2018;8(3):170266.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wiese C, Zheng Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat Cell Biol. 2000;2(6):358–64.
Article
CAS
PubMed
Google Scholar
Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol. 2008;181(3):421–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD. Branching microtubule nucleation in Xenopus egg extracts mediated by Augmin and TPX2. Cell. 2013;152(4):768–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song J-G, King MR, Zhang R, Kadzik RS, Thawani A, Petry S. Mechanism of how augmin directly targets the γ-tubulin ring complex to microtubules. J Cell Biol. 2018;217(7):2417–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, et al. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat Cell Biol. 2017;19(5):480–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakefield JG, Bonaccorsi S, Gatti M. The Drosophila protein Asp is involved in microtubule organization during spindle formation and cytokinesis. J Cell Biol. 2001;153(4):637–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgins J, Midgley C, Bergh A-M, Bell SM, Askham JM, Roberts E, et al. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biol. 2010;11:85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature. 2007;450(7172):1100–5.
Article
CAS
PubMed
Google Scholar
Kline-Smith SL, Walczak CE. Mitotic spindle assembly and chromosome segregation. refocusing on microtubule dynamics Mol Cell. 2004;15(3):317–27.
Article
CAS
PubMed
Google Scholar
Rogers SL, Rogers GC, Sharp DJ, Vale RD. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol. 2002;158(5):873–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cullen CF, Deák P, Glover DM, Ohkura H. mini spindles: a gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol. 1999;146(5):1005–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maiato H, Sampaio P, Lemos CL, Findlay J, Carmena M, Earnshaw WC, et al. MAST/orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol. 2002;157(5):749–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laycock JE, Savoian MS, Glover DM. Antagonistic activities of Klp10A and Orbit regulate spindle length, bipolarity and function in vivo. J Cell Sci. 2006;119(Pt 11):2354–61.
Article
CAS
PubMed
Google Scholar
Goshima G, Vale RD. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J Cell Biol. 2003;162(6):1003–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buster DW, Zhang D, Sharp DJ. Poleward tubulin flux in spindles: regulation and function in mitotic cells. Mol Biol Cell. 2007;18(8):3094–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gandhi R, Bonaccorsi S, Wentworth D, Doxsey S, Gatti M, Pereira A. The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol Biol Cell. 2004;15(1):121–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, et al. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet. 2017;13(5):e1006784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sunkel CE, Gomes R, Sampaio P, Perdigão J, González C. γ-Tubulin is required for the structure and function of the microtubule organizing centre in Drosophila neuroblasts. EMBO J. 1995;14(1):28–36.
Colombié N, Vérollet C, Sampaio P, Moisand A, Sunkel C, Bourbon H-M, et al. The Drosophila γ-tubulin small complex subunit Dgrip84 is required for structural and functional integrity of the spindle apparatus. Mol Biol Cell. 2006;17(1):272–82.
Article
PubMed
PubMed Central
Google Scholar
Vérollet C, Colombié N, Daubon T, Bourbon H-M, Wright M, Raynaud-Messina B. Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. J Cell Biol. 2006;172(4):517–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bucciarelli E, Pellacani C, Naim V, Palena A, Gatti M, Somma MP. Drosophila Dgt6 interacts with Ndc80, Msps/XMAP215, and γ-tubulin to promote kinetochore-driven MT formation. Curr Biol. 2009;19(21):1839–45.
Article
CAS
PubMed
Google Scholar
Morales-Mulia S, Scholey JM. Spindle pole organization in Drosophila S2 cells by Dynein, Abnormal Spindle protein (Asp), and KLP10A. Mol Biol Cell. 2005;16(7):3176–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito A, Goshima G. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. J Cell Biol. 2015;211(5):999–1009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baines AJ, Bignone PA, King MDA, Maggs AM, Bennett PM, Pinder JC, et al. The CKK domain (DUF1781) binds microtubules and defines the CAMSAP/ssp4 family of animal proteins. Mol Biol Evol. 2009;26(9):2005–14.
Article
CAS
PubMed
Google Scholar
Meng W, Mushika Y, Ichii T, Takeichi M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell. 2008;135(5):948–59.
Article
CAS
PubMed
Google Scholar
Tanaka N, Meng W, Nagae S, Takeichi M. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc Natl Acad Sci USA. 2012;109(49):20029–34.
Article
CAS
Google Scholar
Hendershott MC, Vale RD. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. Proc Natl Acad Sci USA. 2014;111(16):5860–5.
Article
CAS
Google Scholar
Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW, Liu Q, et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev Cell. 2014;28(3):295–309.
Article
CAS
PubMed
Google Scholar
Akhmanova A, Hoogenraad CC. Microtubule minus-end-targeting proteins. Curr Biol. 2015;25(4):R162–71.
Article
CAS
PubMed
Google Scholar
Jiang K, Faltova L, Hua S, Capitani G, Prota AE, Landgraf C, et al. Structural basis of formation of the microtubule minus-end-regulating CAMSAP-Katanin complex. Structure. 2018;26(3):375–82.
Article
CAS
PubMed
Google Scholar
Syred HM, Welburn J, Rappsilber J, Ohkura H. Cell cycle regulation of microtubule interactomes: multi-layered regulation is critical for the interphase/mitosis transition. Mol Cell Proteomics. 2013;12(11):3135–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hueschen CL, Kenny SJ, Xu K, Dumont S. NuMA recruits dynein activity to microtubule minus-ends at mitosis. eLife. 2017;6:e29328.
Article
PubMed
PubMed Central
Google Scholar
Goodwin SS, Vale RD. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell. 2010;143(2):263–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science. 2007;316(5823):417–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nashchekin D, Fernandes AR, St Johnston D. Patronin/Shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev Cell. 2016;38(1):61–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J Cell Biol. 2013;203(1):35–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derivery E, Seum C, Daeden A, Loubéry S, Holtzer L, Jülicher F, et al. Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature. 2015;528(7581):280–5.
Article
CAS
PubMed
Google Scholar
Somma MP, Ceprani F, Bucciarelli E, Naim V, De Arcangelis V, Piergentili R, et al. Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference. PLoS Genet. 2008;4(7):e1000126.
Article
PubMed
PubMed Central
CAS
Google Scholar
Munzarova A, Popova J, Razuvaeva A, Shloma V, Gatti M, Omelyanchuk L. Accurate measurement of poleward microtubule flux in the spindle of Drosophila S2 cells. Cell Biol Int. 2016;40(9):984–90.
Article
CAS
PubMed
Google Scholar
Gramates LS, Marygold SJ, dos Santos G, Urbano J-M, Antonazzo G, Matthews BB, et al. FlyBase at 25: looking to the future. Nucleic Acids Res. 2017;45(D1):D663–71.
Article
CAS
PubMed
Google Scholar
Giansanti MG, Bucciarelli E, Bonaccorsi S, Gatti M. Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr Biol. 2008;18(4):303–9.
Article
CAS
PubMed
Google Scholar
Vukušić K, Buđa R, Bosilj A, Milas A, Pavin N, Tolić IM. Microtubule sliding within the bridging fiber pushes kinetochore fibers apart to segregate chromosomes. Dev Cell. 2017;43(1):11–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bosveld F, Ainslie A, Bellaïche Y. Sequential activities of Dynein, Mud and Asp in centrosome–spindle coupling maintain centrosome number upon mitosis. J Cell Sci. 2017;130(20):3557–67.
Article
CAS
PubMed
Google Scholar
Strunov A, Boldyreva LV, Andreyeva EN, Pavlova GA, Popova JV, Razuvaeva AV, et al. Ultrastructural analysis of mitotic Drosophila S2 cells identifies distinctive microtubule and intracellular membrane behaviors. BMC Biol. 2018;16(1):68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kamasaki T, O′Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, et al. Augmin-dependent microtubule nucleation at microtubule walls in the spindle. J Cell Biol. 2013;202(1):25–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uehara R, Goshima G. Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. J Cell Biol. 2010;191(2):259–67.
Article
CAS
PubMed
PubMed Central
Google Scholar